A Computational Algorithm for Origami Design Robert J

Total Page:16

File Type:pdf, Size:1020Kb

A Computational Algorithm for Origami Design Robert J A Computational Algorithm for Origami Design Robert J. Lang 7580 Olive Drive Pleasanton, CA 94588 [email protected] 1. Introduction right number of flaps, it is relatively easy to transform it into a recognizable representation of the subject, so for complex 1.1 Background subjects, at least, most effort is focused on folding the base to Origami is the Japanese name for the centuries-old art of folding begin with. paper into representations of birds, insects, animals, plants, human I begin in section 2 by establishing a mathematical definition of a figures, inanimate objects, and abstract shapes. In the purest form base and several useful measures of its properties, including the of origami, the figure is folded from a single uncut square of tree graph that forms an abstraction of the base and that serves to paper. In the past 50 years, the complexity of origami figures has define the target design. In section 3 I establish a set of necessary increased dramatically, evolving from simple, stylized shapes to conditions relating key vertices of the crease pattern to properties highly detailed representations of crustacea [1], insects [2, 3], of the desired base. These necessary conditions help identify dinosaurs [4, 5], and other multi-legged, multi-winged, and “active paths” — primary valley creases that subdivide the crease generally multi-appendaged creatures. As the range of origami pattern into convex polygons, which correspond to distinct subject matter has expanded in complexity, the problem of folding portions of the base. Sections 4 and 5 introduce the “universal a base — a geometric shape with flaps for each of the appendages molecule,” an algorithm for filling in the creases in each polygon. of the subject — has assumed greater and greater importance. Section 6 describes the mathematical and computer Indeed, the problem of folding a multi-pointed base constitutes the implementation of the algorithm and gives an example of its usage bulk of that branch of the art known as origami sekkei, or in the construction of an origami base. “technical folding.” 2. Sufficient Conditions Throughout the history of origami, most origami design has been carried out by a combination of trial and error and/or heuristic 2.1 What is a Base? techniques based on the folder’s intuition. In this paper, I present To start, I will establish some definitions: for the first time a complete algorithm for the design of an A crease pattern is a division of the unit square into a finite set of arbitrary origami figure, specifically, for the solution of a crease polygonal regions by a set of straight line segments. Each segment pattern that folds flat into a base with any desired number of flaps is called a crease. Each polygon, which is bounded by a of arbitrary length, which become the arms, legs, wings, etc., of combination of creases and the edge of the square, is called a the origami figure. The algorithm is based on a set of facet of the crease pattern. mathematical conditions on the mapping between the crease A base is a non-stretching transformation of the unit square into pattern and a tree graph representing the base. In this fashion, the 3-space such that the facets remain flat, i.e., all folding occurs problem is transformed into a nonlinear constrained optimization, only on creases. A base can therefore be fully defined by the which as it turns out, is closely related to existing circle packing locations of the creases, their angles, and the orientation and and triangulation algorithms. I have implemented the algorithm in location of a facet. a computer program written in C++ that is available on the Internet; with it one can compute the crease pattern for origami A flat-foldable crease pattern is any crease pattern that can be designs of unprecedented complexity and sophistication. folded into a base so that all layers of the base lie in a common plane. 1.2 Previous Work A base may have several properties: The problem of designing an origami shape based on the number of appendages has been recognized for years [6] and several 1. Projectability. A projectable base can be oriented in 3-space so workers have addressed various aspects of origami design [7–9], that all facets of the base are perpendicular to the xy plane. The albeit typically at a conceptual rather than an algorithmic level. In projection of any base or element of a base is the projection of recent years, several authors, notably Meguro [10], Maekawa [11], that element into the xy plane. That is, the projection of a point Kawahata [12], and Kawasaki [13] have described useful (x,y,z) is the point (x,y). Since the facets of a projectable base are geometric algorithms for the design of a base in which the target perpendicular to the xy plane, the projection of any facet of a shape is represented as a stick figure, and flaps of the base are projectable base is a line segment. represented by nonoverlapping circles and/or circular contours. I y have also described a geometric algorithm for origami design in (0,1) (1,1) [14]. The present work builds upon and generalizes concepts presented in and implicit in [10–14], mathematically proves the underlying theory, and completes the algorithm begun in [14] in a form suitable for computer implementation. 1.3 Outline of the Approach The basis of many complex origami designs is a geometric shape called a base, which is a folded configuration of the original square that has the same number of flaps of the same length as the x appendages of the subject. Once the folder has a base with the (0,0) (1,0) Figure 1. Left: a crease pattern within the unit square. Right: the crease pattern embedded in 3-space and transformed into a base. The projection of the base lies in the xy plane. The projections of facets that meet along a crease are line segments that touch at a point or overlap along a line segment. Since the facets of a crease pattern are connected, the set of all 2.2 Comment line segments formed by projecting individual facets into the xy Throughout the history of origami, most but not all origami bases plane is connected as well and forms a planar embedding of a tree have been uniaxial bases. The four classic bases of traditional graph. The line segments thus formed are the edges of the graph; Japanese origami — the Kite, Fish, Bird, and Frog bases — may points where two edges come together are nodes of the graph. be configured to be uniaxial, as can many more complicated and Nodes that have exactly one edge connected to them are terminal sophisticated bases exploited by modern technical folders [3,4,6– nodes; the remaining nodes are internal nodes. 9]. It should be noted, however, that there are many bases that are Definition: a flap is a group of facets in a base that project to a not uniaxial (notably Montroll’s Dog Base [2] and its derivatives common edge of the tree graph such that: [5]) as well as curved and/or three-dimensional structures, all of 1. Every facet in the flap projects to the same edge; which require different design strategies. 2. Any facet in the base that projects to the edge and is connected 3. Necessary Conditions to a facet of the flap is itself a part of the flap. 3.1 Tree Conditions 3. The boundary of the facets that make up the flap projects to one The transformation from the two-dimensional crease pattern into or two nodes that are the endpoint(s) of the edge. the three-dimensional base can be expressed by a mapping Therefore each flap in a base is associated with an edge of the tree F(P)→Q, where P is a point in the unit square and Q is the graph. In many cases, the flaps of a projectable base can be corresponding point in the 3-space representation of the base. positioned at different angles, in 3-space giving projected tree According to the conventions of origami transformations (no graphs that differ in the arrangement of their edges. Note that two stretching, no self-intersection) [15–16], F is one-to-one and I will side-by-side flaps may project to overlapping line segments in the call F the transformation operator. xy plane; we still distinguish different flaps by associating them Similarly, a mapping G(Q)→R expresses the projection of the with distinct edges of the tree graph. To avoid ambiguity, a tree point Q onto the tree graph. G, which I will call the projection graph will always be drawn with nonoverlapping edges, but it operator, is obviously not one-to-one, since all points with the should be understood that such a graph could represent a base same x and y coordinates map onto the same point on the tree with side-by-side flaps or even one flap wrapped around another, graph. If S is the crease pattern in the unit square, the as shown in figure 2, whose projections include overlapping transformation of S into a base B and thence into a tree graph T edges. can be written T=G(F(S)) when F is known. The design of a uniaxial base boils down to the inversion of this problem: given T, find the mapping F and crease pattern S that transform and project S into T. As I will show, knowledge of T places some restrictive B conditions on the crease pattern S that are key to the solution of the problem.
Recommended publications
  • Mathematics of Origami
    Mathematics of Origami Angela Kohlhaas Loras College February 17, 2012 Introduction Origami ori + kami, “folding paper” Tools: one uncut square of paper, mountain and valley folds Goal: create art with elegance, balance, detail Outline History Applications Foldability Design History of Origami 105 A.D.: Invention of paper in China Paper-folding begins shortly after in China, Korea, Japan 800s: Japanese develop basic models for ceremonial folding 1200s: Origami globalized throughout Japan 1682: Earliest book to describe origami 1797: How to fold 1,000 cranes published 1954: Yoshizawa’s book formalizes a notational system 1940s-1960s: Origami popularized in the U.S. and throughout the world History of Origami Mathematics 1893: Geometric exercises in paper folding by Row 1936: Origami first analyzed according to axioms by Beloch 1989-present: Huzita-Hatori axioms Flat-folding theorems: Maekawa, Kawasaki, Justin, Hull TreeMaker designed by Lang Origami sekkei – “technical origami” Rigid origami Applications from the large to very small Miura-Ori Japanese solar sail “Eyeglass” space telescope Lawrence Livermore National Laboratory Science of the small Heart stents Titanium hydride printing DNA origami Protein-folding Two broad categories Foldability (discrete, computational complexity) Given a pattern of creases, when does the folded model lie flat? Design (geometry, optimization) How much detail can added to an origami model, and how efficiently can this be done? Flat-Foldability of Crease Patterns 훗 Three criteria for 훗: Continuity, Piecewise isometry, Noncrossing 2-Colorable Under the mapping 훗, some faces are flipped while others are only translated and rotated. Maekawa-Justin Theorem At any interior vertex, the number of mountain and valley folds differ by two.
    [Show full text]
  • 3.2.1 Crimpable Sequences [6]
    JAIST Repository https://dspace.jaist.ac.jp/ Title 折り畳み可能な単頂点展開図に関する研究 Author(s) 大内, 康治 Citation Issue Date 2020-03-25 Type Thesis or Dissertation Text version ETD URL http://hdl.handle.net/10119/16649 Rights Description Supervisor:上原 隆平, 先端科学技術研究科, 博士 Japan Advanced Institute of Science and Technology Doctoral thesis Research on Flat-Foldable Single-Vertex Crease Patterns by Koji Ouchi Supervisor: Ryuhei Uehara Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology [Information Science] March, 2020 Abstract This paper aims to help origami designers by providing methods and knowledge related to a simple origami structure called flat-foldable single-vertex crease pattern.A crease pattern is the set of all given creases. A crease is a line on a sheet of paper, which can be labeled as “mountain” or “valley”. Such labeling is called mountain-valley assignment, or MV assignment. MV-assigned crease pattern denotes a crease pattern with an MV assignment. A sheet of paper with an MV-assigned crease pattern is flat-foldable if it can be transformed from the completely unfolded state into the flat state that all creases are completely folded without penetration. In applications, a material is often desired to be flat-foldable in order to store the material in a compact room. A single-vertex crease pattern (SVCP for short) is a crease pattern whose all creases are incident to the center of the sheet of paper. A deep insight of SVCP must contribute to development of both basics and applications of origami because SVCPs are basic units that form an origami structure.
    [Show full text]
  • Folding a Paper Strip to Minimize Thickness✩
    Folding a Paper Strip to Minimize Thickness✩ Erik D. Demainea, David Eppsteinb, Adam Hesterbergc, Hiro Itod, Anna Lubiwe, Ryuhei Ueharaf, Yushi Unog aComputer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, USA bComputer Science Department, University of California, Irvine, USA cDepartment of Mathematics, Massachusetts Institute of Technology, USA dSchool of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan eDavid R. Cheriton School of Computer Science, University of Waterloo, Ontario, Canada fSchool of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan gGraduate School of Science, Osaka Prefecture University, Osaka, Japan Abstract In this paper, we study how to fold a specified origami crease pattern in order to minimize the impact of paper thickness. Specifically, origami designs are often expressed by a mountain-valley pattern (plane graph of creases with relative fold orientations), but in general this specification is consistent with exponentially many possible folded states. We analyze the complexity of finding the best consistent folded state according to two metrics: minimizing the total number of layers in the folded state (so that a “flat folding” is indeed close to flat), and minimizing the total amount of paper required to execute the folding (where “thicker” creases consume more paper). We prove both problems strongly NP- complete even for 1D folding. On the other hand, we prove both problems fixed-parameter tractable in 1D with respect to the number of layers. Keywords: linkage, NP-complete, optimization problem, rigid origami. 1. Introduction Most results in computational origami design assume an idealized, zero- thickness piece of paper. This approach has been highly successful, revolution- izing artistic origami over the past few decades.
    [Show full text]
  • Origami Design Secrets Reveals the Underlying Concepts of Origami and How to Create Original Origami Designs
    SECOND EDITION PRAISE FOR THE FIRST EDITION “Lang chose to strike a balance between a book that describes origami design algorithmically and one that appeals to the origami community … For mathematicians and origamists alike, Lang’s expository approach introduces the reader to technical aspects of folding and the mathematical models with clarity and good humor … highly recommended for mathematicians and students alike who want to view, explore, wrestle with open problems in, or even try their own hand at the complexity of origami model design.” —Thomas C. Hull, The Mathematical Intelligencer “Nothing like this has ever been attempted before; finally, the secrets of an origami master are revealed! It feels like Lang has taken you on as an apprentice as he teaches you his techniques, stepping you through examples of real origami designs and their development.” —Erik D. Demaine, Massachusetts Institute of Technology ORIGAMI “This magisterial work, splendidly produced, covers all aspects of the art and science.” —SIAM Book Review The magnum opus of one of the world’s leading origami artists, the second DESIGN edition of Origami Design Secrets reveals the underlying concepts of origami and how to create original origami designs. Containing step-by-step instructions for 26 models, this book is not just an origami cookbook or list of instructions—it introduces SECRETS the fundamental building blocks of origami, building up to advanced methods such as the combination of uniaxial bases, the circle/river method, and tree theory. With corrections and improved Mathematical Methods illustrations, this new expanded edition also for an Ancient Art covers uniaxial box pleating, introduces the new design technique of hex pleating, and describes methods of generalizing polygon packing to arbitrary angles.
    [Show full text]
  • Table of Contents
    Contents Part 1: Mathematics of Origami Introduction Acknowledgments I. Mathematics of Origami: Coloring Coloring Connections with Counting Mountain-Valley Assignments Thomas C. Hull Color Symmetry Approach to the Construction of Crystallographic Flat Origami Ma. Louise Antonette N. De las Penas,˜ Eduard C. Taganap, and Teofina A. Rapanut Symmetric Colorings of Polypolyhedra sarah-marie belcastro and Thomas C. Hull II. Mathematics of Origami: Constructibility Geometric and Arithmetic Relations Concerning Origami Jordi Guardia` and Eullia Tramuns Abelian and Non-Abelian Numbers via 3D Origami Jose´ Ignacio Royo Prieto and Eulalia` Tramuns Interactive Construction and Automated Proof in Eos System with Application to Knot Fold of Regular Polygons Fadoua Ghourabi, Tetsuo Ida, and Kazuko Takahashi Equal Division on Any Polygon Side by Folding Sy Chen A Survey and Recent Results about Common Developments of Two or More Boxes Ryuhei Uehara Unfolding Simple Folds from Crease Patterns Hugo A. Akitaya, Jun Mitani, Yoshihiro Kanamori, and Yukio Fukui v vi CONTENTS III. Mathematics of Origami: Rigid Foldability Rigid Folding of Periodic Origami Tessellations Tomohiro Tachi Rigid Flattening of Polyhedra with Slits Zachary Abel, Robert Connelly, Erik D. Demaine, Martin L. Demaine, Thomas C. Hull, Anna Lubiw, and Tomohiro Tachi Rigidly Foldable Origami Twists Thomas A. Evans, Robert J. Lang, Spencer P. Magleby, and Larry L. Howell Locked Rigid Origami with Multiple Degrees of Freedom Zachary Abel, Thomas C. Hull, and Tomohiro Tachi Screw-Algebra–Based Kinematic and Static Modeling of Origami-Inspired Mechanisms Ketao Zhang, Chen Qiu, and Jian S. Dai Thick Rigidly Foldable Structures Realized by an Offset Panel Technique Bryce J. Edmondson, Robert J.
    [Show full text]
  • Generating Folding Sequences from Crease Patterns of Flat-Foldable Origami
    Generating Folding Sequences from Crease Patterns of Flat-Foldable Origami Hugo A. Akitaya∗ Jun Mitaniy Yoshihiro Kanamoriy Yukio Fukuiy University of Tsukuba University of Tsukuba / JST ERATO University of Tsukuba University of Tsukuba (b) (a) Figure 1: (a) Example of a step sequence graph containing several possible ways of simplifying the input crease pattern. (b) Results obtained using the path highlighted in orange from Figure 1(a). to fold the paper into the origami design, since crease patterns show only where each crease must be made and not folding instructions. In fact, folding an origami model by its crease pattern may be a difficult task even for people experienced in origami [Lang 2012]. According to Lang, a linear sequence of small steps, such as usually (a) (b) portrayed in traditional diagrams, might not even exist and all the folds would have to be executed simultaneously. Figure 2: (a) Crease pattern and (b) folded form of the “Penguin”. We introduce a system capable of identifying if a folding sequence Design by Hideo Komatsu. Images redrawn by authors. exists using a predetermined set of folds by modeling the origami steps as graph rewriting steps. It also creates origami diagrams semi-automatically from the input of a crease pattern of a flat 1 Problem and Motivation origami. Our system provides the automatic addition of traditional symbols used in origami diagrams and 3D animations in order to The most common form to convey origami is through origami di- help people who are inexperienced in folding crease patterns as agrams, which are step-by-step sequences as shown in Figure 1b.
    [Show full text]
  • GEOMETRIC FOLDING ALGORITHMS I
    P1: FYX/FYX P2: FYX 0521857570pre CUNY758/Demaine 0 521 81095 7 February 25, 2007 7:5 GEOMETRIC FOLDING ALGORITHMS Folding and unfolding problems have been implicit since Albrecht Dürer in the early 1500s but have only recently been studied in the mathemat- ical literature. Over the past decade, there has been a surge of interest in these problems, with applications ranging from robotics to protein folding. With an emphasis on algorithmic or computational aspects, this comprehensive treatment of the geometry of folding and unfolding presents hundreds of results and more than 60 unsolved “open prob- lems” to spur further research. The authors cover one-dimensional (1D) objects (linkages), 2D objects (paper), and 3D objects (polyhedra). Among the results in Part I is that there is a planar linkage that can trace out any algebraic curve, even “sign your name.” Part II features the “fold-and-cut” algorithm, establishing that any straight-line drawing on paper can be folded so that the com- plete drawing can be cut out with one straight scissors cut. In Part III, readers will see that the “Latin cross” unfolding of a cube can be refolded to 23 different convex polyhedra. Aimed primarily at advanced undergraduate and graduate students in mathematics or computer science, this lavishly illustrated book will fascinate a broad audience, from high school students to researchers. Erik D. Demaine is the Esther and Harold E. Edgerton Professor of Elec- trical Engineering and Computer Science at the Massachusetts Institute of Technology, where he joined the faculty in 2001. He is the recipient of several awards, including a MacArthur Fellowship, a Sloan Fellowship, the Harold E.
    [Show full text]
  • Industrial Product Design by Using Two-Dimensional Material in the Context of Origamic Structure and Integrity
    Industrial Product Design by Using Two-Dimensional Material in the Context of Origamic Structure and Integrity By Nergiz YİĞİT A Dissertation Submitted to the Graduate School in Partial Fulfillment of the Requirements for the Degree of MASTER OF INDUSTRIAL DESIGN Department: Industrial Design Major: Industrial Design İzmir Institute of Technology İzmir, Turkey July, 2004 We approve the thesis of Nergiz YİĞİT Date of Signature .................................................. 28.07.2004 Assist. Prof. Yavuz SEÇKİN Supervisor Department of Industrial Design .................................................. 28.07.2004 Assist.Prof. Dr. Önder ERKARSLAN Department of Industrial Design .................................................. 28.07.2004 Assist. Prof. Dr. A. Can ÖZCAN İzmir University of Economics, Department of Industrial Design .................................................. 28.07.2004 Assist. Prof. Yavuz SEÇKİN Head of Department ACKNOWLEDGEMENTS I would like to thank my advisor Assist. Prof. Yavuz Seçkin for his continual advice, supervision and understanding in the research and writing of this thesis. I would also like to thank Assist. Prof. Dr. A. Can Özcan, and Assist.Prof. Dr. Önder Erkarslan for their advices and supports throughout my master’s studies. I am grateful to my friends Aslı Çetin and Deniz Deniz for their invaluable friendships, and I would like to thank to Yankı Göktepe for his being. I would also like to thank my family for their patience, encouragement, care, and endless support during my whole life. ABSTRACT Throughout the history of industrial product design, there have always been attempts to shape everyday objects from a single piece of semi-finished industrial materials such as plywood, sheet metal, plastic sheet and paper-based sheet. One of the ways to form these two-dimensional materials into three-dimensional products is bending following cutting.
    [Show full text]
  • Planning to Fold Multiple Objects from a Single Self-Folding Sheet
    Planning to Fold Multiple Objects from a Single Self-Folding Sheet Byoungkwon An∗ Nadia Benbernou∗ Erik D. Demaine∗ Daniela Rus∗ Abstract This paper considers planning and control algorithms that enable a programmable sheet to realize different shapes by autonomous folding. Prior work on self-reconfiguring machines has considered modular systems in which independent units coordinate with their neighbors to realize a desired shape. A key limitation in these prior systems is the typically many operations to make and break connections with neighbors, which lead to brittle performance. We seek to mitigate these difficulties through the unique concept of self-folding origami with a universal fixed set of hinges. This approach exploits a single sheet composed of interconnected triangular sections. The sheet is able to fold into a set of predetermined shapes using embedded actuation. We describe the planning algorithms underlying these self-folding sheets, forming a new family of reconfigurable robots that fold themselves into origami by actuating edges to fold by desired angles at desired times. Given a flat sheet, the set of hinges, and a desired folded state for the sheet, the algorithms (1) plan a continuous folding motion into the desired state, (2) discretize this motion into a practicable sequence of phases, (3) overlay these patterns and factor the steps into a minimum set of groups, and (4) automatically plan the location of actuators and threads on the sheet for implementing the shape-formation control. 1 Introduction Over the past two decades we have seen great progress toward creating self-assembling, self-reconfiguring, self-replicating, and self-organizing machines [YSS+06].
    [Show full text]
  • Origamizing Polyhedral Surfaces Tomohiro Tachi
    1 Origamizing Polyhedral Surfaces Tomohiro Tachi Abstract—This paper presents the first practical method for “origamizing” or obtaining the folding pattern that folds a single sheet of material into a given polyhedral surface without any cut. The basic idea is to tuck fold a planar paper to form a three-dimensional shape. The main contribution is to solve the inverse problem; the input is an arbitrary polyhedral surface and the output is the folding pattern. Our approach is to convert this problem into a problem of laying out the polygons of the surface on a planar paper by introducing the concept of tucking molecules. We investigate the equality and inequality conditions required for constructing a valid crease pattern. We propose an algorithm based on two-step mapping and edge splitting to solve these conditions. The two-step mapping precalculates linear equalities and separates them from other conditions. This allows an interactive manipulation of the crease pattern in the system implementation. We present the first system for designing three-dimensional origami, enabling a user can interactively design complex spatial origami models that have not been realizable thus far. Index Terms—Origami, origami design, developable surface, folding, computer-aided design. ✦ 1 INTRODUCTION proposed to obtain nearly developable patches represented as RIGAMI is an art of folding a single piece of paper triangle meshes, either by segmenting the surface through O into a variety of shapes without cutting or stretching the fitting of the patches to cones, as proposed by Julius it. Creating an origami with desired properties, particularly a [4], or by minimizing the Gauss area, as studied by Wang desired shape, is known as origami design.
    [Show full text]
  • Valentina Beatini Cinemorfismi. Meccanismi Che Definiscono Lo Spazio Architettonico
    Università degli Studi di Parma Dipartimento di Ingegneria Civile, dell'Ambiente, del Territorio e Architettura Dottorato di Ricerca in Forme e Strutture dell'Architettura XXIII Ciclo (ICAR 08 - ICAR 09 - ICAR 10 - ICAR 14 - ICAR17 - ICAR 18 - ICAR 19 – ICAR 20) Valentina Beatini Cinemorfismi. Meccanismi che definiscono lo spazio architettonico. Kinematic shaping. Mechanisms that determine architecture of space. Tutore: Gianni Royer Carfagni Coordinatore del Dottorato: Prof. Aldo De Poli “La forma deriva spontaneamente dalle necessità di questo spazio, che si costruisce la sua dimora come l’animale che sceglie la sua conchiglia. Come quell’animale, sono anch’io un architetto del vuoto.” Eduardo Chillida Università degli Studi di Parma Dipartimento di Ingegneria Civile, dell'Ambiente, del Territorio e Architettura Dottorato di Ricerca in Forme e Strutture dell'Architettura (ICAR 08 - ICAR 09 – ICAR 10 - ICAR 14 - ICAR17 - ICAR 18 - ICAR 19 – ICAR 20) XXIII Ciclo Coordinatore: prof. Aldo De Poli Collegio docenti: prof. Bruno Adorni prof. Carlo Blasi prof. Eva Coisson prof. Paolo Giandebiaggi prof. Agnese Ghini prof. Maria Evelina Melley prof. Ivo Iori prof. Gianni Royer Carfagni prof. Michela Rossi prof. Chiara Vernizzi prof. Michele Zazzi prof. Andrea Zerbi. Dottorando: Valentina Beatini Titolo della tesi: Cinemorfismi. Meccanismi che definiscono lo spazio architettonico. Kinematic shaping. Mechanisms that determine architecture of space. Tutore: Gianni Royer Carfagni A Emilio, Maurizio e Carlotta. Ringrazio tutti i professori e tutti i colleghi coi quali ho potuto confrontarmi nel corso di questi anni, e in modo particolare il prof. Gianni Royer per gli interessanti confronti ed il prof. Aldo De Poli per i frequenti incoraggiamenti.
    [Show full text]
  • Practical Applications of Rigid Thick Origami in Kinetic Architecture
    PRACTICAL APPLICATIONS OF RIGID THICK ORIGAMI IN KINETIC ARCHITECTURE A DARCH PROJECT SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTORATE OF ARCHITECTURE DECEMBER 2015 By Scott Macri Dissertation Committee: David Rockwood, Chairperson David Masunaga Scott Miller Keywords: Kinetic Architecture, Origami, Rigid Thick Acknowledgments I would like to gratefully acknowledge and give a huge thanks to all those who have supported me. To the faculty and staff of the School of Architecture at UH Manoa, who taught me so much, and guided me through the D.Arch program. To Kris Palagi, who helped me start this long dissertation journey. To David Rockwood, who had quickly learned this material and helped me finish and produced a completed document. To my committee members, David Masunaga, and Scott Miller, who have stayed with me from the beginning and also looked after this document with a sharp eye and critical scrutiny. To my wife, Tanya Macri, and my parents, Paul and Donna Macri, who supported me throughout this dissertation and the D.Arch program. Especially to my father, who introduced me to origami over two decades ago, without which, not only would this dissertation not have been possible, but I would also be with my lifelong hobby and passion. And finally, to Paul Sheffield, my continual mentor in not only the study and business of architecture, but also mentored me in life, work, my Christian faith, and who taught me, most importantly, that when life gets stressful, find a reason to laugh about it.
    [Show full text]