Context-Aware Semantic Analysis of Video Metadata

Total Page:16

File Type:pdf, Size:1020Kb

Context-Aware Semantic Analysis of Video Metadata nadine steinmetz CONTEXT-AWARESEMANTICANALYSIS OFVIDEOMETADATA CONTEXT-AWARESEMANTICANALYSIS OFVIDEOMETADATA DISSERTATION zur Erlangung des akademischen Grades Doktor Rerum Naturalium (Dr. rer. nat.) am Fachgebiet Internet-Technologien und -Systeme eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam von nadine steinmetz Betreuer: Prof. Christoph Meinel Gutachter: Prof. Sören Auer Prof. Steffen Staab Datum der mündlichen Aussprache: 6. Mai 2014 This work is licensed under a Creative Commons License: Attribution - Noncommercial - Share Alike 4.0 International To view a copy of this license visit http://creativecommons.org/licenses/by-nc-sa/4.0/ Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2014/7055/ URN urn:nbn:de:kobv:517-opus-70551 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70551 Goethe sagte: Leider lässt sich wahrhafte Dankbarkeit mit Worten nicht ausdrücken. Und ich bin wahrhaft dankbar: meinem Ehemann, meiner Familie, meinen Freunden. ABSTRACT The Semantic Web provides information contained in the World Wide Web as machine-readable facts. In comparison to a keyword-based in- quiry, semantic search enables a more sophisticated exploration of web documents. By clarifying the meaning behind entities, search results are more precise and the semantics simultaneously enable an exploration of semantic relationships. However, unlike keyword searches, a semantic entity-focused search requires that web docu- ments are annotated with semantic representations of common words and named entities. Manual semantic annotation of (web) documents is time-consuming; in response, automatic annotation services have emerged in recent years. These annotation services take continuous text as input, detect important key terms and named entities and an- notate them with semantic entities contained in widely used semantic knowledge bases, such as Freebase or DBpedia. Metadata of video documents require special attention. Semantic analysis approaches for continuous text cannot be applied, because a information of a context in video documents originates from multi- ple sources possessing different reliabilities and characteristics. This thesis presents a semantic analysis approach consisting of a context model and a disambiguation algorithm for video metadata. The con- text model takes into account the characteristics of video metadata and derives a confidence value for each metadata item. The lower the ambiguity and the higher the prospective correctness, the higher the confidence value. The metadata items derived from the video meta- data are analyzed in a specific order from high to low confidence level. Previously analyzed metadata are used as reference points in the con- text for subsequent disambiguations. The contextually most relevant entity is identified by means of descriptive texts and semantic rela- tionships to the context. The context is created dynamically for each metadata item, taking into account the confidence value and other characteristics. The proposed semantic analysis follows two hypothe- ses: metadata items of a context should be processed in descendent order of their confidence value, and the metadata that pertains to a context should be limited by content-based segmentation boundaries. The evaluation results support the proposed hypotheses and show increased recall and precision for annotated entities, especially for metadata that originates from sources with low reliability. The algo- rithms have been evaluated against several state-of-the-art annotation approaches. The presented semantic analysis process is integrated into a video analysis framework and has been successfully applied in several projects. vii ZUSAMMENFASSUNG Im Vergleich zu einer stichwortbasierten Suche ermöglicht die seman- tische Suche ein präziseres und anspruchsvolleres Durchsuchen von (Web)-Dokumenten, weil durch die explizite Semantik Mehrdeutig- keiten von natürlicher Sprache vermieden und semantische Beziehun- gen in das Suchergebnis einbezogen werden können. Eine semantis- che, Entitäten-basierte Suche geht von einer Anfrage mit festgelegter Bedeutung aus und liefert nur Dokumente, die mit dieser Entität an- notiert sind als Suchergebnis. Die wichtigste Voraussetzung für eine Entitäten-zentrierte Suche stellt die Annotation der Dokumente im Archiv mit Entitäten und Kategorien dar. Eine manuelle Annotation erfordert Domänenwissen und ist sehr zeitaufwendig. Die semantis- che Annotation von Videodokumenten erfordert besondere Aufmerk- samkeit, da inhaltsbasierte Metadaten von Videos aus verschiedenen Quellen stammen, verschiedene Eigenschaften und Zuverlässigkeiten besitzen und daher nicht wie Fließtext behandelt werden können. Die vorliegende Arbeit stellt einen semantischen Analyseprozess für Video-Metadaten vor. Die Eigenschaften der verschiedenen Meta- datentypen werden analysiert und ein Konfidenzwert ermittelt. Die- ser Wert spiegelt die Korrektheit und die wahrscheinliche Mehrdeu- tigkeit eines Metadatums wieder. Beginnend mit dem Metadatum mit dem höchsten Konfidenzwert wird der Analyseprozess inner- halb eines Kontexts in absteigender Reihenfolge des Konfidenzwerts durchgeführt. Die bereits analysierten Metadaten dienen als Referenz- punkt für die weiteren Analysen. So kann eine möglichst korrekte Analyse der heterogen strukturierten Daten eines Kontexts sicherge- stellt werden. Am Ende der Analyse eines Metadatums wird die für den Kontext relevanteste Entität aus einer Liste von Kandidaten identifiziert – das Metadatum wird disambiguiert. Der Kontext für die Disambiguierung wird für jedes Metadatum anhand der Eigen- schaften und Konfidenzwerte zusammengestellt. Der vorgestellte Ana- lyseprozess ist an zwei Hypothesen angelehnt: Um die Analyseergeb- nisse verbessern zu können, sollten die Metadaten eines Kontexts in absteigender Reihenfolge ihres Konfidenzwertes verarbeitet werden und die Kontextgrenzen von Videometadaten sollten durch Segment- grenzen definiert werden, um möglichst Kontexte mit kohärentem In- halt zu erhalten. Durch ausführliche Evaluationen konnten die gestell- ten Hypothesen bestätigt werden. Der Analyseprozess wurden gegen mehrere State-of-the-Art Methoden verglichen und erzielt verbesserte Ergebnisse in Bezug auf Recall und Precision, besonders für Meta- daten, die aus weniger zuverlässigen Quellen stammen. Der Analy- seprozess ist Teil eines Videoanalyse-Frameworks und wurde bereits erfolgreich in verschiedenen Projekten eingesetzt. viii ACKNOWLEDGMENTS I would like to express my appreciation and thanks to my advisor Prof. Dr. Christoph Meinel who always has an open door for prob- lems – regarding research or personal issues. In particular, I am espe- cially grateful to my supervisor Dr. Harald Sack. He always encour- aged me to enhance my research and achieve high level results. His passion for movies and books contributed to demonstrate the inter- esting parts and fun facts of our research. I also want to thank my colleagues who always contributed to in- tensive discussions about problems and research issues despite their own immense work load. A special thanks goes to Magnus for being the best office mate – in good and bad times. It is often said that a main part of a dissertation is endurance. I would not have been able to endure if there weren’t these great lunch times together with Michaela, Lutz, Matthias, Christian, Philipp, and Patrick (amongst others). They always listened and gave advice when I needed encouragement to endure. The last weeks before the submission of a thesis are always stressful. Therefore, I am very grateful to Meike, Anna, and Philipp for reading my thesis, reviewing it and giving advice for the final touch. ix CONTENTS 1 introduction 1 1.1 Problem Definition 1 1.2 Research Objectives and Challenges 2 1.3 Contributions 4 1.4 Thesis Structure 6 i foundations and related work9 2 video metadata 11 2.1 Video and Its Characteristics Regarding Web Search 11 2.2 Definition and Classification of Metadata 11 2.3 User-Generated Tags 13 2.4 Information Extraction from Videos 15 2.4.1 Structural Segmentation 16 2.4.2 Optical Character Recognition 16 2.4.3 Automatic Speech Recognition 17 2.4.4 Detection of Visual Concepts 18 3 natural language processing 21 3.1 Text Segmentation 21 3.2 Syntactic and Semantic Analysis 22 3.2.1 Part-of-Speech Tagging 22 3.2.2 Named Entity Recognition 24 3.2.3 Word Sense Disambiguation 24 3.2.4 Coreference Analysis 28 3.3 Further Semantic Analysis Methods 29 4 linkeddataandthesemanticweb 31 4.1 Semantic Web Technologies 31 4.1.1 Abstract Models with RDF(S) 32 4.1.2 Ontologies and OWL 35 4.1.3 Query of Facts via SPARQL 36 4.1.4 Exchange Information – Linked Data Cloud 37 4.2 Semantic Search 39 4.3 Automatic Semantic Annotation 41 5 definitionsofcontext 45 5.1 Context in Different Research Fields 45 5.2 Negative Context 48 5.3 Syntax, Pragmatics, and Semantics 49 ii semantic analysis for heterogenous contexts 51 6 context 53 6.1 Context in Semantic Analysis 53 6.2 Context Boundaries 54 6.2.1 Structural Boundaries of Natural Language Text 54 6.2.2 Spatial Boundaries of Multidimensional Infor- mation 55 xi xii contents 6.2.3 Temporal Boundaries of Time-Based Documents 55 6.3 Context Refinement 56 6.3.1 Whitelists vs. Blacklists 57 6.3.2 Aggregation Approaches for Whitelists and Black- lists 57 6.4 Positive vs. Negative Context 59 6.4.1 Positive Context 60 6.4.2 Negative Context 60 6.5 Heterogenous Context 61 7 context model for heterogenous contexts 63 7.1 Contextual Description
Recommended publications
  • Metadata for Semantic and Social Applications
    etadata is a key aspect of our evolving infrastructure for information management, social computing, and scientific collaboration. DC-2008M will focus on metadata challenges, solutions, and innovation in initiatives and activities underlying semantic and social applications. Metadata is part of the fabric of social computing, which includes the use of wikis, blogs, and tagging for collaboration and participation. Metadata also underlies the development of semantic applications, and the Semantic Web — the representation and integration of multimedia knowledge structures on the basis of semantic models. These two trends flow together in applications such as Wikipedia, where authors collectively create structured information that can be extracted and used to enhance access to and use of information sources. Recent discussion has focused on how existing bibliographic standards can be expressed as Semantic Metadata for Web vocabularies to facilitate the ingration of library and cultural heritage data with other types of data. Harnessing the efforts of content providers and end-users to link, tag, edit, and describe their Semantic and information in interoperable ways (”participatory metadata”) is a key step towards providing knowledge environments that are scalable, self-correcting, and evolvable. Social Applications DC-2008 will explore conceptual and practical issues in the development and deployment of semantic and social applications to meet the needs of specific communities of practice. Edited by Jane Greenberg and Wolfgang Klas DC-2008
    [Show full text]
  • From the Semantic Web to Social Machines
    ARTICLE IN PRESS ARTINT:2455 JID:ARTINT AID:2455 /REV [m3G; v 1.23; Prn:25/11/2009; 12:36] P.1 (1-6) Artificial Intelligence ••• (••••) •••–••• Contents lists available at ScienceDirect Artificial Intelligence www.elsevier.com/locate/artint From the Semantic Web to social machines: A research challenge for AI on the World Wide Web ∗ Jim Hendler a, , Tim Berners-Lee b a Tetherless World Constellation, RPI, United States b Computer Science and AI Laboratory, MIT, United States article info abstract Article history: The advent of social computing on the Web has led to a new generation of Web Received 24 September 2009 applications that are powerful and world-changing. However, we argue that we are just Received in revised form 1 October 2009 at the beginning of this age of “social machines” and that their continued evolution and Accepted 1 October 2009 growth requires the cooperation of Web and AI researchers. In this paper, we show how Available online xxxx the growing Semantic Web provides necessary support for these technologies, outline the challenges we see in bringing the technology to the next level, and propose some starting places for the research. © 2009 Elsevier B.V. All rights reserved. Much has been written about the profound impact that the World Wide Web has had on society. Yet it is primarily in the past few years, as more interactive “read/write” technologies (e.g. Wikis, blogs and photo/video sharing) and social network- ing sites have proliferated, that the truly profound nature of this change is being felt. From the very beginning, however, the Web was designed to create a network of humans changing society empowered using this shared infrastructure.
    [Show full text]
  • Semantic Role Labeling 2
    Semantic Role Labeling 2 Outline • Semantic role theory • Designing semantic role annotation project ▫ Granularity ▫ Pros and cons of different role schemas ▫ Multi-word expressions 3 Outline • Semantic role theory • Designing semantic role annotation project ▫ Granularity ▫ Pros and cons of different role schemas ▫ Multi-word expressions 4 Semantic role theory • Predicates tie the components of a sentence together • Call these components arguments • [John] opened [the door]. 5 Discovering meaning • Syntax only gets you so far in answering “Who did what to whom?” John opened the door. Syntax: NPSUB V NPOBJ The door opened. Syntax: NPSUB V 6 Discovering meaning • Syntax only gets you so far in answering “Who did what to whom?” John opened the door. Syntax: NPSUB V NPOBJ Semantic roles: Opener REL thing opened The door opened. Syntax: NPSUB V Semantic roles: thing opened REL 7 Can the lexicon account for this? • Is there a different sense of open for each combination of roles and syntax? • Open 1: to cause something to become open • Open 2: become open • Are these all the senses we would need? (1) John opened the door with a crowbar. Open1? (2) They tried the tools in John’s workshop one after the other, and finally the crowbar opened the door. Still Open1? 8 Fillmore’s deep cases • Correspondence between syntactic case and semantic role that participant plays • “Deep cases”: Agentive, Objective, Dative, Instrument, Locative, Factitive • Loosely associated with syntactic cases; transformations result in the final surface case 9 The door opened. Syntax: NPSUB V Semantic roles: Objective REL John opened the door. Syntax: NPSUB V NPOBJ Semantic roles: Agentive REL Objective The crowbar opened the door.
    [Show full text]
  • ACL 2019 Social Media Mining for Health Applications (#SMM4H)
    ACL 2019 Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task Proceedings of the Fourth Workshop August 2, 2019 Florence, Italy c 2019 The Association for Computational Linguistics Order copies of this and other ACL proceedings from: Association for Computational Linguistics (ACL) 209 N. Eighth Street Stroudsburg, PA 18360 USA Tel: +1-570-476-8006 Fax: +1-570-476-0860 [email protected] ISBN 978-1-950737-46-8 ii Preface Welcome to the 4th Social Media Mining for Health Applications Workshop and Shared Task - #SMM4H 2019. The total number of users of social media continues to grow worldwide, resulting in the generation of vast amounts of data. Popular social networking sites such as Facebook, Twitter and Instagram dominate this sphere. According to estimates, 500 million tweets and 4.3 billion Facebook messages are posted every day 1. The latest Pew Research Report 2, nearly half of adults worldwide and two- thirds of all American adults (65%) use social networking. The report states that of the total users, 26% have discussed health information, and, of those, 30% changed behavior based on this information and 42% discussed current medical conditions. Advances in automated data processing, machine learning and NLP present the possibility of utilizing this massive data source for biomedical and public health applications, if researchers address the methodological challenges unique to this media. In its fourth iteration, the #SMM4H workshop takes place in Florence, Italy, on August 2, 2019, and is co-located with the
    [Show full text]
  • A New Generation Digital Content Service for Cultural Heritage Institutions
    A New Generation Digital Content Service for Cultural Heritage Institutions Pierfrancesco Bellini, Ivan Bruno, Daniele Cenni, Paolo Nesi, Michela Paolucci, and Marco Serena Distributed Systems and Internet Technology Lab, DISIT, Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Firenze, Italy [email protected] http://www.disit.dsi.unifi.it Abstract. The evolution of semantic technology and related impact on internet services and solutions, such as social media, mobile technologies, etc., have de- termined a strong evolution in digital content services. Traditional content based online services are leaving the space to a new generation of solutions. In this paper, the experience of one of those new generation digital content service is presented, namely ECLAP (European Collected Library of Artistic Perform- ance, http://www.eclap.eu). It has been partially founded by the European Commission and includes/aggregates more than 35 international institutions. ECLAP provides services and tools for content management and user network- ing. They are based on a set of newly researched technologies and features in the area of semantic computing technologies capable of mining and establishing relationships among content elements, concepts and users. On this regard, ECLAP is a place in which these new solutions are made available for inter- ested institutions. Keywords: best practice network, semantic computing, recommendations, automated content management, content aggregation, social media. 1 Introduction Traditional library services in which the users can access to content by searching and browsing on-line catalogues obtaining lists of references and sporadically digital items (documents, images, etc.) are part of our history. With the introduction of web2.0/3.0, and thus of data mining and semantic computing, including social media and mobile technologies most of the digital libraries and museum services became rapidly obsolete and were constrained to rapidly change.
    [Show full text]
  • Syntax Role for Neural Semantic Role Labeling
    Syntax Role for Neural Semantic Role Labeling Zuchao Li Hai Zhao∗ Shanghai Jiao Tong University Shanghai Jiao Tong University Department of Computer Science and Department of Computer Science and Engineering Engineering [email protected] [email protected] Shexia He Jiaxun Cai Shanghai Jiao Tong University Shanghai Jiao Tong University Department of Computer Science and Department of Computer Science and Engineering Engineering [email protected] [email protected] Semantic role labeling (SRL) is dedicated to recognizing the semantic predicate-argument struc- ture of a sentence. Previous studies in terms of traditional models have shown syntactic informa- tion can make remarkable contributions to SRL performance; however, the necessity of syntactic information was challenged by a few recent neural SRL studies that demonstrate impressive performance without syntactic backbones and suggest that syntax information becomes much less important for neural semantic role labeling, especially when paired with recent deep neural network and large-scale pre-trained language models. Despite this notion, the neural SRL field still lacks a systematic and full investigation on the relevance of syntactic information in SRL, for both dependency and both monolingual and multilingual settings. This paper intends to quantify the importance of syntactic information for neural SRL in the deep learning framework. We introduce three typical SRL frameworks (baselines), sequence-based, tree-based, and graph-based, which are accompanied by two categories of exploiting syntactic information: syntax pruning- based and syntax feature-based. Experiments are conducted on the CoNLL-2005, 2009, and 2012 benchmarks for all languages available, and results show that neural SRL models can still benefit from syntactic information under certain conditions.
    [Show full text]
  • Semantic Role Labeling Tutorial NAACL, June 9, 2013
    Semantic Role Labeling Tutorial NAACL, June 9, 2013 Part 1: Martha Palmer, University of Colorado Part 2: Shumin Wu, University of Colorado Part 3: Ivan Titov, Universität des Saarlandes 1 Outline } Part 1 Linguistic Background, Resources, Annotation Martha Palmer, University of Colorado } Part 2 Supervised Semantic Role Labeling and Leveraging Parallel PropBanks Shumin Wu, University of Colorado } Part 3 Semi- , unsupervised and cross-lingual approaches Ivan Titov, Universität des Saarlandes, Universteit van Amsterdam 2 Motivation: From Sentences to Propositions Who did what to whom, when, where and how? Powell met Zhu Rongji battle wrestle join debate Powell and Zhu Rongji met consult Powell met with Zhu Rongji Proposition: meet(Powell, Zhu Rongji) Powell and Zhu Rongji had a meeting meet(Somebody1, Somebody2) . When Powell met Zhu Rongji on Thursday they discussed the return of the spy plane. meet(Powell, Zhu) discuss([Powell, Zhu], return(X, plane)) Capturing semantic roles SUBJ } Dan broke [ the laser pointer.] SUBJ } [ The windows] were broken by the hurricane. SUBJ } [ The vase] broke into pieces when it toppled over. PropBank - A TreeBanked Sentence (S (NP-SBJ Analysts) S (VP have (VP been VP (VP expecting (NP (NP a GM-Jaguar pact) have VP (SBAR (WHNP-1 that) (S (NP-SBJ *T*-1) NP-SBJ been VP (VP would Analysts (VP give expectingNP (NP the U.S. car maker) SBAR (NP (NP an eventual (ADJP 30 %) stake) NP S (PP-LOC in (NP the British company)))))))))))) a GM-Jaguar WHNP-1 VP pact that NP-SBJ VP *T*-1 would NP give Analysts have been expecting a GM-Jaguar NP PP-LOC pact that would give the U.S.
    [Show full text]
  • Efficient Pairwise Document Similarity Computation in Big Datasets
    International Journal of Database Theory and Application Vol.8, No.4 (2015), pp.59-70 http://dx.doi.org/10.14257/ijdta.2015.8.4.07 Efficient Pairwise Document Similarity Computation in Big Datasets 1Papias Niyigena, 1Zhang Zuping*, 2Weiqi Li and 1Jun Long 1School of Information Science and Engineering, Central South University, Changsha, 410083, China 2School of Electronic and Information Engineering, Xi’an Jiaotong University Xian, 710049, China [email protected], * [email protected], [email protected], [email protected] Abstract Document similarity is a common task to a variety of problems such as clustering, unsupervised learning and text retrieval. It has been seen that document with the very similar content provides little or no new information to the user. This work tackles this problem focusing on detecting near duplicates documents in large corpora. In this paper, we are presenting a new method to compute pairwise document similarity in a corpus which will reduce the time execution and save space execution resources. Our method group shingles of all documents of a corpus in a relation, with an advantage of efficiently manage up to millions of records and ease counting and aggregating. Three algorithms are introduced to reduce the candidates shingles to be compared: one creates the relation of shingles to be considered, the second one creates the set of triples and the third one gives the similarity of documents by efficiently counting the shared shingles between documents. The experiment results show that our method reduces the number of candidates pairs to be compared from which reduce also the execution time and space compared with existing algorithms which consider the computation of all pairs candidates.
    [Show full text]
  • Cross-Lingual Semantic Role Labeling with Model Transfer Hao Fei, Meishan Zhang, Fei Li and Donghong Ji
    1 Cross-lingual Semantic Role Labeling with Model Transfer Hao Fei, Meishan Zhang, Fei Li and Donghong Ji Abstract—Prior studies show that cross-lingual semantic role transfer. The former is based on large-scale parallel corpora labeling (SRL) can be achieved by model transfer under the between source and target languages, where the source-side help of universal features. In this paper, we fill the gap of sentences are automatically annotated with SRL tags and cross-lingual SRL by proposing an end-to-end SRL model that incorporates a variety of universal features and transfer methods. then the source annotations are projected to the target-side We study both the bilingual transfer and multi-source transfer, sentences based on word alignment [7], [9], [10], [11], [12]. under gold or machine-generated syntactic inputs, pre-trained Annotation projection has received the most attention for cross- high-order abstract features, and contextualized multilingual lingual SRL. Consequently, a range of strategies have been word representations. Experimental results on the Universal proposed for enhancing the SRL performance of the target Proposition Bank corpus indicate that performances of the cross-lingual SRL can vary by leveraging different cross-lingual language, including improving the projection quality [13], joint features. In addition, whether the features are gold-standard learning of syntax and semantics information [7], iteratively also has an impact on performances. Precisely, we find that bootstrapping to reduce the influence of noise target corpus gold syntax features are much more crucial for cross-lingual [12], and joint translation-SRL [8]. SRL, compared with the automatically-generated ones.
    [Show full text]
  • Enterprise Data Classification Using Semantic Web Technologies
    Enterprise Data Classification Using Semantic Web Technologies David Ben-David1, Tamar Domany2, and Abigail Tarem2 1 Technion – Israel Institute of Technology, Haifa 32000, Israel [email protected] 2 IBM Research – Haifa, University Campus, Haifa 31905, Israel {tamar,abigailt}@il.ibm.com Abstract. Organizations today collect and store large amounts of data in various formats and locations. However they are sometimes required to locate all instances of a certain type of data. Good data classification allows marking enterprise data in a way that enables quick and efficient retrieval of information when needed. We introduce a generic, automatic classification method that exploits Semantic Web technologies to assist in several phases in the classification process; defining the classification requirements, performing the classification and representing the results. Using Semantic Web technologies enables flexible and extensible con- figuration, centralized management and uniform results. This approach creates general and maintainable classifications, and enables applying se- mantic queries, rule languages and inference on the results. Keywords: Semantic Techniques, RDF, Classification, modeling. 1 Introduction Organizations today collect and store large amounts of data in various formats and locations. The data is then consumed in many places, sometimes copied or cached several times, causing valuable and sensitive business information to be scattered across many enterprise data stores. When an organization is required to meet certain legal or regulatory requirements, for instance to comply with regulations or perform discovery during civil litigation, it becomes necessary to find all the places where the required data is located. For example, if in order to comply with a privacy regulation an organization is required to mask all Social Security Numbers (SSN) when delivering personal information to unauthorized entities, all the occurrences of SSN must be found.
    [Show full text]
  • Natural Language Semantic Construction Based on Cloud Database
    Copyright © 2018 Tech Science Press CMC, vol.57, no.3, pp.603-619, 2018 Natural Language Semantic Construction Based on Cloud Database Suzhen Wang1, Lu Zhang1, Yanpiao Zhang1, Jieli Sun1, Chaoyi Pang2, Gang Tian3 and Ning Cao4, * Abstract: Natural language semantic construction improves natural language comprehension ability and analytical skills of the machine. It is the basis for realizing the information exchange in the intelligent cloud-computing environment. This paper proposes a natural language semantic construction method based on cloud database, mainly including two parts: natural language cloud database construction and natural language semantic construction. Natural Language cloud database is established on the CloudStack cloud-computing environment, which is composed by corpus, thesaurus, word vector library and ontology knowledge base. In this section, we concentrate on the pretreatment of corpus and the presentation of background knowledge ontology, and then put forward a TF-IDF and word vector distance based algorithm for duplicated webpages (TWDW). It raises the recognition efficiency of repeated web pages. The part of natural language semantic construction mainly introduces the dynamic process of semantic construction and proposes a mapping algorithm based on semantic similarity (MBSS), which is a bridge between Predicate-Argument (PA) structure and background knowledge ontology. Experiments show that compared with the relevant algorithms, the precision and recall of both algorithms we propose have been significantly improved. The work in this paper improves the understanding of natural language semantics, and provides effective data support for the natural language interaction function of the cloud service. Keywords: Natural language, cloud database, semantic construction. 1 Introduction The Internet of things and big data have promoted the rapid development of the artificial intelligence industry.
    [Show full text]
  • Knowledge-Based Semantic Role Labeling Release 0.1
    Knowledge-based Semantic Role Labeling Release 0.1 September 11, 2014 Contents 1 Resources parsing 3 1.1 VerbNet parsing.............................................3 1.2 FrameNet parsing............................................4 2 Frames and arguments extractions7 2.1 Frame extraction.............................................7 2.2 Arguments extraction..........................................8 2.3 Evaluation................................................9 3 Debug ressources 11 3.1 Sample of headwords extractions.................................... 11 3.2 Dump module.............................................. 11 4 Evaluation 15 4.1 Initial mappings............................................. 15 4.2 Frame-matching............................................. 16 4.3 Probability model............................................ 16 4.4 Bootstrapping.............................................. 16 5 Ideas 17 5.1 Finding new matches........................................... 17 5.2 Restricting potential VerbNet classes.................................. 18 5.3 Informative probability model...................................... 18 6 Indices and tables 19 7 References 21 i ii Knowledge-based Semantic Role Labeling, Release 0.1 This repository contains: • A reproduction of (Swier & Stevenson, 2005) results for recent versions of resources and NLP tools (MST Parser, latest VerbNet, FrameNet and VN-FN mappings). • Some improvements of our own • Experiments on domain-specific knowledge-based semantic role labeling Documentation: Contents
    [Show full text]