Technical Memorandum Grade Separation Feasibility Study

Total Page:16

File Type:pdf, Size:1020Kb

Technical Memorandum Grade Separation Feasibility Study TECHNICAL MEMORANDUM GRADE SEPARATION FEASIBILITY STUDY INTRODUCTION The Village of Downers Grove’s Comprehensive Plan identifies a goal of providing a “balanced transportation system that ensures the safe and efficient movement of vehicles, pedestrians and cyclists.” The Plan acknowledges that the presence of the Burlington Northern Sante Fe Railroad (BNSF) crossing east to west in the center of the Village impedes traffic flowing north and south in the Village. This is particularly true in the central business district, where not only north‐south through traffic is impeded and delayed, but also local traffic attempting to circulate through the downtown. To the west of the downtown, the BNSF tracks divide residential neighborhoods and separates Gilbert Park and the Maple Grove County Forest Preserve from the large, mature residential neighborhoods to the north creating an impediment to pedestrians and bicyclists attempting to access areas north and south of the BNSF tracks. To accomplish the goal of providing a balanced, safe, efficient transportation system and to address the specific need to improve north‐south traffic flow for all modes in the downtown, the Village has undertaken a Grade Separation Feasibility Study to identify potentially feasible roadway, pedestrian and bicycle grade separations between Belmont Road and Fairview Avenue (see study area map Exhibit 1). This memorandum outlines the preliminary findings of the Grade Separation Feasibility Study conducted for the Village of Downers Grove. Five roadway/railroad grade separation concepts and three pedestrian/bicycle grade separations are presented. The five roadway grade separations vary in their location, impacts and traffic patterns. The three pedestrian/bike path grade separation alternatives are located in the same general area (between Lee Av. and Wallbank Av.) STUDY METHODOLOGY Grade separation projects in a mature community represent a substantial commitment of funds, will have impacts on adjacent properties and will create new and permanent infrastructure that will be a part of the community for the next 40 years and beyond. Projects of this scale need to meet both the safety and mobility requirements of the community, while being a prudent investment of funds, providing value and benefit. Page | 1 Gilbert Ave C ornell A ve Lee Ave Lee A ve C Maple Grove Preserve oun t y F o N orthcott A ve r e Gilbert Park s t W allbank A ve Warren Ave S eeley A ve M ontgom ery A ve B N O akw ood A ve SF R M iddaugh A ve a il r Linscott A ve o a P d r F a C a r i ( r r a p Gilbert Ave i M e e n n t k e S r e l S i t n t Saratoga Ave t S r a t ) Fishel Park Forest Ave M ain St H ighland A ve Warren Ave B ryan P l Downers GroveGrade Separation Feasibility Study W ashington St Washington C iffen P l u W h r Rogers St ti Park ss S t E lm S t Randall Park F a P rospect A ve i r m oun t A v e M tanley A ve a S p le A ve B lodgett A ve Study Area Map D ouglas R d G rand A ve N Burlington Ave Fairview Ave Hummer Exhibit 1 Park Early planning decisions have a significant effect on future project costs, impacts to surrounding properties and level of disruption during construction. Expending the necessary time and resources to develop and evaluate a range of solutions early in the planning process will focus future design and funding efforts while providing an optimized solution that meets the multi‐ modal transportation needs and provides the best value. PURPOSE AND NEED The Comprehensive Plan identifies the constraints and delays to north‐south traffic flow associated with the BNSF railroad at grade crossings. The BNSF railroad also bisects the central business district/ downtown of the Village. A vibrant and successful downtown requires ease of access and parking to attract and retain patrons. A downtown district that is perceived as being “tough to get to” or “hard to move around in” may have difficulty attracting and retaining businesses. In addition to the downtown businesses, there are two Metra Stations (Main St. and Fairview Av.) that result in additional traffic and parking loads in the study area. Train Traffic The BNSF accommodates both freight and commuter (Metra) train traffic. Metra operates approximately 94 trains on a typical weekday within the study area. Of these, 20 occur during the morning peak period (7:00 – 9:00 am) and 16 occur during the 4:00 – 6:00 pm peak. This translates to a train crossing on average every 6 – 7.5 minutes during these peak periods. The Illinois Commerce Commission (ICC) Grade Crossing Inventory lists an average daily train volume of approximately 160 trains per day in the study area, indicating approximately 66 freight trains per day in addition to the Metra trains. Taking into account that each train crossing represents several minutes (gates down to gates up after train crosses), the volume and frequency of trains results in significant delays throughout the day to pedestrians, bicyclists and motorists. Vehicular Traffic Traffic data within the study area was compiled from IDOT and Village sources. The table below depicts the Average Daily Traffic (ADT, 24‐hour two‐way total) for the existing grade crossings, as well as morning (AM) and evening (PM) peak hour 2‐way volumes. Page | 2 Crossing Location ADT Volume AM (PM) Peak Hour Volume Forest Av. 5,100 490 (250) Main St. 14,100 1,124 (1,260) Washington St. 5,300 520 (610) Maple Av. 8,200 800 (860) Fairview Av. 14,000 1,240 (1,230) Grade Crossing Crashes A review of crash summaries provided by the Village for the years 2011 – 2013 identified that most of the crashes in the study area involved pedestrians and cyclists. Only one crash appears to be related to a grade crossing and this crash occurred on Main Street. Of the 10 reported crashes, two involved bicycles and eight involved pedestrians. Eight of the 10 crashes were injury crashes. Project Stakeholders Stakeholders are defined as the ones who determine if a project is a success or failure. There are three kinds of stakeholders: Financially responsible for funding the project Share in the funding Owners Represent the owner’s interest Manage the project Users Actively use or maintain the project Financially affected by the project Others Environmentally concerned about the project Disturbed by any required change in habits or recreation Based on a review of the study area and likely partners (funding) in any grade separation project, the following stakeholders have been identified: Page | 3 Grade Separation Feasibility Study Stakeholders BNSF Railroad Gilbert Park users Chamber 630 IDOT Bureau of Local Roads Cyclists Illinois Commerce Commission Disabled Community Metra Downers Grove Bicycle Club Pace Downers Grove Economic Development Pedestrians Corporation Downers Grove elected officials Residents Downers Grove Fire Department State Representatives Downers Grove Management Corporation State Senator Downers Grove Park District Traffic (local) ‐ Pedestrians Downers Grove Police Department Traffic (local) ‐ Trucks Downers Grove Sanitary District Traffic (local) ‐ Vehicles Downers Grove Youth Baseball Traffic (local)‐ Cyclists Downtown businesses Traffic (Regional) Downtown property owners US Representative DuPage County US Senators DuPage Water Commission Utilities (public and private) Forest Preserve District of DuPage County Primary Function of Project Based on the identified stakeholders for this study, a new grade separation project needs to balance mobility against maintaining a vibrant and active community (minimizing impacts). The study area is fully developed. Therefore, the need for a potential grade separation must be balanced against impacts to adjacent properties. The five vehicular grade separation concepts have slightly different primary functions based on the location and connectivity to the existing street network. All five will reduce delays and thereby improve traffic, but there is a subtle differentiator of what type of traffic (local, downtown, through) is the likely primarily benefactor of a grade separation. The five grade separation concepts fall into three basic function categories as identified in the table below: Basic Function Grade Separation Forest Av. Improve downtown traffic circulation Washington St. Main St. Improve north‐south travel Fairview Av. Improve east‐west travel Maple Av. Page | 4 GRADE SEPARATION CONCEPTS Overpass vs. Underpass Grade separation requirements (ICC, BNSF, IDOT) for going over the railroad (overpass) dictate a minimum vertical clearance of 23 ft.‐ 4 inches from the top of the rail to the bottom of any overpass. This typically results in the roadway/bike path elevation being approximately 30 feet above the rail when the structure depth is considered. This would result in roadway elevations comparable to a three‐story building. Taking into account required roadway approach grades and ADA (Americans with Disabilities Act) requirements the approaches for a roadway overpass would have to begin and end over 600 feet (approximately one long city block) on either side of the crossing. For example, if Main St. was to be elevated over the tracks, the approach would start at Curtiss Street on the south and extend approximately 250 feet past Rogers St. Between these locations, Main Street properties would be underneath the structure. The impacts would be significant. Therefore, roadway overpass options are not being considered at any locations. Pedestrian/bicycle paths can incorporate “switchbacks” to obtain the required vertical clearance in a relatively short area. A pedestrian/bicycle path overpass is one of the alternatives for this study. Railroad Raise/Lower Another alternative would be raising (or lowering) of the railroad tracks as opposed to raising/lowering of the roadways. However, trains require a much longer distance than vehicles for the same vertical raise.
Recommended publications
  • Fec Railroad Grade Separation Feasibility Study
    FEC RAILROAD GRADE SEPARATION FEASIBILITY STUDY EXECUTIVE SUMMARY The Martin Metropolitan Planning Organization (MPO) initiated this feasibility study to identify, evaluate and plan for potential roadway and non-motorized pedestrian/bicycle grade separations along the Florida East Coast Rail Line (FEC) through Martin County. The study has been performed in phases including: Tier 1: Perform an initial assessment of all the mainline rail at grade crossings (25) in Martin County and identify 10 roadway candidate crossings for potential grade separation. Review adjacent land uses between crossings and known areas of pedestrian trespassing on the rail corridor to identify 5 candidate locations for non-motorized crossings. Tier 2: Perform detailed evaluation and rank the roadway and non-motorized candidates for the need and justification to implement grade separations. Tier 3: Prepare concepts and assess the feasibility and impacts of grade separations at 4 potential crossing locations: o Conceptual plans for up to 2 crossings for roadway grade separation, and o Conceptual plans for up to 2 crossings for non-motorized uses Assess the impacts and cost-benefit of the concepts developed for this study. The final results include concepts, costs and benefits developed for an Indian Street/Dixie Highway elevated roadway crossing, a Monterey Road/Dixie Highway depressed roadway crossing, a Railroad Avenue to Commerce Boulevard elevated pedestrian/bicycle grade separation and a Downtown Stuart elevated pedestrian/bicycle grade crossing. Each concept is provided below from south to north by roadway and non-motorized category. Note 11x17 sheets are provided in Chapter 4, Figures 18 to 21. Potential Indian Street / Dixie Highway Elevated Roadway Grade Crossing over the FEC Railroad E - 1 FEC RAILROAD GRADE SEPARATION FEASIBILITY STUDY Potential Monterey Rd/Dixie Highway Depressed Roadway Grade Crossing over the FEC RR Potential Railroad Ave.
    [Show full text]
  • Grade Separations Info Sheet: February 2020 5
    GO Expansion Update Grade Separations Info Sheet: February 2020 5 Metrolinx is increasing its services as part of the GO Expansion program, which will increase train frequency and the number of trains on the GO rail network. To increase traffic flow and transit capacity , Metrolinx has identified the need to build a number of grade separations. This Info Sheet describes: • What is a grade separation? • Why are grade separations needed? What are the benefits? • What is involved in designing a grade Rendering of a road underpass separation? • What is involved in building a grade separation? What is a grade separation? • How will Metrolinx design, build, and address effects of grade separation? A grade separation is a tunnel or a bridge that allows a • Why doesn’t Metrolinx move tracks instead road or rail line to travel over or under the other, without of the road? the need for vehicles travelling on the road to stop. If the road is lowered below the rail line, it is called rail over road, while if it is raised above the rail line, it is called What are the benefits of grade road over rail. separations? Why are grade separations needed? • Improved traffic flow and elimination of the potential for conflicts between trains Although each rail line is different, trains may run as little and vehicles; as one or two times per hour on some Metrolinx • Increased on-time performance and corridors. This means that each road crossing may need operational reliability; to be temporarily closed about once or twice an hour to • Better connections and crossings for let the trains pass.
    [Show full text]
  • Considerations for High Occupancy Vehicle (HOV) Lane to High Occupancy Toll (HOT) Lane Conversions Guidebook
    Office of Operations 21st Century Operations Using 21st Century Technology Considerations for High Occupancy Vehicle (HOV) Lane to High Occupancy Toll (HOT) Lane Conversions Guidebook U.S. Department of Transportation Federal Highway Administration June 2007 Considerations for High Occupancy Vehicle (HOV) to High Occupancy Toll (HOT) Lanes Conversions Guidebook Prepared for the HOV Pooled-Fund Study and the U.S. Department of Transportation Federal Highway Administration Prepared by HNTB Booz Allen Hamilton Inc. 8283 Greensboro Drive McLean, VA 22102 Under contract to Federal Highway Administration (FHWA) June 2007 Notice This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or the use thereof. The contents of this Report reflect the views of the contractor, who is responsible for the accu- racy of the data presented herein. The contents do not necessarily reflect the official policy of the Department of Transportation. This Report does not constitute a standard, specification, or regulation. The United States Government does not endorse products or manufacturers named herein. Trade or manufacturers’ names appear herein only because they are considered essential to the objective of this document. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-HOP-08-034 4. Title and Subtitle 5. Report Date Consideration for High Occupancy Vehicle (HOV) to High Occupancy Toll June 2007 (HOT) Lanes Study 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Martin Sas, HNTB. Susan Carlson, HNTB Eugene Kim, Ph.D., Booz Allen Hamilton Inc.
    [Show full text]
  • Barrier Versus Buffer Separated Managed Lanes
    EMERGING ISSUES: BARRIER VERSUS BUFFER SEPARATED MANAGED LANES PREPARED FOR PREPARED BY Georgia Department of Transportation HNTB Corporation Office of Planning 3715 Northside Parkway 600 West Peachtree Street NW 400 Northcreek, Suite 600 Atlanta, GA 30308 Atlanta, GA 30327 Phone: (404) 631-1796 Phone: (404) 946-5708 Fax: (404) 631-1804 Fax: (404) 841-2820 Contact: Michelle Caldwell Contact: Andrew C. Smith, AICP January 2010 c Georgia Department of Transportation FINAL Barrier Versus Buffer Separated Managed Lanes January 2010 Atlanta Regional Managed Lane System Plan Technical Memorandum 17B: Advantages and Disadvantages of Barrier Versus Buffer Separated Managed Lanes Prepared for: Georgia Department of Transportation One Georgia Center, Suite 2700 600 West Peachtree Street NW Atlanta, Georgia 30308 Prepared by: HNTB Corporation Atlanta Regional Managed Lane System Plan Georgia Department of Transportation, Office of Planning FINAL Barrier Versus Buffer Separated Managed Lanes January 2010 ADVANTAGES AND DISADVANTAGES OF BARRIER VERSUS BUFFER SEPARATED MANAGED LANES WHITE PAPER Introduction The purpose of this white paper is to explore the advantages and disadvantages associated with the separation of managed lanes from the general purpose lanes by means of a barrier or buffer system. A number of factors contribute to the selection of a buffer or barrier system including issues of design specifications, costs, access, safety, congestion pricing operations, enforcement and public perception. The advantages and disadvantages of barrier and buffer separated managed lanes facilities are fully elaborated on in the sections below. Each corridor within Atlanta should decide for itself, based on its current and projected needs, operational guidelines and ultimate goals, which system, or combination thereof, works best for their area.
    [Show full text]
  • HOV Degradation Report and Action Plan (2018)
    STATE OF CALIFORNIA—CALIFORNIA STATE TRANSPORTATION AGENCY GAVIN NEWSOM, Governor DEPARTMENT OF TRANSPORTATION DIVISION OF TRAFFIC OPERATIONS P.O. BOX 942873, MS–36 SACRAMENTO, CA 94273–0001 Making Conservation PHONE (916) 654-2366 a California Way of Life. FAX (916) 653-6080 TTY 711 www.dot.ca.gov September 28, 2020 Mr. Maiser Khaled Director, Technical Services Federal Highway Administration California Division 650 Capitol Mall, Suite 4-100 Sacramento, CA 95814-4708 Dear Mr. Khaled: Enclosed is the 2018 California High-Occupancy Vehicle Facilities Degradation Report and Action Plan (2018 HOV Report and Action Plan) prepared by the California Department of Transportation (Caltrans) as required by U.S.C. Title 23 §166. Caltrans appreciates the collaboration and partnership from the Federal Highway Administration as an active member of the Managed Lane Working Group (Working Group). The Working Group develops and supports the implementation of strategies to optimize the performance of the HOV facilities. Caltrans is committed to implement the strategies presented by the Working Group and make progress toward bringing degraded HOV facilities into compliance with federal performance standards. Caltrans has already initiated various minor and major infrastructure projects to improve the performance of HOV facilities. Some projects were underway in 2018, while others will begin within the next one to three years. Caltrans will assess the feasibility of implementing additional strategies presented by the Working Group and make good faith efforts to improve the performance of degraded HOV facilities. If you have any questions regarding the 2018 HOV Report and Action Plan, please contact Joe Rouse, Managed Lane Functional Manager, Office of Mobility Programs, at (916) 952-6436, or by e-mail at <[email protected]>.
    [Show full text]
  • Tensar® Grade Separation Solutions
    Tensar® Grade Separation SoLUTIONs Tensar® Geogrids We provide innovative Tensar’s Grade Separation Solutions owe their engineered, economical solutions long-term performance and durability to high strength Tensar® Uniaxial (UX) Geogrids. Due to for grade change requirements their stiff interlocking capabilities, these geogrids stand the test of time, performing better than other in the residential, commercial commercially available geosynthetics. For more information on our patented soil reinforcement and transportation markets. systems, please visit www.tensar-international.com. Proven Solutions and Technologies > Tensar International (TI) is the leading developer and Our expertise focuses primarily on the following fields manufacturer of high-performance products and of grade separation systems: engineered solutions. Our manufacturing facilities enable • ARES® Modular Panel Walls us to satisfy and exceed customer needs by providing a wide range of geosynthetic solutions for your common • ARES Full-Height Panel Walls earthwork problems. • Mesa® Segmental Retaining Walls By providing innovative application technologies and • SierraScape® Stone-Faced Wire Formed Walls specialized technical services, we supplement our products with value-enhancing alternatives to traditional • SierraScape® Vegetated-Faced Wire Formed Walls materials and practices used in earthwork construction. • Sierra® Steepened Slopes Together, these products, technologies and services ® constitute engineered systems that serve a variety • Tensar Temporary Walls of commercial and industrial markets. For over 25 years, Tensar International has been Simply put, we are a full service provider of specialty providing economical solutions for the most challenging products and engineering services and offer grade change requirements. We are committed to economical solutions to common infrastructure serving our client’s global interests by providing and site development needs.
    [Show full text]
  • Appendix B: Limited Access Dual HOV White Paper
    Appendix B. Limited Access Dual HOV White Paper Alternatives Screening Technical Report – Appendix B This page is intentionally left blank. Alternatives Screening Technical Report – Appendix B ISSUES AND FACTORS INFLUENCING THE CHOICE BETWEEN CONTINUOUS‐ AND LIMITED‐ACCESS MANAGED LANE FACILITIES June 28, 2017 This page is intentionally left blank. Issues and Factors Influencing the Choice Between Continuous‐ and Limited‐Access Managed Lane Facilities EXECUTIVE SUMMARY lanes congestion in the GP freeway lanes is reduced, which, in turn, results in higher overall average speed, reducing vehicle emissions through the corridor, increasing person throughput, and contributing to regional air quality goals. Recommendations incorporated in the Spine Corridor Master Plan include provision of additional “managed lanes” in HOT lanes would allow motorists to opt for an alternative travel experience, per se, at a given price that generally three segments of the corridor. The term “managed lane” can refer to any lane that has restrictions or constraints on varies throughout the day according to travel demand in the corridor where the facility is located. use; most commonly in the form of high‐occupancy vehicle (HOV) and high‐occupancy toll (HOT) lanes. HOV lanes Managed lanes generally are not viewed as degrading the overall mobility and safety performance of a freeway restrict use of the lanes to vehicles with a minimum number of occupants, currently two or more in the MAG region. system. On the other hand, these facilities permit transportation officials to better manage roadway capacity to create HOT lanes allow single‐occupancy vehicles (SOVs) to operate in the HOV lanes or a dedicated, separate facility for a the most efficient travel system possible throughout the day.
    [Show full text]
  • Traffic Signal Control with Partial Grade Separation for Oversaturated Conditions
    Traffic Signal Control with Partial Grade Separation for Oversaturated Conditions Qing Heab1, Ramya Kaminenia, and Zhenhua Zhanga aDepartment of Civil, Structural and Environmental Engineering University at Buffalo, The State University of New York Buffalo, NY 14260 bDepartment of Industrial and Systems Engineering University at Buffalo, The State University of New York Buffalo, NY 14260 Abstract: Increasing individual vehicular traffic is a major concern all around the world. This leads to more and more oversaturated intersections. Traffic signal control under oversaturated condition is a long-lasting challenge. To address this challenge thoroughly, this paper introduces grade separation at signalized intersections. A lane-based optimization model is developed for the integrated design of grade-separated lanes (e.g. tunnels), lane markings (e.g. left turns, through traffic, right turns, etc.) and signal timing settings. We take into account two types of lane configurations. One is conventional surface lanes controlled by signals, and the other is grade- separated lanes. This problem is formulated as a Mixed Integer Linear Program (MILP), and this can be solved using the regular branch-and-bound methods. The integer decision variables help in finding if the movement is on grade-separated or surface lanes, and also the successor functions to govern the order of signal display. The continuous variables include the assigned lane flow, common flow multiplier, cycle length, and start and duration of green for traffic movements and lanes. The optimized signal time settings and lane configurations are then represented in Vissim simulation. Numerical examples, along with a benefit-cost analysis show the good savings of the proposed optimization model for oversaturated traffic conditions.
    [Show full text]
  • Table of Contents Rail-Highway Grade Separations Chapter 2
    Table of Contents Rail-Highway Grade Separations Chapter 2 Section 1 Authority 2-1 Section 2 Applicability 2-1 Section 3 Definitions 2-1 Section 4 Procedure for Establishing or Closing Grade Separation Crossings 2-1 Section 5 Standards for New Grade Separation Structures 2-2 Section 6 Maintenance Responsibilities 2-2 Section 7 Drainage and Debris 2-3 Section 8 Forms 2-3 Revised 05/02 Wyoming Department of Transportation Rail-Highway Grade Separations CHAPTER 2 Section 1. Authority. This chapter is promulgated in accordance with W.S. 37-10-101, et seq., and W.S. 24-2-105. Section 2. Applicability. This chapter applies to constructing or modifying railroad grade separation structures over or under public roads and highways in the state. Section 3. Definitions. As used in this chapter: (a) “Commission” means the Transportation Commission of Wyoming. (b) “Public road agency” means a government agency, the state, a county, city, town, or other political entity having jurisdiction over a highway. (c) “Public roads and highways” means a road, street, or highway operated, maintained, and legally dedicated according to Wyoming law to public use by the state or any of its political subdivisions, but shall not include private roads as specified in W.S. 24-1-101. (d) “WYDOT” means the Wyoming Department of Transportation. Section 4. Procedure for Establishing or Closing Grade Separation Crossings. (a) Grade separation structures shall be installed at all new railroad crossings in accordance with W.S. 37-10-103(b) and W.S. 37-10-103(c). (b) Using the appropriate WYDOT form, a railroad, or a public road agency, shall apply to the Commission for authorization to establish or close a railroad-highway crossing with a grade separation structure over or under the tracks, in accordance with W.S.
    [Show full text]
  • Lander Street Grade Separation Transportation Discipline Report
    Seattle Department of Transportation Lander Street Grade Separation Transportation Discipline Report August 29, 2016 heffron transportation, inc. TRANSPORTATION DISCIPLINE REPORT TABLE OF CONTENTS 1. INTRODUCTION ............................................................................................................................................. 1 1.1 PROJECT PURPOSE AND HISTORY .......................................................................................................................... 1 1.2 CHANGES SINCE 2008 LANDER ST STUDY .............................................................................................................. 1 1.3 PROJECT DESCRIPTION ....................................................................................................................................... 2 2. NO BUILD CONDITIONS ................................................................................................................................. 8 2.1 SODO ROAD AND RAIL NETWORK ....................................................................................................................... 8 2.2 TRAFFIC VOLUMES .......................................................................................................................................... 11 2.3 TRAIN CROSSINGS AND CLOSURE DURATION ........................................................................................................ 18 2.4 TRAFFIC OPERATIONS......................................................................................................................................
    [Show full text]
  • Harvard Road / BNSF Grade Separation Spokane County, WA
    Harvard Road / BNSF Grade Separation Spokane County, WA Project Location Harvard Road is a two lane north-south rural major-collector road in Spokane County. It crosses the Burlington Northern Santa Fe (BNSF) Main line near SR 290 (Trent Avenue). Harvard Road currently carries approximately 2,780 vehicles per day. The BNSF line carries between 30 and 50 trains per day. Harvard Road lies 3,500 feet west of the North McKinzie Road at- grade crossing and is currently protected by standard railroad gates and signals. Project Description This project proposes to reconstruct Harvard Road to pass over three BNSF tracks and SR 290 (Trent Ave). SR 290 will be accessed with on and off-ramps similar to the Sullivan Road interchange. This project will allow Spokane County to petition to close the North McKinzie Road at-grade crossing, which would further improve public safety by reducing the possibility of rail/vehicle collisions at this location. This area is projected to grow significantly over the next 30 years, increasing traffic on Harvard Road where it crosses the BNSF tracks by 50%. The Harvard Road project would provide a safe grade separated crossing at a critical location (half way between the Barker Road and Starr Road grade separated crossings), making it possible to close the North McKinzie Road at-grade crossings of the BNSF track, and making it a critical element of the Bridging the Valley project. Proposed Schedule The Design Report, completed in December 2004, is based on guidance generated from a preliminary study done in 2001. The Design Report incorporates comments from the railroads, Washington State Department of Transportation, Spokane County, and the public.
    [Show full text]
  • At-Grade Or Not At-Grade the Early Traffic Question in Light Rail Transit Route Planning
    At-Grade or Not At-Grade The Early Traffic Question in Light Rail Transit Route Planning MICHAEL BATES AND LEO LEE he planning, design, and con- play a critical part in making these struction of a light rail transit decisions, and transit planners and T(LRT) line require that a wide traffic engineers need to know the po- range of complex issues be resolved. tential magnitude of LRT inipacts on Understanding the degree to which in- traffic circulation, parking, and the de- dividual issues can be addressed at gree of LRT priority or grade separa- each stage of the process can signifi- tion for which to plan. The grade sepa- cantly reduce effort and time needed to ration issue is particularly critical, as it gain community acceptance and to im- directly affects the operational, eco- plement the LRT program. Important nomic, and political viability of an tools are effective methods for dealing LRT line. Traffic analysis and evalua- with traffic issues in the feasibility and tion techniques can be used effectively planning stages of LRT lines where to make early decisions on vertical and early decisions need to be made be- horizontal LRT alignments, to both tween horizontal and vertical route guide LRT planning policy and focus alignment alternatives. Traffic issues subsequent LRT design efforts. THE PLANNING, DESIGN, AND construction of a light rail transit (LRT) line involve several stages. The first stage is the identification of an LRT service area and corridor, usually in the context of a regional plan or sales tax proposition. The second stage is a route refinement study that identifies alternative alignments within the service corridor.
    [Show full text]