Evaluation of Lossless and Lossy Algorithms For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Data Compression: Dictionary-Based Coding 2 / 37 Dictionary-Based Coding Dictionary-Based Coding
Dictionary-based Coding already coded not yet coded search buffer look-ahead buffer cursor (N symbols) (L symbols) We know the past but cannot control it. We control the future but... Last Lecture Last Lecture: Predictive Lossless Coding Predictive Lossless Coding Simple and effective way to exploit dependencies between neighboring symbols / samples Optimal predictor: Conditional mean (requires storage of large tables) Affine and Linear Prediction Simple structure, low-complex implementation possible Optimal prediction parameters are given by solution of Yule-Walker equations Works very well for real signals (e.g., audio, images, ...) Efficient Lossless Coding for Real-World Signals Affine/linear prediction (often: block-adaptive choice of prediction parameters) Entropy coding of prediction errors (e.g., arithmetic coding) Using marginal pmf often already yields good results Can be improved by using conditional pmfs (with simple conditions) Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 2 / 37 Dictionary-based Coding Dictionary-Based Coding Coding of Text Files Very high amount of dependencies Affine prediction does not work (requires linear dependencies) Higher-order conditional coding should work well, but is way to complex (memory) Alternative: Do not code single characters, but words or phrases Example: English Texts Oxford English Dictionary lists less than 230 000 words (including obsolete words) On average, a word contains about 6 characters Average codeword length per character would be limited by 1 -
Package 'Brotli'
Package ‘brotli’ May 13, 2018 Type Package Title A Compression Format Optimized for the Web Version 1.2 Description A lossless compressed data format that uses a combination of the LZ77 algorithm and Huffman coding. Brotli is similar in speed to deflate (gzip) but offers more dense compression. License MIT + file LICENSE URL https://tools.ietf.org/html/rfc7932 (spec) https://github.com/google/brotli#readme (upstream) http://github.com/jeroen/brotli#read (devel) BugReports http://github.com/jeroen/brotli/issues VignetteBuilder knitr, R.rsp Suggests spelling, knitr, R.rsp, microbenchmark, rmarkdown, ggplot2 RoxygenNote 6.0.1 Language en-US NeedsCompilation yes Author Jeroen Ooms [aut, cre] (<https://orcid.org/0000-0002-4035-0289>), Google, Inc [aut, cph] (Brotli C++ library) Maintainer Jeroen Ooms <[email protected]> Repository CRAN Date/Publication 2018-05-13 20:31:43 UTC R topics documented: brotli . .2 Index 4 1 2 brotli brotli Brotli Compression Description Brotli is a compression algorithm optimized for the web, in particular small text documents. Usage brotli_compress(buf, quality = 11, window = 22) brotli_decompress(buf) Arguments buf raw vector with data to compress/decompress quality value between 0 and 11 window log of window size Details Brotli decompression is at least as fast as for gzip while significantly improving the compression ratio. The price we pay is that compression is much slower than gzip. Brotli is therefore most effective for serving static content such as fonts and html pages. For binary (non-text) data, the compression ratio of Brotli usually does not beat bz2 or xz (lzma), however decompression for these algorithms is too slow for browsers in e.g. -
A Survey Paper on Different Speech Compression Techniques
Vol-2 Issue-5 2016 IJARIIE-ISSN (O)-2395-4396 A Survey Paper on Different Speech Compression Techniques Kanawade Pramila.R1, Prof. Gundal Shital.S2 1 M.E. Electronics, Department of Electronics Engineering, Amrutvahini College of Engineering, Sangamner, Maharashtra, India. 2 HOD in Electronics Department, Department of Electronics Engineering , Amrutvahini College of Engineering, Sangamner, Maharashtra, India. ABSTRACT This paper describes the different types of speech compression techniques. Speech compression can be divided into two main types such as lossless and lossy compression. This survey paper has been written with the help of different types of Waveform-based speech compression, Parametric-based speech compression, Hybrid based speech compression etc. Compression is nothing but reducing size of data with considering memory size. Speech compression means voiced signal compress for different application such as high quality database of speech signals, multimedia applications, music database and internet applications. Today speech compression is very useful in our life. The main purpose or aim of speech compression is to compress any type of audio that is transfer over the communication channel, because of the limited channel bandwidth and data storage capacity and low bit rate. The use of lossless and lossy techniques for speech compression means that reduced the numbers of bits in the original information. By the use of lossless data compression there is no loss in the original information but while using lossy data compression technique some numbers of bits are loss. Keyword: - Bit rate, Compression, Waveform-based speech compression, Parametric-based speech compression, Hybrid based speech compression. 1. INTRODUCTION -1 Speech compression is use in the encoding system. -
ROOT I/O Compression Improvements for HEP Analysis
EPJ Web of Conferences 245, 02017 (2020) https://doi.org/10.1051/epjconf/202024502017 CHEP 2019 ROOT I/O compression improvements for HEP analysis Oksana Shadura1;∗ Brian Paul Bockelman2;∗∗ Philippe Canal3;∗∗∗ Danilo Piparo4;∗∗∗∗ and Zhe Zhang1;y 1University of Nebraska-Lincoln, 1400 R St, Lincoln, NE 68588, United States 2Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, United States 3Fermilab, Kirk Road and Pine St, Batavia, IL 60510, United States 4CERN, Meyrin 1211, Geneve, Switzerland Abstract. We overview recent changes in the ROOT I/O system, enhancing it by improving its performance and interaction with other data analysis ecosys- tems. Both the newly introduced compression algorithms, the much faster bulk I/O data path, and a few additional techniques have the potential to significantly improve experiment’s software performance. The need for efficient lossless data compression has grown significantly as the amount of HEP data collected, transmitted, and stored has dramatically in- creased over the last couple of years. While compression reduces storage space and, potentially, I/O bandwidth usage, it should not be applied blindly, because there are significant trade-offs between the increased CPU cost for reading and writing files and the reduces storage space. 1 Introduction In the past years, Large Hadron Collider (LHC) experiments are managing about an exabyte of storage for analysis purposes, approximately half of which is stored on tape storages for archival purposes, and half is used for traditional disk storage. Meanwhile for High Lumi- nosity Large Hadron Collider (HL-LHC) storage requirements per year are expected to be increased by a factor of 10 [1]. -
Arxiv:2004.10531V1 [Cs.OH] 8 Apr 2020
ROOT I/O compression improvements for HEP analysis Oksana Shadura1;∗ Brian Paul Bockelman2;∗∗ Philippe Canal3;∗∗∗ Danilo Piparo4;∗∗∗∗ and Zhe Zhang1;y 1University of Nebraska-Lincoln, 1400 R St, Lincoln, NE 68588, United States 2Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, United States 3Fermilab, Kirk Road and Pine St, Batavia, IL 60510, United States 4CERN, Meyrin 1211, Geneve, Switzerland Abstract. We overview recent changes in the ROOT I/O system, increasing per- formance and enhancing it and improving its interaction with other data analy- sis ecosystems. Both the newly introduced compression algorithms, the much faster bulk I/O data path, and a few additional techniques have the potential to significantly to improve experiment’s software performance. The need for efficient lossless data compression has grown significantly as the amount of HEP data collected, transmitted, and stored has dramatically in- creased during the LHC era. While compression reduces storage space and, potentially, I/O bandwidth usage, it should not be applied blindly: there are sig- nificant trade-offs between the increased CPU cost for reading and writing files and the reduce storage space. 1 Introduction In the past years LHC experiments are commissioned and now manages about an exabyte of storage for analysis purposes, approximately half of which is used for archival purposes, and half is used for traditional disk storage. Meanwhile for HL-LHC storage requirements per year are expected to be increased by factor 10 [1]. arXiv:2004.10531v1 [cs.OH] 8 Apr 2020 Looking at these predictions, we would like to state that storage will remain one of the major cost drivers and at the same time the bottlenecks for HEP computing. -
The Basic Principles of Data Compression
The Basic Principles of Data Compression Author: Conrad Chung, 2BrightSparks Introduction Internet users who download or upload files from/to the web, or use email to send or receive attachments will most likely have encountered files in compressed format. In this topic we will cover how compression works, the advantages and disadvantages of compression, as well as types of compression. What is Compression? Compression is the process of encoding data more efficiently to achieve a reduction in file size. One type of compression available is referred to as lossless compression. This means the compressed file will be restored exactly to its original state with no loss of data during the decompression process. This is essential to data compression as the file would be corrupted and unusable should data be lost. Another compression category which will not be covered in this article is “lossy” compression often used in multimedia files for music and images and where data is discarded. Lossless compression algorithms use statistic modeling techniques to reduce repetitive information in a file. Some of the methods may include removal of spacing characters, representing a string of repeated characters with a single character or replacing recurring characters with smaller bit sequences. Advantages/Disadvantages of Compression Compression of files offer many advantages. When compressed, the quantity of bits used to store the information is reduced. Files that are smaller in size will result in shorter transmission times when they are transferred on the Internet. Compressed files also take up less storage space. File compression can zip up several small files into a single file for more convenient email transmission. -
Lossless Compression of Audio Data
CHAPTER 12 Lossless Compression of Audio Data ROBERT C. MAHER OVERVIEW Lossless data compression of digital audio signals is useful when it is necessary to minimize the storage space or transmission bandwidth of audio data while still maintaining archival quality. Available techniques for lossless audio compression, or lossless audio packing, generally employ an adaptive waveform predictor with a variable-rate entropy coding of the residual, such as Huffman or Golomb-Rice coding. The amount of data compression can vary considerably from one audio waveform to another, but ratios of less than 3 are typical. Several freeware, shareware, and proprietary commercial lossless audio packing programs are available. 12.1 INTRODUCTION The Internet is increasingly being used as a means to deliver audio content to end-users for en tertainment, education, and commerce. It is clearly advantageous to minimize the time required to download an audio data file and the storage capacity required to hold it. Moreover, the expec tations of end-users with regard to signal quality, number of audio channels, meta-data such as song lyrics, and similar additional features provide incentives to compress the audio data. 12.1.1 Background In the past decade there have been significant breakthroughs in audio data compression using lossy perceptual coding [1]. These techniques lower the bit rate required to represent the signal by establishing perceptual error criteria, meaning that a model of human hearing perception is Copyright 2003. Elsevier Science (USA). 255 AU rights reserved. 256 PART III / APPLICATIONS used to guide the elimination of excess bits that can be either reconstructed (redundancy in the signal) orignored (inaudible components in the signal). -
The H.264 Advanced Video Coding (AVC) Standard
Whitepaper: The H.264 Advanced Video Coding (AVC) Standard What It Means to Web Camera Performance Introduction A new generation of webcams is hitting the market that makes video conferencing a more lifelike experience for users, thanks to adoption of the breakthrough H.264 standard. This white paper explains some of the key benefits of H.264 encoding and why cameras with this technology should be on the shopping list of every business. The Need for Compression Today, Internet connection rates average in the range of a few megabits per second. While VGA video requires 147 megabits per second (Mbps) of data, full high definition (HD) 1080p video requires almost one gigabit per second of data, as illustrated in Table 1. Table 1. Display Resolution Format Comparison Format Horizontal Pixels Vertical Lines Pixels Megabits per second (Mbps) QVGA 320 240 76,800 37 VGA 640 480 307,200 147 720p 1280 720 921,600 442 1080p 1920 1080 2,073,600 995 Video Compression Techniques Digital video streams, especially at high definition (HD) resolution, represent huge amounts of data. In order to achieve real-time HD resolution over typical Internet connection bandwidths, video compression is required. The amount of compression required to transmit 1080p video over a three megabits per second link is 332:1! Video compression techniques use mathematical algorithms to reduce the amount of data needed to transmit or store video. Lossless Compression Lossless compression changes how data is stored without resulting in any loss of information. Zip files are losslessly compressed so that when they are unzipped, the original files are recovered. -
Understanding Compression of Geospatial Raster Imagery
Understanding Compression of Geospatial Raster Imagery Document Overview This document was created for the North Carolina Geographic Information and Coordinating Council (GICC), http://ncgicc.com, by the GIS Technical Advisory Committee (TAC). Its purpose is to serve as a best practice or guidance document for GIS professionals that are compressing raster images. This document only addresses compressing geospatial raster data and specifically aerial or orthorectified imagery. It does not address compressing LiDAR data. Compression Overview Compression is the process of making data more compact so it occupies less disk storage space. The primary benefit of compressing raster data is reduction in file size. An added benefit is greatly improved performance over a network, because the user is transferring less data from a server to an application; however, compressed data must be decompressed to display in GIS software. The result may be slower raster display in GIS software than data that is not compressed. Compressed data can also increase CPU requirements on the server or desktop. Glossary of Common Terms Raster is a spatial data model made of rows and columns of cells. Each cell contains an attribute value identifying its color and location coordinate. Geospatial raster data like satellite images and aerial photographs are typically larger on average than vector data (predominately points, lines, or polygons). Compression is the process of making a (raster) file smaller while preserving all or most of the data it contains. Imagery compression enables storage of more data (image files) on a disk than if they were uncompressed. Compression ratio is the amount or degree of reduction of an image's file size. -
Lossy Audio Compression Identification
2018 26th European Signal Processing Conference (EUSIPCO) Lossy Audio Compression Identification Bongjun Kim Zafar Rafii Northwestern University Gracenote Evanston, USA Emeryville, USA [email protected] zafar.rafi[email protected] Abstract—We propose a system which can estimate from an compression parameters from an audio signal, based on AAC, audio recording that has previously undergone lossy compression was presented in [3]. The first implementation of that work, the parameters used for the encoding, and therefore identify the based on MP3, was then proposed in [4]. The idea was to corresponding lossy coding format. The system analyzes the audio signal and searches for the compression parameters and framing search for the compression parameters and framing conditions conditions which match those used for the encoding. In particular, which match those used for the encoding, by measuring traces we propose a new metric for measuring traces of compression of compression in the audio signal, which typically correspond which is robust to variations in the audio content and a new to time-frequency coefficients quantized to zero. method for combining the estimates from multiple audio blocks The first work to investigate alterations, such as deletion, in- which can refine the results. We evaluated this system with audio excerpts from songs and movies, compressed into various coding sertion, or substitution, in audio signals which have undergone formats, using different bit rates, and captured digitally as well lossy compression, namely MP3, was presented in [5]. The as through analog transfer. Results showed that our system can idea was to measure traces of compression in the signal along identify the correct format in almost all cases, even at high bit time and detect discontinuities in the estimated framing. -
Unfoldr Dstep
Asymmetric Numeral Systems Jeremy Gibbons WG2.11#19 Salem ANS 2 1. Coding Huffman coding (HC) • efficient; optimally effective for bit-sequence-per-symbol arithmetic coding (AC) • Shannon-optimal (fractional entropy); but computationally expensive asymmetric numeral systems (ANS) • efficiency of Huffman, effectiveness of arithmetic coding applications of streaming (another story) • ANS introduced by Jarek Duda (2006–2013). Now: Facebook (Zstandard), Apple (LZFSE), Google (Draco), Dropbox (DivANS). ANS 3 2. Intervals Pairs of rationals type Interval (Rational, Rational) = with operations unit (0, 1) = weight (l, r) x l (r l) x = + − ⇥ narrow i (p, q) (weight i p, weight i q) = scale (l, r) x (x l)/(r l) = − − widen i (p, q) (scale i p, scale i q) = so that narrow and unit form a monoid, and inverse relationships: weight i x i x unit 2 () 2 weight i x y scale i y x = () = narrow i j k widen i k j = () = ANS 4 3. Models Given counts :: [(Symbol, Integer)] get encodeSym :: Symbol Interval ! decodeSym :: Rational Symbol ! such that decodeSym x s x encodeSym s = () 2 1 1 1 1 Eg alphabet ‘a’, ‘b’, ‘c’ with counts 2, 3, 5 encoded as (0, /5), ( /5, /2), and ( /2, 1). { } ANS 5 4. Arithmetic coding encode1 :: [Symbol ] Rational ! encode1 pick foldl estep unit where = ◦ 1 estep :: Interval Symbol Interval 1 ! ! estep is narrow i (encodeSym s) 1 = decode1 :: Rational [Symbol ] ! decode1 unfoldr dstep where = 1 dstep :: Rational Maybe (Symbol, Rational) 1 ! dstep x let s decodeSym x in Just (s, scale (encodeSym s) x) 1 = = where pick :: Interval Rational satisfies pick i i. -
Comparison of Image Compressions: Analog Transformations P
Proceedings Comparison of Image Compressions: Analog † Transformations P Jose Balsa P CITIC Research Center, Universidade da Coruña (University of A Coruña), 15071 A Coruña, Spain; [email protected] † Presented at the 3rd XoveTIC Conference, A Coruña, Spain, 8–9 October 2020. Published: 21 August 2020 Abstract: A comparison between the four most used transforms, the discrete Fourier transform (DFT), discrete cosine transform (DCT), the Walsh–Hadamard transform (WHT) and the Haar- wavelet transform (DWT), for the transmission of analog images, varying their compression and comparing their quality, is presented. Additionally, performance tests are done for different levels of white Gaussian additive noise. Keywords: analog image transformation; analog image compression; analog image quality 1. Introduction Digitized image coding systems employ reversible mathematical transformations. These transformations change values and function domains in order to rearrange information in a way that condenses information important to human vision [1]. In the new domain, it is possible to filter out relevant information and discard information that is irrelevant or of lesser importance for image quality [2]. Both digital and analog systems use the same transformations in source coding. Some examples of digital systems that employ these transformations are JPEG, M-JPEG, JPEG2000, MPEG- 1, 2, 3 and 4, DV and HDV, among others. Although digital systems after transformation and filtering make use of digital lossless compression techniques, such as Huffman. In this work, we aim to make a comparison of the most commonly used transformations in state- of-the-art image compression systems. Typically, the transformations used to compress analog images work either on the entire image or on regions of the image.