Parameters of 5-Chromatic Strongly Regular Graphs

Total Page:16

File Type:pdf, Size:1020Kb

Parameters of 5-Chromatic Strongly Regular Graphs INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with smal overlaps. Photographs included in the original manuscript have been reproduced xerographicaliy in this copy. Higher quality 6" x 9* black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. ProQuest Information and Learning 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 800-521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. SOME TOPICS IN COMBINATORIAL DESIGN THEORY AND ALGEBRAIC GRAPH THEORY DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Nick C. Fiala, M . S. ***** The Ohio State University 2002 Dissertation Committee: Approved by Dr. Akos Seress, Advisor < 4 * £ * « , Dr. Dijen Ray-Chaudhuri Advisor Dr. Surinder Sehgal Department of Mathematics Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number 3049023 UMI’ UMI Microform 3049023 Copyright 2002 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor. Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT This dissertation consists of three chapters, each one based upon papers by the author. At the risk of being redundant, we have made each chapter self-contained for ease of reading. Chapter 1 is based upon two papers by the author and deals with a conjecture in combinatorial design theory and extremal set theory known as the A-design con­ jecture. A A-design on v points is a set of v subsets (blocks) of a u-element set (points) such that any two distinct blocks meet in exactly A points and not all of the blocks have the same size. Ryser’s and Woodall’s A-design conjecture states that all A-designs can be obtained from symmetric designs by a certain complementation pro­ cedure. In Chapter 1, we prove that the A-design conjecture is true when v = 6p + 1, where p is any prime number, and when v = 8q -F 1, where q = 1 or 7 (mod 8) is a prime. Chapter 2 deals with the determination of all strongly regular graphs with chro­ matic number equal to 5. A strongly regular graph is a finite simple regular graph, not complete or edgeless, such that the number of common neighbors of any two distinct vertices depends only upon whether or not they are adjacent. The chromatic number of a graph is the fewest number of colors that are required to color its ver­ tices such that adjacent vertices always receive different colors. Haemers determined ii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. all strongly regular graphs with chromatic number 3 or 4. In Chapter 2, we use eigenvalue techniques and computer enumerations to begin the determination of all strongly regular graphs with chromatic number 5. We show that there are at most 43 possible sets of parameters for such a graph. We deal completely with 32 of these sets and obtain a partial result for one additional set. Chapter 3 deals with a generalization of strongly regular graphs that the author calls strongly regular vertices and partially strongly regular graphs. A strongly regular vertex in a finite simple graph is such that the number of common neighbors it has with any other vertex depends only upon whether or not they are adjacent. A partially strongly regular graph is a regular graph with at least one strongly regular vertex. In Chapter 3, we prove some basic properties of strongly regular vertices and partially strongly regular graphs, provide several constructions of partially strongly regular graphs, determine all partially strongly regular graphs on at most 10 vertices, and make several conjectures regarding partially strongly regular graphs. iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Akos Seress, for giving me the freedom to work on whatever I liked. I would like to thank Dr. Ronald Solomon for serving on my advisory committee, and Dr. Dijen Ray-Chaudhuri and Dr. Surinder Sehgal for serving on both my advisory and dissertation committees. I would like to thank Adam Wolfe for computer programming help, and Ted Spence for supplying me with combinatorial data. I would also like to thank my family and God. iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VITA October 11, 1973 ...................................... Born in Oakes, North Dakota 1996 ......................................................... B. S. in Mathematics and Physics, minor in Economics, Rose-Hulman Institute of Technology, Indiana 2000 ......................................................... M. S. in Mathematics, The Ohio State University 1996 - Present ........................................ Graduate Teaching Associate, The Ohio State University FIELDS OF STUDY Major field: Mathematics Specialization: Combinatorics Studies in Algebraic Graph Theory Dr. Akos Seress Design Theory and Coding Theory Dr. Dijen Ray-Chaudhuri Group Theory Dr. Surinder Sehgal Group Theory Dr. Ronald Solomon Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS A b s trac t ....................................................................................................................... ii Acknowledgments........................................................................................................ iv V i t a ............................................................................................................................. v List of Tables.............................................................................................................. viii CHAPTER PAGE 1 A-designs on 6p + 1 and 8p + 1 points ......................................................... 1 Introduction .............................................................................................. 1 Preliminary results ..................................................................................... 4 The lonin-Shrikhande method.................................................................. 5 A-designs with g = 6 ................................................................................. 10 A-designs with g = 8 ................................................................................. 23 Conjectures ................................................................................................. 36 2 5-chromatic strongly regular graphs ............................................................ 38 Introduction .............................................................................................. 38 Basic properties of strongly regular graphs ............................................ 40 Some families of strongly regular g ra p h s ............................................... 41 The Paley graphs ........................................................................................ 41 The triangular graphs .............................................................................. 41 The lattice graphs ........................................................................................ 42 Strongly regular graphs from quasi-symmetric designs ........................ 42 Strongly regular graphs from latin squares........................................... 43 Strongly regular graphs from systems of linked symmetric designs . 43 Strongly regular graphs from partial geometries.................................. 44 Strongly regular graphs from rank 3 permutation groups.................. 44 Matrix-theoretic to o ls .............................................................................. 45 vi Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Eigenvalues , cocliques, and chromatic number of strongly regular graphs 48 Parameters of 5-chromatic strongly regular graphs ............................ 50 The parameter sets 1, 2, 4, 5, 6 , 7, 8, 9, 10, 11, 14, 16, 19, 20, 21, 25, 28, 29, and 4 3 ........................................................................ 54
Recommended publications
  • Investigations on Unit Distance Property of Clebsch Graph and Its Complement
    Proceedings of the World Congress on Engineering 2012 Vol I WCE 2012, July 4 - 6, 2012, London, U.K. Investigations on Unit Distance Property of Clebsch Graph and Its Complement Pratima Panigrahi and Uma kant Sahoo ∗yz Abstract|An n-dimensional unit distance graph is on parameters (16,5,0,2) and (16,10,6,6) respectively. a simple graph which can be drawn on n-dimensional These graphs are known to be unique in the respective n Euclidean space R so that its vertices are represented parameters [2]. In this paper we give unit distance n by distinct points in R and edges are represented by representation of Clebsch graph in the 3-dimensional Eu- closed line segments of unit length. In this paper we clidean space R3. Also we show that the complement of show that the Clebsch graph is 3-dimensional unit Clebsch graph is not a 3-dimensional unit distance graph. distance graph, but its complement is not. Keywords: unit distance graph, strongly regular The Petersen graph is the strongly regular graph on graphs, Clebsch graph, Petersen graph. parameters (10,3,0,1). This graph is also unique in its parameter set. It is known that Petersen graph is 2-dimensional unit distance graph (see [1],[3],[10]). It is In this article we consider only simple graphs, i.e. also known that Petersen graph is a subgraph of Clebsch undirected, loop free and with no multiple edges. The graph, see [[5], section 10.6]. study of dimension of graphs was initiated by Erdos et.al [3].
    [Show full text]
  • Maximizing the Order of a Regular Graph of Given Valency and Second Eigenvalue∗
    SIAM J. DISCRETE MATH. c 2016 Society for Industrial and Applied Mathematics Vol. 30, No. 3, pp. 1509–1525 MAXIMIZING THE ORDER OF A REGULAR GRAPH OF GIVEN VALENCY AND SECOND EIGENVALUE∗ SEBASTIAN M. CIOABA˘ †,JACKH.KOOLEN‡, HIROSHI NOZAKI§, AND JASON R. VERMETTE¶ Abstract. From Alon√ and Boppana, and Serre, we know that for any given integer k ≥ 3 and real number λ<2 k − 1, there are only finitely many k-regular graphs whose second largest eigenvalue is at most λ. In this paper, we investigate the largest number of vertices of such graphs. Key words. second eigenvalue, regular graph, expander AMS subject classifications. 05C50, 05E99, 68R10, 90C05, 90C35 DOI. 10.1137/15M1030935 1. Introduction. For a k-regular graph G on n vertices, we denote by λ1(G)= k>λ2(G) ≥ ··· ≥ λn(G)=λmin(G) the eigenvalues of the adjacency matrix of G. For a general reference on the eigenvalues of graphs, see [8, 17]. The second eigenvalue of a regular graph is a parameter of interest in the study of graph connectivity and expanders (see [1, 8, 23], for example). In this paper, we investigate the maximum order v(k, λ) of a connected k-regular graph whose second largest eigenvalue is at most some given parameter λ. As a consequence of work of Alon and Boppana and of Serre√ [1, 11, 15, 23, 24, 27, 30, 34, 35, 40], we know that v(k, λ) is finite for λ<2 k − 1. The recent result of Marcus, Spielman, and Srivastava [28] showing the existence of infinite families of√ Ramanujan graphs of any degree at least 3 implies that v(k, λ) is infinite for λ ≥ 2 k − 1.
    [Show full text]
  • Algebraic Graph Theory: Automorphism Groups and Cayley Graphs
    Algebraic Graph Theory: Automorphism Groups and Cayley graphs Glenna Toomey April 2014 1 Introduction An algebraic approach to graph theory can be useful in numerous ways. There is a relatively natural intersection between the fields of algebra and graph theory, specifically between group theory and graphs. Perhaps the most natural connection between group theory and graph theory lies in finding the automorphism group of a given graph. However, by studying the opposite connection, that is, finding a graph of a given group, we can define an extremely important family of vertex-transitive graphs. This paper explores the structure of these graphs and the ways in which we can use groups to explore their properties. 2 Algebraic Graph Theory: The Basics First, let us determine some terminology and examine a few basic elements of graphs. A graph, Γ, is simply a nonempty set of vertices, which we will denote V (Γ), and a set of edges, E(Γ), which consists of two-element subsets of V (Γ). If fu; vg 2 E(Γ), then we say that u and v are adjacent vertices. It is often helpful to view these graphs pictorially, letting the vertices in V (Γ) be nodes and the edges in E(Γ) be lines connecting these nodes. A digraph, D is a nonempty set of vertices, V (D) together with a set of ordered pairs, E(D) of distinct elements from V (D). Thus, given two vertices, u, v, in a digraph, u may be adjacent to v, but v is not necessarily adjacent to u. This relation is represented by arcs instead of basic edges.
    [Show full text]
  • The Veldkamp Space of GQ(2,4) Metod Saniga, Richard Green, Peter Levay, Petr Pracna, Peter Vrana
    The Veldkamp Space of GQ(2,4) Metod Saniga, Richard Green, Peter Levay, Petr Pracna, Peter Vrana To cite this version: Metod Saniga, Richard Green, Peter Levay, Petr Pracna, Peter Vrana. The Veldkamp Space of GQ(2,4). International Journal of Geometric Methods in Modern Physics, World Scientific Publishing, 2010, pp.1133-1145. 10.1142/S0219887810004762. hal-00365656v2 HAL Id: hal-00365656 https://hal.archives-ouvertes.fr/hal-00365656v2 Submitted on 6 Jul 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Veldkamp Space of GQ(2,4) M. Saniga,1 R. M. Green,2 P. L´evay,3 P. Pracna4 and P. Vrana3 1Astronomical Institute, Slovak Academy of Sciences SK-05960 Tatransk´aLomnica, Slovak Republic ([email protected]) 2Department of Mathematics, University of Colorado Campus Box 395, Boulder CO 80309-0395, U. S. A. ([email protected]) 3Department of Theoretical Physics, Institute of Physics Budapest University of Technology and Economics, H-1521 Budapest, Hungary ([email protected] and [email protected]) and 4J. Heyrovsk´yInstitute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejˇskova 3, CZ-182 23 Prague 8, Czech Republic ([email protected]) (6 July 2009) Abstract It is shown that the Veldkamp space of the unique generalized quadrangle GQ(2,4) is isomor- phic to PG(5,2).
    [Show full text]
  • Some Topics Concerning Graphs, Signed Graphs and Matroids
    SOME TOPICS CONCERNING GRAPHS, SIGNED GRAPHS AND MATROIDS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Vaidyanathan Sivaraman, M.S. Graduate Program in Mathematics The Ohio State University 2012 Dissertation Committee: Prof. Neil Robertson, Advisor Prof. Akos´ Seress Prof. Matthew Kahle ABSTRACT We discuss well-quasi-ordering in graphs and signed graphs, giving two short proofs of the bounded case of S. B. Rao's conjecture. We give a characterization of graphs whose bicircular matroids are signed-graphic, thus generalizing a theorem of Matthews from the 1970s. We prove a recent conjecture of Zaslavsky on the equality of frus- tration number and frustration index in a certain class of signed graphs. We prove that there are exactly seven signed Heawood graphs, up to switching isomorphism. We present a computational approach to an interesting conjecture of D. J. A. Welsh on the number of bases of matroids. We then move on to study the frame matroids of signed graphs, giving explicit signed-graphic representations of certain families of matroids. We also discuss the cycle, bicircular and even-cycle matroid of a graph and characterize matroids arising as two different such structures. We study graphs in which any two vertices have the same number of common neighbors, giving a quick proof of Shrikhande's theorem. We provide a solution to a problem of E. W. Dijkstra. Also, we discuss the flexibility of graphs on the projective plane. We conclude by men- tioning partial progress towards characterizing signed graphs whose frame matroids are transversal, and some miscellaneous results.
    [Show full text]
  • On Cayley Graphs of Algebraic Structures
    On Cayley graphs of algebraic structures Didier Caucal1 1 CNRS, LIGM, University Paris-East, France [email protected] Abstract We present simple graph-theoretic characterizations of Cayley graphs for left-cancellative monoids, groups, left-quasigroups and quasigroups. We show that these characterizations are effective for the end-regular graphs of finite degree. 1 Introduction To describe the structure of a group, Cayley introduced in 1878 [7] the concept of graph for any group (G, ·) according to any generating subset S. This is simply the set of labeled s oriented edges g −→ g·s for every g of G and s of S. Such a graph, called Cayley graph, is directed and labeled in S (or an encoding of S by symbols called letters or colors). The study of groups by their Cayley graphs is a main topic of algebraic graph theory [3, 8, 2]. A characterization of unlabeled and undirected Cayley graphs was given by Sabidussi in 1958 [15] : an unlabeled and undirected graph is a Cayley graph if and only if we can find a group with a free and transitive action on the graph. However, this algebraic characterization is not well suited for deciding whether a possibly infinite graph is a Cayley graph. It is pertinent to look for characterizations by graph-theoretic conditions. This approach was clearly stated by Hamkins in 2010: Which graphs are Cayley graphs? [10]. In this paper, we present simple graph-theoretic characterizations of Cayley graphs for firstly left-cancellative and cancellative monoids, and then for groups. These characterizations are then extended to any subset S of left-cancellative magmas, left-quasigroups, quasigroups, and groups.
    [Show full text]
  • Lattices from Group Frames and Vertex Transitive Graphs
    Frames Lattices Graphs Examples Lattices from group frames and vertex transitive graphs Lenny Fukshansky Claremont McKenna College (joint work with Deanna Needell, Josiah Park and Jessie Xin) Tight frame F is rational if there exists a real number α so that αpf i ; f j q P Q @ 1 ¤ i; j ¤ n: Frames Lattices Graphs Examples Tight frames k A spanning set tf 1;:::; f nu Ă R , n ¥ k, is called a tight frame k if there exists a real constant γ such that for every x P R , n 2 2 }x} “ γ px; f j q ; j“1 ¸ where p ; q stands for the usual dot-product. Frames Lattices Graphs Examples Tight frames k A spanning set tf 1;:::; f nu Ă R , n ¥ k, is called a tight frame k if there exists a real constant γ such that for every x P R , n 2 2 }x} “ γ px; f j q ; j“1 ¸ where p ; q stands for the usual dot-product. Tight frame F is rational if there exists a real number α so that αpf i ; f j q P Q @ 1 ¤ i; j ¤ n: k Let f P R be a nonzero vector, then Gf “ tUf : U P Gu k is called a group frame (or G-frame). If G acts irreducibly on R , Gf is called an irreducible group frame. Irreducible group frames are always tight. Frames Lattices Graphs Examples Group frames Let G be a finite subgroup of Ok pRq, the k-dimensional real orthog- k onal group, then G acts on R by left matrix multiplication.
    [Show full text]
  • The Extendability of Matchings in Strongly Regular Graphs
    The extendability of matchings in strongly regular graphs Sebastian M. Cioab˘a∗ Weiqiang Li Department of Mathematical Sciences Department of Mathematical Sciences University of Delaware University of Delaware Newark, DE 19707-2553, U.S.A. Newark, DE 19707-2553, U.S.A. [email protected] [email protected] Submitted: Feb 25, 2014; Accepted: Apr 29, 2014; Published: May 13, 2014 Mathematics Subject Classifications: 05E30, 05C50, 05C70 Abstract A graph G of even order v is called t-extendable if it contains a perfect matching, t < v=2 and any matching of t edges is contained in some perfect matching. The extendability of G is the maximum t such that G is t-extendable. In this paper, we study the extendability properties of strongly regular graphs. We improve previous results and classify all strongly regular graphs that are not 3-extendable. We also show that strongly regular graphs of valency k > 3 with λ > 1 are bk=3c-extendable k+1 (when µ 6 k=2) and d 4 e-extendable (when µ > k=2), where λ is the number of common neighbors of any two adjacent vertices and µ is the number of common neighbors of any two non-adjacent vertices. Our results are close to being best pos- sible as there are strongly regular graphs of valency k that are not dk=2e-extendable. We show that the extendability of many strongly regular graphs of valency k is at least dk=2e − 1 and we conjecture that this is true for all primitive strongly regular graphs. We obtain similar results for strongly regular graphs of odd order.
    [Show full text]
  • Use the K-Neighborhood Subgraphs to Compute Canonical Labelings of Graphs
    mathematics Article Use the K-Neighborhood Subgraphs to Compute Canonical Labelings of Graphs Jianqiang Hao 1,*, Yunzhan Gong 2, Jianzhi Sun 1 and Li Tan 1 1 Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, No. 11, Fu Cheng Road, Beijing 100048, China 2 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, No 10, Xitucheng Road, Haidian District, Beijing 100876, China * Correspondence: [email protected]; Tel.: +86-10-6898-5704 Received: 5 July 2019; Accepted: 27 July 2019; Published: 31 July 2019 Abstract: This paper puts forward an innovative theory and method to calculate the canonical labelings of graphs that are distinct to Nauty’s. It shows the correlation between the canonical labeling of a graph and the canonical labeling of its complement graph. It regularly examines the link between computing the canonical labeling of a graph and the canonical labeling of its open k-neighborhood subgraph . It defines dif fusion degree sequences and entire dif fusion degree sequence . For each node of a graph G, it designs a characteristic m_NearestNode to improve the precision for calculating canonical labeling. Two theorems established here display how to compute the first nodes of MaxQ(G). Another theorem presents how to determine the second nodes of MaxQ(G). When computing Cmax(G), if MaxQ(G) already holds the first i nodes u1, u2, ··· , ui, Diffusion and Nearest Node theorems provide skill on how to pick the succeeding node of MaxQ(G). Further, it also establishes two theorems to determine the Cmax(G) of disconnected graphs.
    [Show full text]
  • An Introduction to Algebraic Graph Theory
    An Introduction to Algebraic Graph Theory Cesar O. Aguilar Department of Mathematics State University of New York at Geneseo Last Update: March 25, 2021 Contents 1 Graphs 1 1.1 What is a graph? ......................... 1 1.1.1 Exercises .......................... 3 1.2 The rudiments of graph theory .................. 4 1.2.1 Exercises .......................... 10 1.3 Permutations ........................... 13 1.3.1 Exercises .......................... 19 1.4 Graph isomorphisms ....................... 21 1.4.1 Exercises .......................... 30 1.5 Special graphs and graph operations .............. 32 1.5.1 Exercises .......................... 37 1.6 Trees ................................ 41 1.6.1 Exercises .......................... 45 2 The Adjacency Matrix 47 2.1 The Adjacency Matrix ...................... 48 2.1.1 Exercises .......................... 53 2.2 The coefficients and roots of a polynomial ........... 55 2.2.1 Exercises .......................... 62 2.3 The characteristic polynomial and spectrum of a graph .... 63 2.3.1 Exercises .......................... 70 2.4 Cospectral graphs ......................... 73 2.4.1 Exercises .......................... 84 3 2.5 Bipartite Graphs ......................... 84 3 Graph Colorings 89 3.1 The basics ............................. 89 3.2 Bounds on the chromatic number ................ 91 3.3 The Chromatic Polynomial .................... 98 3.3.1 Exercises ..........................108 4 Laplacian Matrices 111 4.1 The Laplacian and Signless Laplacian Matrices .........111 4.1.1
    [Show full text]
  • High Girth Cubic Graphs Map to the Clebsch Graph
    High Girth Cubic Graphs Map to the Clebsch Graph Matt DeVos ∗ Robert S´amalˇ †‡ Keywords: max-cut, cut-continuous mappings, circular chromatic number MSC: 05C15 Abstract We give a (computer assisted) proof that the edges of every graph with maximum degree 3 and girth at least 17 may be 5-colored (possibly improp- erly) so that the complement of each color class is bipartite. Equivalently, every such graph admits a homomorphism to the Clebsch graph (Fig. 1). Hopkins and Staton [8] and Bondy and Locke [2] proved that every (sub)cu- 4 bic graph of girth at least 4 has an edge-cut containing at least 5 of the edges. The existence of such an edge-cut follows immediately from the existence of a 5-edge-coloring as described above, so our theorem may be viewed as a kind of coloring extension of their result (under a stronger girth assumption). Every graph which has a homomorphism to a cycle of length five has an above-described 5-edge-coloring; hence our theorem may also be viewed as a weak version of Neˇsetˇril’s Pentagon Problem: Every cubic graph of sufficiently high girth maps to C5. 1 Introduction Throughout the paper all graphs are assumed to be finite, undirected and simple. For any positive integer n, we let Cn denote the cycle of length n, and Kn denote the complete graph on n vertices. If G is a graph and U ⊆ V (G), we put δ(U) = {uv ∈ E(G) : u ∈ U and v 6∈ U}, and we call any subset of edges of this form a cut.
    [Show full text]
  • High-Girth Cubic Graphs Are Homomorphic to the Clebsch
    High-girth cubic graphs are homomorphic to the Clebsch graph Matt DeVos ∗ Robert S´amalˇ †‡ Keywords: max-cut, cut-continuous mappings, circular chromatic number MSC: 05C15 Abstract We give a (computer assisted) proof that the edges of every graph with maximum degree 3 and girth at least 17 may be 5-colored (possibly improp- erly) so that the complement of each color class is bipartite. Equivalently, every such graph admits a homomorphism to the Clebsch graph (Fig. 1). Hopkins and Staton [11] and Bondy and Locke [2] proved that every 4 (sub)cubic graph of girth at least 4 has an edge-cut containing at least 5 of the edges. The existence of such an edge-cut follows immediately from the ex- istence of a 5-edge-coloring as described above, so our theorem may be viewed as a coloring extension of their result (under a stronger girth assumption). Every graph which has a homomorphism to a cycle of length five has an above-described 5-edge-coloring; hence our theorem may also be viewed as a weak version of Neˇsetˇril’s Pentagon Problem (which asks whether every cubic graph of sufficiently high girth is homomorphic to C5). 1 Introduction Throughout the paper all graphs are assumed to be finite, undirected and simple. For any positive integer n, we let Cn denote the cycle of length n, and Kn denote the complete graph on n vertices. If G is a graph and U ⊆ V (G), we put δ(U) = {uv ∈ E(G): u ∈ U and v 6∈ U}, and we call any subset of edges of this form a cut.
    [Show full text]