The Star-Height of a Finite Automaton and Some Related Questions

Total Page:16

File Type:pdf, Size:1020Kb

The Star-Height of a Finite Automaton and Some Related Questions International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no. 7, 2018 The star-height of a finite automaton and some related questions B. F. Melnikov Abstract—The paper is related to the star-height for non- was some improved using an approach of the game theory, deterministic finite automata, not for the star-height problem see [8]. And unlike the previous comment, the last proof was for regular languages. We describe an alternative proof of called “elegant”. Although it does improve the understanding Kleene’s theorem, and then our version of the reduction of some problems related to the star-height to nondeterministic of the proof of D. Kirsten, the number of automata being finite automata. For a given regular language, the corresponding examined due to this “elegance” does not decrease. finite automaton is constructed; the method we are considering The second of these mentioned problems is the generalized has the property that the reverse construction gives the original star-height problem. For now, it is unknown the answer regular expression. to the question whether or not this problem is decidable. The publication of this not-so-complicated problem has two goals, the both are related to the future development of the topic The author also does not know significant papers on this under consideration. First, we assume the future development of subject published after [9] (1992). The connection between the topic with the aim of describing a similar approach for gen- the generalized star-height problem and generalized pseudo- eralized regular expressions. Secondly, another generalization automata (see [10] for the last formalism) is to be considered is proposed, namely, consideration of the structures we describe in one of the following publications. for the so-called extended automata. Thus, the material of this article is necessary for the definition of extended generalized In this paper we describe, firstly, an alternative proof of pseudo-automata, which the author proposes to cite in the next Kleene’s theorem, and secondly, our version of the reduction publication. of some problems related to the star-height to nondeterminis- Keywords—nondeterministic finite automata, regular lan- tic finite automata. Both these topics represent an alternative guages, Kleene’s theorem, star-height problem. to the particular version of the reduction proposed back in 1963 in the above-mentioned paper [4]. As we already noted above, the subject of this paper is practically unrelated to I. INTRODUCTION AND MOTIVATION the complex star-height problems. However, the publication This paper summarizes some previous publications of the of this not-so-complicated problem has two goals, the both author. Among these publications, we note papers [1], [2], ones are related to the future development of the topic under [3] (in chronological order). consideration. First, we assume the future development of In [1], only some schemes of algorithms were published. the topic with the aim of describing a similar approach for In [3], an algorithm was given that relates Kleene’s the- generalized regular expressions (see [11] etc.) and general- orem and the star-height. This material has for now been ized automata (see [10]). Secondly, another generalization is published in Russian only; besides, due to the termination of proposed; namely, we shall describe the consideration of our Samara State University in 2015, the website of the journal structures for so-called extended automata (see [12]) and, is now unavailable. accordingly, extended pseudo-automata. Let us note, that all In the current paper, the author gives the English version concepts needed for such extensions are present in this paper. of [3], where also some noted misprints are corrected, and The structure of this paper is as follows. Section II briefly for some statements simpler proofs are given. describes the used notation. In Section III, we consider a And the paper [2] was published long ago, it contained special version of the proof of Kleene’s theorem. another algorithm that also describes the connection between In Section IV, we define the main object of this paper, i.e., Kleene’s theorem and the star-height. the star-height of a finite automaton. This definition is built The current paper is related to the star-height for nonde- on the basis of its transition graph only, and is not associated terministic finite automata, its subject is practically unrelated with the marks of its edges. to much more complex problems, i.e., to both “ordinary” In Section V, for a given regular language, the correspond- star-height problem and generalized star-height problem for ing finite automaton is constructed. Of course, this problem regular languages. was solved more than 60 years ago, but the method we are For these problems for the languages, let us only make considering has the property that the “reverse construction” some remarks. The first of mentioned problems, i.e., the gives the original regular expression. “ordinary” star-height problem, was set in 1963 in [4] and In Conclusion (Section VI), we formulate the directions solved in 1988 in [5]; in [6], however, this solution was called for the further research. “extremely difficult”. In 2005, there was published the much more understand- able solution of D. Kirsten, see [7]. In 2015, this solution II. PRELIMINARIES Received May 12, 2018. Boris F. Melnikov, Russian State Social University (email: bf-melnikov@ We shall not describe in detail the notation used in this yandex.ru). paper; they are exactly the same as those used in [13]. Like 1 International Journal of Open Information Technologies ISSN: 2307-8162 vol. 6, no. 7, 2018 there, the “main” automaton under consideration will be where denoted by Qs!f = fs; fg [ Qsf ; K = ( Q; Σ; δ; S; F ): (1) Qsf = f q 2 Q j q > max(s; f) g ; We shall use the classical definition of the star-height of and δs!f is constructed in the following way: the regular expression, see [7], [11]. We define it (denoting a by SH(r) for expression r) by the induction in the following p −! r δ way: s!f ∗ if and only if • SH( ) = SH( ) = SH(a) = 0 for each a 2 Σ; ? ? a • for each regular expressions r and s, we set p −! r; p 2 fsg [ Qsf ; r 2 ffg [ Qsf : δ SH((r + s)) = SH((r · s)) = max( SH(r); SH(s)); We shall construct regular expressions corresponding lan- guages of automata of the type (2) by the induction on the • for each regular expression r (where r 6= ?), we set value τ(min(s; f)). We shall denote these expressions by SH((r∗)) = SH(r) + 1: ρs!f ; if s = f, we shall denote the automaton and the expression by Ks and ρs. Remark that sometimes, another definition is considered: (Let us remark, that we consider only expressions, ob- SH(?∗) is defined as 1. There is easy to prove, that such tained in the way described below. Certainly, each automaton difference is important (i.e., two different definitions for has also infinitely many other corresponding regular expres- expressions give two different values of the star-height of sions. But we shall not consider them in this section.) the regular languages) for some finite languages only. Thus, let us consider the induction formulated before. Its Besides, some new notation will be described as necessary; basis is the following. If most of these notations are associated with paths in the min(s; f) = qmax = max(f q j q 2 Q g); transition graph of the considered automaton. then automaton (2) (i.e., Kqmax ) defines the language, defined also by regular expression III. A SPECIAL VERSION OF THE PROOF n a o∗ OF LEENE S THEOREM K ’ ρqmax = a 2 Σ j qmax −! qmax ; (3) Let us consider a special version of the proof of Kleene’s remark that anyway ρqmax 3 ". theorem. For the given automaton (1), let us consider some Step of induction. If s 6= f, then we write expression injective “ordering” function defining language of automaton Ks!f in the following way: + τ : Q ! R : n a o [ ρs!f = a 2 Σ j s −! f + ρs!q ·ρq ·ρq!f (4) We shall also write, e.g., p < r meaning τ(p) < τ(r); also q>max(s;f) we shall use notation “max”, meaning (for expression, [ symbolizes +’s). And if s = f, then we ( p; if τ(p) ≥ τ(r) write expression defining language of automaton Ks in the max(p; r) = r; if τ(p) < τ(r) ; following way: ∗ n a o [ etc. Let us fix K and τ in this section. ρs = a 2 Σ j s −! s + ρs!q · ρq · ρq!s : (5) For some states q; p; r 2 Q, where p ≥ q and r ≥ q, let q>s us consider some simple path from p to r, whose sequence By the hypothesis of inductions, all the expressions of the of vertices is right parts of (4) and (5) are already constructed. (p; q1; q2; : : : ; qs; r); For some pair s 2 S and f 2 F , denote [ such that Ls!f = L(Ks!f ) + L(Ks!q) ·L(Kq) ·L(Kq!f ): q<min(s;f) s ≥ 0 and (8i 2 f1; : : : ; sg)(q > q): i Then we can write language of the given automaton (1) (i.e., (We allow p = r. In this case, i.e., if p = r, it is a simple L(K)) in the following way: loop.) We shall denote the set of all such paths by ∆q(p; r). [ L(K) = L(Ks) ·Ls!f ·L(Kf ): We also set s2S; f2F q 0 0 ∆ = f q is a state of a path of ∆q(q; q) and q 6= q g : Therefore, the corresponding regular expression is [ [ Some more notation: ρs · ρs!f + ρs!q · ρq · ρq!f · ρf : s2S; f2F • if ∆q(p; r) 6= ?, then we shall write Vq(p; r); q<min(s;f) (6) • otherwise, Vq(p; r); • if both Vq(p; r) and Vq(r; p), then we shall write We shall everywhere (i.e., both in this paper and in the Wq(p; r).
Recommended publications
  • Language and Automata Theory and Applications
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS Carlos Martín-Vide Characterization • It deals with the description of properties of sequences of symbols • Such an abstract characterization explains the interdisciplinary flavour of the field • The theory grew with the need of formalizing and describing the processes linked with the use of computers and communication devices, but its origins are within mathematical logic and linguistics A bit of history • Early roots in the work of logicians at the beginning of the XXth century: Emil Post, Alonzo Church, Alan Turing Developments motivated by the search for the foundations of the notion of proof in mathematics (Hilbert) • After the II World War: Claude Shannon, Stephen Kleene, John von Neumann Development of computers and telecommunications Interest in exploring the functions of the human brain • Late 50s XXth century: Noam Chomsky Formal methods to describe natural languages • Last decades Molecular biology considers the sequences of molecules formed by genomes as sequences of symbols on the alphabet of basic elements Interest in describing properties like repetitions of occurrences or similarity between sequences Chomsky hierarchy of languages • Finite-state or regular • Context-free • Context-sensitive • Recursively enumerable REG ⊂ CF ⊂ CS ⊂ RE Finite automata: origins • Warren McCulloch & Walter Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943 • Stephen C. Kleene. Representation of events in nerve nets and
    [Show full text]
  • Some Results on the Generalized Star-Height Problem Jean-Eric Pin, Howard Straubing, Denis Thérien
    Some results on the generalized star-height problem Jean-Eric Pin, Howard Straubing, Denis Thérien To cite this version: Jean-Eric Pin, Howard Straubing, Denis Thérien. Some results on the generalized star-height problem. Information and Computation, Elsevier, 1992, 101, pp.219-250. hal-00019978 HAL Id: hal-00019978 https://hal.archives-ouvertes.fr/hal-00019978 Submitted on 2 Mar 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. May 12, 2002 Some results on the generalized star-height problem Jean-Eric Pin∗, H. Straubingyand D. Th´erienz [email protected], [email protected], [email protected] Abstract We prove some results related to the generalized star-height problem. In this problem, as opposed to the restricted star-height problem, com- plementation is considered as a basic operator. We first show that the class of languages of star-height ≤ n is closed under certain operations (left and right quotients, inverse alphabetic morphisms, injective star-free substitutions). It is known that languages recognized by a commutative group are of star-height 1. We extend this result to nilpotent groups of class 2 and to the groups that divide a semidirect product of a commu- tative group by (Z=2Z)n.
    [Show full text]
  • Chapter 9, Slide 1 1 There Are Many More Things to Learn About Finite Automata Than Are Covered in This Book
    Chapter Nine: Advanced Topics in Regular Languages Formal Language, chapter 9, slide 1 1 There are many more things to learn about finite automata than are covered in this book. There are many variations with interesting applications, and there is a large body of theory. Especially interesting, but beyond the scope of this book, are the various algebras that arise around finite automata. This chapter gives just a taste of some of these advanced topics. Formal Language, chapter 9, slide 2 2 Outline • 9.1 DFA Minimization • 9.2 Two-Way Finite Automata • 9.3 Finite-State Transducers • 9.4 Advanced Regular Expressions Formal Language, chapter 9, slide 3 3 DFA Minimization • Questions of DFA size: – Given a DFA, can we find one with fewer states that accepts the same language? – What is the smallest DFA for a given language? – Is the smallest DFA unique, or can there be more than one "smallest" DFA for the same language? • All these questions have neat answers… Formal Language, chapter 9, slide 4 4 Eliminating Unnecessary States • Unreachable states, like some of those introduced by the subset construction, can obviously be eliminated • Even some of the reachable states may be redundant… Formal Language, chapter 9, slide 5 5 Example: Equivalent States a a a q0 q1 q2 b b b q3 q4 a,b a,b • In both q3 and q4, the machine rejects, no matter what the rest of the input string contains • They're equivalent and can be combined… Formal Language, chapter 9, slide 6 6 Still More Equivalent States a a a q0 q1 q2 b b b a,b • In both q1 and q2, the machine
    [Show full text]
  • Some Results on the Generalized Star-Height Problem
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector INFORMATION AND COMPUTATION 101, 219-250 (1992) Some Results on the Generalized Star-Height Problem J. E. PIN,* H. STRAUBING,~ AND D. TH~RIEN~ LITP, Universiti de Paris VI. 4 place Jussieu, 75252 Paris Cedex, France We prove some results related to the generalized star-height problem. In this problem. as opposed to the restricted star-height problem, complementation is considered as a basic operator. We first show that the class of languages of star- height <n is closed under certain operations (left and right quotients, inverse alphabetic morphisms. injective star-free substitutions). It is known that languages recognized by a commutative group are of star-height 1. We extend this result to nilpotent groups of class 2 and to the groups that divide a semidirect product of a commutative group by (L/2Z)“. In the same direction. we show that one of the languages that were conjectured to be of star-height 2 during the past ten years is in fact of star-height 1. Next we show that if a rational language L is recognized by a monoid of the variety generated by wreath products of the form Mb (G r N), where M and N are aperiodic monoids, and G is a commutative group, then L is of star-height < 1. Finally we show that every rational language is the inverse image, under some morphism between free monoids. of a language of (resticted) star-height 1. c 1992 Academic Press. Inc. The determination of the star-height of a rational language is an old problem of formal language theory (see Brzozowski, 1980, for an historical survey).
    [Show full text]
  • Languages of Generalised Star Height 1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 106 (1992) 327-335 327 Elsevier Note More languages of generalised star height 1 J.M. Robson Department qf‘ Computer Science, GPO Box 4, Canberra, ACT 2601, Australia Communicated by D. Perrin Received September 1991 Revised January 1992 Abstract Robson, J.M., More languages of generalized star height 1, Theoretical Computer Science 106 (1992) 327-335. Suppose that membership of a word w in a language L is specified in terms of the number (modulo some integer k) of occurrences of a fixed word W’ as a factor of w. Then the language obtained for any M by adding arbitrary numbers of copies of a”’ anywhere in the words of L has generalized star height at most 1. 1. Introduction The “star height” of a regular language is defined as the minimum nesting depth of stars in a regular expression denoting the language. This definition can be interpreted in the context of regular expressions using only concatenation, union and star operators (the “restricted” star height), or of expressions using also intersection and complement operators (“generalised” star height). In this paper we are interested only in generalised star height and we will consistently use “star height” or even “height” to mean generalised star height. Schutzenberger [4] gave a simple characterisation of languages of star height 0 (or “star-free”): a language has star height 0 if and only if its syntactic monoid is aperiodic. Correspondence to: J.M.
    [Show full text]
  • Star Height Via Games
    Star height via games Mikołaj Bojanczyk´ (University of Warsaw) Abstract—This paper proposes a new algorithm deciding the I would like to thank Nathanael¨ Fijalkow, Denis Kuperberg, star height problem. As shown by Kirsten, the star height prob- Christof Loding¨ and the anonymous referees for their helpful lem reduces to a problem concerning automata with counters, comments. This work has been supported by the Polish NCN called limitedness. The new contribution is a different algorithm for the limitedness problem, which reduces it to solving a Gale- grant 2014-13/B/ST6/03595. Stewart game with an !-regular winning condition. I. REDUCTION TO LIMITEDNESS OF COST AUTOMATA The star height of a regular expression is its nesting depth This section introduces cost automata, and describes a of the Kleene star. The star height problem is to compute reduction of the star height problem to a problem for cost the star height of a regular language of finite words, i.e. the automata, called limitedness. The exact reduction used in this smallest star height of a regular expression that defines the paper was shown in [Kir05] and is included to make the paper language. For instance, the expression (a∗b∗)∗ has star height self-contained. The idea to use counters and limitedness in two, but its language has star height one, because it is defined the study of star height dates back to the original proof of by the expression (a + b)∗ of star height one, and it cannot Hashiguchi. be defined by a star-free expression. Here we consider regular Cost automata and the limitedness problem: The lim- expressions without complementation, in which case star-free itedness problem concerns an automaton model with coun- regular expressions define only finite languages.
    [Show full text]
  • Generic Results for Concatenation Hierarchies
    GENERIC RESULTS FOR CONCATENATION HIERARCHIES THOMAS PLACE AND MARC ZEITOUN Abstract. In the theory of formal languages, the understanding of concatenation hierarchies of regular languages is one of the most fundamental and challenging topic. In this paper, we survey progress made in the comprehension of this problem since 1971, and we establish new generic statements regarding this problem. 1. Introduction This paper has a dual vocation. The first is to outline progress seen during the last 50 years about concatenation hierarchies of regular languages. The second is to provide generic statements and elementary proofs of some of the core results on this topic, which were obtained previously in restricted cases. In this introduction, we present the historical background, first highlighting the motivations and the key ideas that emerged since the mid 60s. In a second part, we describe the contributions of the paper, which are either new proofs of existing results or generalizations thereof. Historical background: a short survey of 50 years of research. Concatenation hierarchies were introduced in order to understand the interplay between two basic constructs used to build regular languages: Boolean operations and concatenation. The story started in 1956 with Kleene’s theorem [14], one of the key results in automata theory. It states that languages of finite words recognized by finite automata are exactly the ones that can be described by regular expressions, i.e., are built from the singleton languages and the empty set using a finite number of times operations among three basic ones: union, concatenation, and iteration (a.k.a. Kleene star). As Kleene’s theorem provides another syntax for regular languages, it makes it possible to classify them according to the hardness of describing a language by such an expression.
    [Show full text]
  • INSTITUT FÜR INFORMATIK Finite Automata, Digraph Connectivity
    T U M INSTITUT FÜR INFORMATIK Finite Automata, Digraph Connectivity, and Regular Expression Size Hermann Gruber Markus Holzer TUM-I0725 Dezember 07 TECHNISCHE UNIVERSITÄT MÜNCHEN TUM-INFO-12-I0725-0/1.-FI Alle Rechte vorbehalten Nachdruck auch auszugsweise verboten c 2007 Druck: Institut für Informatik der Technischen Universität München Finite Automata, Digraph Connectivity, and Regular Expression Size Hermann Gruber Institut für Informatik, Ludwig-Maximilians-Universität München, Oettingstraße 67, 80538 München, Germany [email protected] Markus Holzer Institut für Informatik, Technische Universität München, Boltzmannstraße 3, D-85748 Garching, Germany [email protected] Abstract We study some descriptional complexity aspects of regular expressions. In particular, we give lower bounds on the minimum required size for the conversion of deterministic finite automata into regular expressions and on the required size of regular expressions resulting from applying some basic language operations on them, namely intersection, shuffle, and complement. Some of the lower bounds obtained are asymptotically tight, and, notably, the examples we present are over an alphabet of size two. To this end, we develop a new lower bound technique that is based on the star height of regular languages. It is known that for a restricted class of regular languages, the star height can be determined from the digraph underlying the transition structure of the minimal finite automaton accepting that language. In this way, star height is tied to cycle rank, a structural complexity measure for digraphs proposed by Eggan and Büchi, which measures the degree of connectivity of directed graphs. This measure, although a robust graph theoretic notion, appears to have remained widely unnoticed outside formal language theory.
    [Show full text]
  • Algorithms for Determining Relative Star Height and Star Height*
    INFORMATION AND COMPUTATION 78, 124-169 (1988) Algorithms for Determining Relative Star Height and Star Height* KOSABURO HASHIGUCHI Department of Information and Computer Sciences, Toyohashi University of Technology, Tempaku, Toyohashi 440, Japan Let W= {R,, . .. R,} be a finite class of regular languages over a finite alphabet Z. Let A = {b,, .. 6,) be an alphabet, and 6 be the substitution from A* into Z* such that S(b,) = R, for all i (1 < id m). Let R be a regular language over Z which can be defined from %?by a finite number of applications of the operators union, concatenation, and star. Then there exist regular languages over A which can be transformed onto R by 6. The relative star height of R w.r.t. V is the minimum star height of regular languages over A which can be transformed onto R by 6. This paper proves the existence of an algorithm for determining relative star height. This result obviously implies the existence of an algorithm for determining the star height of any regular language. 0 1988 Academic PRSS. I~C. 1. 1NTRo~ucT10~ Eggan (1963) introduced the notion of star height, and proved that for any integer k 20, there exists a regular language of star height k. The problem was left open in his paper to determine the star height of any regular language. Dejean and Schutzenberger (1966) showed that for any integer k 2 0, there exists a regular language of star height k over the two letter alphabet. McNaughton (1967) presented an algorithm for determin- ing the loop complexity (i.e., the star height) of any regular language whose syntactic monoid is a group.
    [Show full text]
  • From Finite Automata to Regular Expressions and Back—A Summary on Descriptional Complexity
    From Finite Automata to Regular Expressions and Back—A Summary on Descriptional Complexity Hermann Gruber Markus Holzer knowledgepark AG, Leonrodstr. 68, Institut f¨ur Informatik, Universit¨at Giessen, 80636 M¨unchen, Germany Arndtstr. 2, 35392 Giessen, Germany [email protected] [email protected] The equivalence of finite automata and regular expressions dates back to the seminal paper of Kleene on events in nerve nets and finite automata from 1956. In the present paper we tour a fragment of the literature and summarize results on upper and lower bounds on the conversion of finite automata to regular expressions and vice versa. We also briefly recall the known bounds for the removal of spontaneous transitions (ε-transitions) on non-ε-free nondeterministic devices. Moreover, we report on recent results on the average case descriptional complexity bounds for the conversion of regular expressions to finite automata and brand new developments on the state elimination algorithm that converts finite automata to regular expressions. 1 Introduction There is a vast literature documenting the importance of the notion of finite automata and regular ex- pressions as an enormously valuable concept in theoretical computer science and applications. It is well known that these two formalisms are equivalent, and in almost all monographs on automata and formal languages one finds appropriate constructions for the conversion of finite automata to equivalent regular expressions and back. Regular expressions, introduced by Kleene [68], are well suited for human users and therefore are often used as interfaces to specify certain patterns or languages. For example, in the widely available programming environment UNIX, regular(-like) expressions can be found in legion of software tools like, e.g., awk, ed, emacs, egrep, lex, sed, vi, etc., to mention a few of them.
    [Show full text]
  • Open Problems About Regular Languages, 35 Years Later Jean-Eric Pin
    Open problems about regular languages, 35 years later Jean-Eric Pin To cite this version: Jean-Eric Pin. Open problems about regular languages, 35 years later. Stavros Konstantinidis; Nelma Moreira; Rogério Reis; Jeffrey Shallit. The Role of Theory in Computer Science - Essays Dedicated to Janusz Brzozowski, World Scientific, 2017, 9789813148208. 10.1142/9789813148208_0007. hal- 01614375v2 HAL Id: hal-01614375 https://hal.archives-ouvertes.fr/hal-01614375v2 Submitted on 27 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open problems about regular languages, 35 years later Dedicated to Janusz A. Brzozowski for his 80th birthday Jean-Eric´ Pin ∗ IRIF, CNRS and Universit´eParis-Diderot, Case 7014, 75205 Paris Cedex 13, France. [email protected] October 2016 Abstract In December 1979, Janusz A. Brzozowski presented a selection of six open problems about regular languages and mentioned two other problems in the conclusion of his article. These problems have been the source of some of the greatest breakthroughs in automata theory over the past 35 years. This survey article summarizes the state of the art on these questions and the hopes for the next 35 years.
    [Show full text]
  • On the Star-Height of Factor Counting Languages and Their Relationship To
    ON THE STAR-HEIGHT OF SUBWORD COUNTING LANGUAGES AND THEIR RELATIONSHIP TO REES ZERO-MATRIX SEMIGROUPS TOM BOURNE AND NIK RUSKUCˇ Abstract. Given a word w over a finite alphabet, we consider, in three special cases, the generalised star-height of the languages in which w occurs as a contiguous subword (factor) an exact number of times and of the languages in which w occurs as a contiguous subword modulo a fixed number, and prove that in each case it is at most one. We use these combinatorial results to show that any language recognised by a Rees (zero-)matrix semigroup over an abelian group is of generalised star-height at most one. 1. Introduction and preliminaries The generalised star-height problem, which asks whether or not there exists an algo- rithm to compute the generalised star-height of a regular language, is a long-standing problem in the field of formal language theory. In particular, it is not yet known whether there exist languages of generalised star-height greater than one; see [10, Section I.6.4] and [9]. The aim of the present paper is to present some new contributions concerning this problem. In Section 2, we take a combinatorial approach and find the generalised star-height of languages where a fixed word w appears as a contiguous subword of the words in our language precisely k times or k modulo n times. In Section 3, we apply these results to prove that languages recognised by Rees (zero-)matrix semigroups over abelian groups are of generalised star-height at most one.
    [Show full text]