19.11 Reactions of Aldehydes and Ketones with Amines

Total Page:16

File Type:pdf, Size:1020Kb

19.11 Reactions of Aldehydes and Ketones with Amines 19_BRCLoudon_pgs5-0.qxd 12/9/08 11:41 AM Page 926 926 CHAPTER 19 • THE CHEMISTRY OF ALDEHYDES AND KETONES. CARBONYL-ADDITION REACTIONS introduction of the formation of the the protecting group Grignard reagent O S OO HOCH2CH2OH Mg Br C CH3 C p-toluenesulfonic L CH ether LcL L acid (trace) 3 (See Eq. 19.46) Br LcL acetal protecting group; protonolysis of the alkoxide inert to Grignard reagents and hydrolysis of the acetal (removal of the protecting group) O OO OO H2C$ CH2 H2O, H3O| C L C L CH3 L CH3 BrMg BrMg OCH CH LcL |_ 2 2LcL O S HOCH2CH2OH HOCH2CH2 C CH3 (19.54) + LcL L Notice in this synthesis that all steps following acetal formation involve basic or neutral condi- tions. Acid can be used only when destruction of the acetal is desired. Although any acetal group can in principle be used, the five-membered cyclic acetal is fre- quently employed as a protecting group because it forms very rapidly (proximity effect; Sec. 11.7) and it introduces relatively little steric congestion into the protected molecule. A number of reagents that react with carbonyl groups also react with other functional groups. Acetals are commonly used to protect the carbonyl groups of aldehydes and ketones from basic, nucleophilic reagents. Once the protection is no longer needed, the acetal protect- ing group is easily removed, and the carbonyl group re-exposed, by treatment with dilute aqueous acid. Because acetals are unstable in acid, they do not protect carbonyl groups under acidic conditions. PROBLEM 19.27 Outline a synthesis of the following compound from p-bromoacetophenone and any other reagents. O O S S H3C C C CH3 L LcL L 19.11 REACTIONS OF ALDEHYDES AND KETONES WITH AMINES A. Reaction with Primary Amines and Other Monosubstituted Derivatives of Ammonia A primary amine is an organic derivative of ammonia in which only one ammonia hydrogen is replaced by an alkyl or aryl group. An imine is a nitrogen analog of an aldehyde or ketone in which the CAO group is replaced by a CANR group, where R alkyl, aryl, or H. = 19_BRCLoudon_pgs5-0.qxd 12/9/08 11:41 AM Page 927 19.11 REACTIONS OF ALDEHYDES AND KETONES WITH AMINES 927 R NH2 $C A O $C A N R L 2 2 2 L primary amine ) ) aldehyde or ketone2 imine (Imines are sometimes called Schiff bases or Schiff’s bases.) Imines are prepared by the re- action of aldehydes or ketones with primary amines. heat CH AAO Ph NH2 CH N Ph H2O (19.55) cLL++a primary2 cL 2 L (separates from amine an imine the reaction (84–87% yield) mixture) Formation of imines is reversible and generally takes place with acid or base catalysis or with heat. Imine formation is typically driven to completion by precipitation of the imine, re- moval of water, or both. The mechanism of imine formation begins as a nucleophilic addition to the carbonyl group. In this case, the nucleophile is the amine, which reacts with the aldehyde or ketone to give an unstable addition product called a carbinolamine. A carbinolamine is a compound with an amine group ( NH2, NHR, or NR2) and a hydroxy group on the same carbon. L L L O OH S C H2NR "C (19.56a) STUDY GUIDE LINK 19.7 % + 2 L LL Mechanism of % "NH R Carbinolamine 3 L Formation carbinolamine (You should write the detailed mechanism, which is analogous to the mechanism of other re- versible additions.) Carbinolamines are not isolated, but undergo acid-catalyzed dehydration to form imines. This reaction is essentially an alcohol dehydration (Sec. 10.1), except that it is typically much faster than dehydration of an ordinary alcohol. OH acid "C NR $C A NR H2O (19.56b) LL2 2 + STUDY GUIDE LINK 19.8 ""H ) Dehydration of imine Carbinolamines carbinolamine (Write the mechanism of this reaction as well.) Typically, the dehydration of the carbinolamine is the rate-limiting step of imine formation. This is why imine formation is catalyzed by acids. Yet the acid concentration cannot be too high because amines are basic compounds, and because protonated amines cannot act as nu- cleophiles. | (19.57) RNH2 H3O| RNH3 H2O 2 + 2 + 2 3 Protonation of the amine pulls the equilibrium in Eq. 19.56a to the left; consequently, if the acid concentration is high enough, carbinolamine formation cannot occur. For this reason, many imine syntheses are carried out in very dilute acid. To summarize: Imine formation is a sequence of two reactions that have close analogies to familiar reactions—namely, carbonyl addition followed by b-elimination. One use of imines is in the preparation of amines; this is discussed in Sec. 23.7B. Another use, which was more important before the advent of spectroscopy than it is now, is in the char- acterization of aldehydes and ketones. When a new compound was synthesized, it was typically 19_BRCLoudon_pgs5-0.qxd 12/9/08 11:41 AM Page 928 928 CHAPTER 19 • THE CHEMISTRY OF ALDEHYDES AND KETONES. CARBONYL-ADDITION REACTIONS characterized by conversion into two or more crystalline compounds called derivatives. These derivatives served as the basis for subsequent identification of the new compound when it was isolated from another source or from a different reaction. It was important to prepare derivatives because they eliminated the ambiguity that could arise if two compounds have very similar melting points or boiling points. It is relatively improbable that two compounds with the same melting or boiling points will give two crystalline derivatives with the same melting points. Certain imines are frequently used as solid derivatives of aldehydes and ketones. These imines, and the amines from which they are derived, are listed in Table 19.3. For example, the 2,4-DNP derivative of acetone is prepared by formation of an imine with 2,4- dintrophenylhydrazine: NO2 cL NO2 O cL N NH NO2 S S22L L L dilute H2SO4 H3CCCH3 H2N NH NO2 H3CCCH3 H2O C2H5OH LL + 22L L L LL(precipitates) + 2,4-dinitrophenylhydrazine a 2,4-dinitrophenylhydrazone (2,4-DNP) (2,4-DNP derivative of acetone) (19.58) To illustrate how such derivatives might be used in structure verification, suppose that a chemist has isolated a liquid that could be either 6-methyl-2-cyclohexenone or 2-methyl-2-cy- clohexenone. The boiling points of these compounds are too similar for an unambiguous iden- tification. Yet the melting point of either a 2,4-DNP derivative or a semicarbazone (see Table 19.3) would quickly establish which compound has been isolated. O O S S H3C CH3 M M boiling point 69–71 °C (18 mm) 69–70 °C (16 mm) semicarbazone, mp 177–178 °C 207–208 °C 2,4-DNP derivative, mp 162–164 °C 207–208 °C TABLE 19.3 Some N-Substituted Imine Derivatives of Aldehydes and Ketones Amine Name Carbonyl Derivative Name H2N OH hydroxylamineR2CNA OH oxime 2 L 2 2 L 2 2 2 H2N NH2 hydrazineR2CA N NH2 hydrazone 2 L 2 2 L 2 H2N NH phenylhydrazineR2CA N NH phenylhydrazone 2 L2 Lc 2 L 2 Lc NO2 NO2 $ $ 2,4-dinitrophenylhydrazine A 2,4-dinitrophenylhydrazone H2NNH NO2 R2C N NH NO2 2 L2 LcL (2,4-DNP) 2 L 2 LcL (2,4-DNP derivative) O O S S H2N NH C NH2 semicarbazideR2CNA NH C NH2 semicarbazone 2 L 2 LL2 2 L 2 LL2 19_BRCLoudon_pgs5-0.qxd 12/9/08 11:41 AM Page 929 19.11 REACTIONS OF ALDEHYDES AND KETONES WITH AMINES 929 Although the identity of the compound could be readily established today by spectroscopy (explain how), it is important to be familiar with the imine derivatives in Table 19.3 because references to the use of such derivatives are commonplace in the older chemical literature. PROBLEMS 19.28 Draw the structure of (a) the semicarbazone of cyclohexanone (b) the 2,4-DNP derivative of 2-methylpropanal (c) the imine formed in the reaction between 2-methylhexanal and ethylamine (C2H5NH2). 19.29 Write a curved-arrow mechanism for the acid-catalyzed formation of the hydrazone of ac- etaldehyde. 19.30 Write a curved-arrow mechanism for the acid-catalyzed hydrolysis of the imine derived from benzaldehyde and ethylamine (CH3CH2NH2). Use the principle of microscopic reversibility (p. 171) to guide you. B. Reaction with Secondary Amines A secondary amine has the general structure R2NH, in which two ammonia hydrogens are re- placed by alkyl or aryl groups. An enamine (pronounced e¯n´-e -me¯n˝) has the following gen- eral structure: R2N $ 2 $ $C A C $ general enamine structure The name enamine is a contraction of the word amine (a compound of the form R3N) and the suffix ene, which is used for naming alkenes. The name recognizes that an amine nitrogen is bonded to a carbon that is part of a double bond (that is, an alkene). Formation of an enamine occurs when a secondary amine reacts with an aldehyde or ketone, provided that the carbonyl compound has an a-hydrogen. a-hydrogen H3C H3C CH3 % % % % % CH CH A O H N CH3 C A CH N H2O (19.59) L ++L 2 L L 2 (removed as H3C Ph" H3C Ph it is formed) an enamine isobutyraldehyde a secondary amine (87% yield) O O S O acid N H2O (19.60) + + N 2 (removed as H " it is formed) cyclohexanone 2 morpholine (a secondary amine) an enamine (72–80% yield) As Eq. 19.60 illustrates, the two alkyl groups of a secondary amine may be part of a ring. Like imine formation, enamine formation is reversible and must be driven to completion by the removal of one of the reaction products (usually water; see Eq.
Recommended publications
  • Part I: Carbonyl-Olefin Metathesis of Norbornene
    Part I: Carbonyl-Olefin Metathesis of Norbornene Part II: Cyclopropenimine-Catalyzed Asymmetric Michael Reactions Zara Maxine Seibel Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 1 © 2016 Zara Maxine Seibel All Rights Reserved 2 ABSTRACT Part I: Carbonyl-Olefin Metathesis of Norbornene Part II: Cyclopropenimine-Catalyzed Asymmetric Michael Reactions Zara Maxine Seibel This thesis details progress towards the development of an organocatalytic carbonyl- olefin metathesis of norbornene. This transformation has not previously been done catalytically and has not been done in practical manner with stepwise or stoichiometric processes. Building on the previous work of the Lambert lab on the metathesis of cyclopropene and an aldehyde using a hydrazine catalyst, this work discusses efforts to expand to the less stained norbornene. Computational and experimental studies on the catalytic cycle are discussed, including detailed experimental work on how various factors affect the difficult cycloreversion step. The second portion of this thesis details the use of chiral cyclopropenimine bases as catalysts for asymmetric Michael reactions. The Lambert lab has previously developed chiral cyclopropenimine bases for glycine imine nucleophiles. The scope of these catalysts was expanded to include glycine imine derivatives in which the nitrogen atom was replaced with a carbon atom, and to include imines derived from other amino acids. i Table of Contents List of Abbreviations…………………………………………………………………………..iv Part I: Carbonyl-Olefin Metathesis…………………………………………………………… 1 Chapter 1 – Metathesis Reactions of Double Bonds………………………………………….. 1 Introduction………………………………………………………………………………. 1 Olefin Metathesis………………………………………………………………………… 2 Wittig Reaction…………………………………………………………………………... 6 Tebbe Olefination………………………………………………………………………... 9 Carbonyl-Olefin Metathesis…………………………………………………………….
    [Show full text]
  • Alkylation by Enamines for Synthesis of Some Heterocyclic Compounds ﻴﺩ
    ------J. Raf. Sci., Vol. 20, No.2, pp 92- 101, 2009 ------ Alkylation by Enamines for Synthesis of some Heterocyclic Compounds Jasim A. Abdullah Department of Chemistry College of Education Mosul University (Received 25/ 9/ 2008 ; Accepted 13 / 4 / 2009) ABSTRACT Compounds of 4-phenyl-3-butene-2-one (1) and 4-(4-chlorophenyl)-3-butene-2-one (2) were prepared by reaction of benzaldehyde or 4-chlorobenzaldehyde with acetone. Also 1,3-diphenyl-2-chloropropene-1-one (3) was synthesized from the reaction of benzaldehyde with 2-chloroacetophenone through Claisen-Shmidt condensation. The substituted ∆1(9)- octalone-2 (4,5) was prepared by reaction of the compounds (1and2) with cyclohexanone through Michael addition followed by aldol condensation. Compounds (4,5) were reacted with alkyl halide, as 2-chloroacetophenone or 1,3-diphenyl-2-chloropropene-1-one (3), via enamines formation which then hydrolyzed to give compounds (6-9). Compounds (6,7) were reacted with hydrazine , urea and thiourea to afford compounds (10-15) . The structures of all synthesized compounds were confirmed by available physical and spectral means . Keywords : Enamines , Heterocyclic compounds. ــــــــــــــــــــــــــــــــــــــــــــــــــ ﺍﻻﻟﻜﻠﺔ ﺒﻭﺍﺴﻁﺔ ﺍﻷﻴﻨﺎﻤﻴﻨﺎﺕ ﻟﺘﺸﻴﻴﺩ ﺒﻌﺽ ﺍﻟﻤﺭﻜﺒﺎﺕ ﺍﻟﺤﻠﻘﻴﺔ ﻏﻴﺭ ﺍﻟﻤﺘﺠﺎﻨﺴﺔ ﺍﻟﻤﻠﺨﺹ ﺘﻡ ﺘﺤﻀﻴﺭ ﺍﻟﻤﺭﻜﺒﺎﺕ 4-ﻓﻨﻴل-3-ﺒﻴﻭﺘﻴﻥ-2-ﺍﻭﻥ (1) ﻭ4-(4-ﻜﻠﻭﺭﻭﻓﻨﻴل)-3-ﺒﻴﻭﺘﻴﻥ-2-ﺍﻭﻥ (2) ﻤﻥ ﺘﻔﺎﻋل ﺍﻟﺒﻨﺯﺍﻟﺩﻴﻬﻴﺩ ﺃﻭ 4-ﻜﻠﻭﺭﻭﺍﻟﺒﻨﺯﺍﻟﺩﻴﻬﻴﺩ ﻤﻊ ﺍﻻﺴﻴﺘﻭﻥ . ﺤﻀﺭ ﺍﻟﻤﺭﻜﺏ 3,1-ﺜﻨﺎﺌﻲ ﻓﻨﻴل -2-ﻜﻠـﻭﺭﻭﺒﺭﻭﺒﻴﻥ -1-ﺍﻭﻥ (3) ﻤـﻥ ﺘﻔﺎﻋـل ﺍﻟﺒﻨﺯﺍﻟﺩﻴﻬﻴـﺩ ﻤـﻊ -2 9 1 ﻜﻠﻭﺭﻭﺍﺴﻴﺘﻭﻓﻴﻨﻭﻥ ﺒﻭﺴﺎﻁﺔ ﺘﻜﺎﺜﻑ (ﻜﻠﻴﺯﻥ-ﺸﻤﺩﺕ).ﺤﻀﺭﺕ ﻤﻌﻭﻀﺎﺕ ∆ ( ) –ﺍﻭﻜﺘﺎﻟﻭﻥ-2 ﻤﻥ ﺨﻼل ﺘﻔﺎﻋل ﺍﻟﻤﺭﻜﺒﻴﻥ (2,1) ﻤﻊ ﺍﻟﻬﻜﺴﺎﻨﻭﻥ ﺍﻟﺤﻠﻘﻲ ﺒﻭﺴﺎﻁﺔ ﺍﻀﺎﻓﺔ ﻤﺎﻴﻜل ﺍﻟﺘﻲ ﻴﺘﺒﻌﻬﺎ ﺘﻜﺎﺜﻑ ﺍﻻﻟﺩﻭل .
    [Show full text]
  • Pyramidalization/Twisting of the Amide Functional Group Via Remote Steric Congestion Triggered by Metal Coordination Chemical Science
    Chemical Volume 8 Number 1 January 2017 Pages 1–810 Science rsc.li/chemical-science ISSN 2041-6539 EDGE ARTICLE Naoya Kumagai, Masakatsu Shibasaki et al. Pyramidalization/twisting of the amide functional group via remote steric congestion triggered by metal coordination Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Pyramidalization/twisting of the amide functional group via remote steric congestion triggered by Cite this: Chem. Sci.,2017,8,85 metal coordination† Shinya Adachi, Naoya Kumagai* and Masakatsu Shibasaki* For decades, the planarity of the amide functional group has garnered sustained interest in organic chemistry, enticing chemists to deform its usually characteristic high-fidelity plane. As opposed to the construction of amides that are distorted by imposing rigid covalent bond assemblies, we demonstrate herein the deformation of the amide plane through increased steric bulk in the periphery of the amide moiety, which is induced by coordination to metal cations. A crystallographic analysis revealed that the thus obtained amides exhibit significant pyramidalization and twisting upon coordination to the metals, Received 16th August 2016 while the amide functional group remained intact. The observed deformation, which should be Accepted 21st September 2016 attributed to through-space interactions, substantially enhanced the solvolytic cleavage of the amide, DOI: 10.1039/c6sc03669d Creative Commons Attribution 3.0 Unported Licence. providing compelling evidence that temporary crowding in the periphery
    [Show full text]
  • Catalytic Direct Asymmetric Michael Reactions
    ORGANIC LETTERS 2001 Catalytic Direct Asymmetric Michael Vol. 3, No. 23 Reactions: Taming Naked Aldehyde 3737-3740 Donors Juan M. Betancort and Carlos F. Barbas III* The Skaggs Institute for Chemical Biology and the Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037 [email protected] Received September 5, 2001 ABSTRACT Direct catalytic enantio- and diastereoselective Michael addition reactions of unmodified aldehydes to nitro olefins using (S)-2-(morpholinomethyl)- pyrrolidine as a catalyst are described. The reactions proceed in good yield (up to 96%) in a highly syn-selective manner (up to 98:2) with enantioselectivities approaching 80%. The resulting γ-formyl nitro compounds are readily converted to chiral, nonracemic 3,4-disubstituted pyrrolidines. The Michael reaction is generally regarded as one of the Typically, carbon nucleophiles that contain an active most efficient carbon-carbon bond forming reactions, and methylene center such as malonic acid esters, â-keto esters, studies concerning this reaction have played an important nitroalkanes, etc. have been studied in the Michael reaction. role in the development of modern synthetic organic Carbonyl compounds, and ketones in particular, have gener- chemistry.1 As the demand for optically active compounds ally only been used as donors following their preactivation has soared in recent years, much progress has been made in by conversion into a more reactive species such as enol or the development of asymmetric variants of this reaction, enamine equivalents.5,6 In these cases, additional synthetic providing for the preparation of Michael adducts with high enantiomeric purity.2 Though remarkable advances have been (3) (a) Chataigner, I.; Gennari, C.; Ongeri, S.; Piarulli, U.; Ceccarelli, S.
    [Show full text]
  • Empowering Alcohols As Carbonyl Surrogates for Grignard-Type Reactions
    ARTICLE https://doi.org/10.1038/s41467-020-19857-9 OPEN Empowering alcohols as carbonyl surrogates for Grignard-type reactions Chen-Chen Li 1, Haining Wang1, Malcolm M. Sim1, Zihang Qiu 1, Zhang-Pei Chen1, Rustam Z. Khaliullin1 & ✉ Chao-Jun Li 1 The Grignard reaction is a fundamental tool for constructing C-C bonds. Although it is widely used in synthetic chemistry, it is normally applied in early stage functionalizations owing to 1234567890():,; poor functional group tolerance and less availability of carbonyls at late stages of molecular modifications. Herein, we report a Grignard-type reaction with alcohols as carbonyl surro- gates by using a ruthenium(II) PNP-pincer complex as catalyst. This transformation proceeds via a carbonyl intermediate generated in situ from the dehydrogenation of alcohols, which is followed by a Grignard-type reaction with a hydrazone carbanion to form a C-C bond. The reaction conditions are mild and can tolerate a broad range of substrates. Moreover, no oxidant is involved during the entire transformation, with only H2 and N2 being generated as byproducts. This reaction opens up a new avenue for Grignard-type reactions by enabling the use of naturally abundant alcohols as starting materials without the need for pre-synthesizing carbonyls. 1 Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, ✉ Canada. email: [email protected] NATURE COMMUNICATIONS | (2020) 11:6022 | https://doi.org/10.1038/s41467-020-19857-9 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19857-9 n tandem with the significant advancements of biological and even be successfully applied in synergistic relay reactions29.
    [Show full text]
  • Synthesis of Optically Pure Macroheterocycles with 2,6-Pyridinedicarboxylic and Adipic Acid Fragments from ∆3-Carene
    Macrolides Paper Макролиды Статья DOI: 10.6060/mhc190660y Synthesis of Optically Pure Macroheterocycles with 2,6-Pyridinedicarboxylic and Adipic Acid Fragments from ∆3-Carene Marina P. Yakovleva,@ Kseniya S. Denisova, Galina R. Mingaleeva, Valentina A. Vydrina, and Gumer Yu. Ishmuratov Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia @Corresponding author E-mail: [email protected] Based on the available natural monoterpene ∆3-carene we have developed the synthesis of four optically pure macroheterocycles with ester and dihydrazide fragments through the intermediate 1-((1S,3R)-3-(2-hydroxyethyl- 2,2-dimethylcyclopropyl)propan-2-one using its [2+1]-interaction with dichloranhydrides of adipic or 2,6-pyridinedicarboxylic acids and [1+1]-condensation of the obtained α,ω-diketodiesters with dihydrazides of adipic or 2,6-pyridinedicarboxylic acids. The structure of new compounds was confirmed by IR and NMR spectroscopy and mass spectrometry. Keywords: 3-Carenes, ozonolysis, sodium hypochlorite, macroheterocycles with ester and dihydrazide fragments, [2+1] and [1+1] condensations, synthesis. Синтез оптически чистых макрогетероциклов со сложноэфирными и дигидразидными фрагментами адипиновой и 2,6-пиридиндикарбоновой кислот из D3-карена М. П. Яковлева,@ К. С. Денисова, Г. Р. Мингалеева, В. А. Выдрина, Г. Ю. Ишмуратов Уфимский Институт химии – обособленное структурное подразделение Федерального бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии
    [Show full text]
  • Reduction of Organic Functional Groups Using Hypophosphites Rim Mouselmani
    Reduction of Organic Functional Groups Using Hypophosphites Rim Mouselmani To cite this version: Rim Mouselmani. Reduction of Organic Functional Groups Using Hypophosphites. Other. Univer- sité de Lyon; École Doctorale des Sciences et de Technologie (Beyrouth), 2018. English. NNT : 2018LYSE1241. tel-02147583v2 HAL Id: tel-02147583 https://tel.archives-ouvertes.fr/tel-02147583v2 Submitted on 5 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE de DOCTORAT DE L’UNIVERSITE DE LYON EN COTUTELLE AVEC L'UNIVERSITÉ LIBANAISE opérée au sein de l’Université Claude Bernard Lyon 1 École Doctorale de Chimie-École Doctorale des Sciences et Technologies Discipline : Chimie Soutenue publiquement le 07/11/2018, par Rim MOUSELMANI Reduction of Organic Functional Groups Using Hypophosphites Devant le jury composé de Mme. Micheline DRAYE Université Savoie Mont Blanc Rapporteure M. Mohammad ELDAKDOUKI Université Arabe de Beyrouth Rapporteur Mme. Emmanuelle SCHULZ Université Paris 11 examinatrice M. Abderrahmane AMGOUNE Université Lyon 1 Président M. Mahmoud FARAJ Université Internationale Libanaise examinateur Mme. Estelle MÉTAY Université Lyon 1 Directrice de thèse M. Ali HACHEM Université Libanaise Directeur de thèse M. Marc LEMAIRE Université Lyon 1 Membre invité M.
    [Show full text]
  • Amide Activation: an Emerging Tool for Chemoselective Synthesis
    Featuring work from the research group of Professor As featured in: Nuno Maulide, University of Vienna, Vienna, Austria Amide activation: an emerging tool for chemoselective synthesis Let them stand out of the crowd – Amide activation enables the chemoselective modification of a large variety of molecules while leaving many other functional groups untouched, making it attractive for the synthesis of sophisticated targets. This issue features a review on this emerging field and its application in total synthesis. See Nuno Maulide et al., Chem. Soc. Rev., 2018, 47, 7899. rsc.li/chem-soc-rev Registered charity number: 207890 Chem Soc Rev View Article Online REVIEW ARTICLE View Journal | View Issue Amide activation: an emerging tool for chemoselective synthesis Cite this: Chem. Soc. Rev., 2018, 47,7899 Daniel Kaiser, Adriano Bauer, Miran Lemmerer and Nuno Maulide * It is textbook knowledge that carboxamides benefit from increased stabilisation of the electrophilic carbonyl carbon when compared to other carbonyl and carboxyl derivatives. This results in a considerably reduced reactivity towards nucleophiles. Accordingly, a perception has been developed of amides as significantly less useful functional handles than their ester and acid chloride counterparts. Received 27th April 2018 However, a significant body of research on the selective activation of amides to achieve powerful DOI: 10.1039/c8cs00335a transformations under mild conditions has emerged over the past decades. This review article aims at placing electrophilic amide activation in both a historical context and in that of natural product rsc.li/chem-soc-rev synthesis, highlighting the synthetic applications and the potential of this approach. Creative Commons Attribution 3.0 Unported Licence.
    [Show full text]
  • The. Reactions Op Semicarbazones, Thiosbmicarbazonbs
    THE. REACTIONS OP SEMICARBAZONES, THIOSBMICARBAZONBS AMD RELATED COMPOUNDS, IMCLTJDIMG THE ACTION OF AMINES ON AMINOCARBOCARBAZONES. A THESIS PRESENTED BY JOHN MCLEAN B.So. IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF GLASGOW. / MAY *936. THE ROYAL TECHNICAL COLLEGE, GLASGOW. ProQuest Number: 13905234 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13905234 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 This research was carried out in the Royal Technical College, Glasgow, under the supervision of Professor F.J. Wilson, whose helpful advice was greatly appreciated by the author. CONTENTS. Page General Introduction, PART 1. The Action of Amines on Amino Carhocarbazones. Introduction... ..... ,..................... 4 Benzylamine......... Theoretical.............. 11 ......... Experimental............. 15 Aniline............. Theoretical............ 21 ............. Experimental............ 22 B-Naphthylamine..... Theoretical............... 27
    [Show full text]
  • S41467-018-07534-X.Pdf
    ARTICLE DOI: 10.1038/s41467-018-07534-x OPEN Differentiation between enamines and tautomerizable imines in the oxidation reaction with TEMPO Xiaoming Jie1, Yaping Shang1, Zhe-Ning Chen 1, Xiaofeng Zhang1, Wei Zhuang1 & Weiping Su1 Enamine and imine represent two of the most common reaction intermediates in syntheses, and the imine intermediates containing α-hydrogen often exhibit the similar reactivity to 1234567890():,; enamines due to their rapid tautomerization to enamine tautomers. Herein, we report that the minor structural difference between the enamine and the enamine tautomer derived from imine tautomerization results in the different chemo- and regioselectivity in the reaction of cyclohexanones, amines and TEMPO: the reaction of primary amines furnishes the formal oxygen 1,2-migration product, α-amino-enones, while the reaction of secondary amines under similar conditions generates exclusively arylamines via consecutive dehydrogenation on the cyclohexyl rings. The 18O-labeling experiment for α-amino-enone formation revealed that TEMPO served as oxygen transfer reagent. Experimental and computational studies of reaction mechanisms revealed that the difference in chemo- and regioselectivity could be ascribed to the flexible imine-enamine tautomerization of the imine intermediate con- taining an α-hydrogen. 1 State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China.
    [Show full text]
  • Microwave Assisted Synthesis, Spectral and Antimicrobial Evaluation of Hydrazones and Their Metal Complexes
    Devendra Kumar et al. / Journal of Pharmacy Research 2012,5(2),830-834 Research Article Available online through ISSN: 0974-6943 http://jprsolutions.info Microwave assisted synthesis, spectral and antimicrobial evaluation of hydrazones and their metal complexes Devendra Kumar ,Shivani Singh,Neelam,Rubeena Akhtar Department of Chemistry, Institute of Basic Sciences,Dr. B. R. Ambedkar University, Khandari Campus, Agra-282002 Received on:19-12-2011; Revised on: 07-01-2012; Accepted on:28-01-2012 ABSTRACT Six new metal complexes of Co (II), Ni (II) and Cu (II) with bis-(furfuryl) adipic acid dihydrazone (FADH) and bis- (2-acetyl thiophene) adipic acid dihydrazone (2-ATADH) have been synthesized under microwave irradiation. The Microwave irradiation method was found remarkably successful and gave higher yield at less reaction time. All the synthesized compounds have been characterized by running their TLC for single spot, repeated melting point determinations, elemental analyses, IR, 1H-NMR and electronic spectral studies. The elemental analyses and spectral analysis results revealed their Metal: Ligand (1:1) stoichiometry. All the synthesized compounds have been screened in vitro for their antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa and also for their antifungal activity against Aspergillus niger and Candida albicans. Key words: Synthesis, Microwave irradiation, Spectral, Antibacterial, Antifungal. INTRODUCTION Over the last few years, there has been growing interest in the synthesis of Synthesis of diethyl adipate: 14.6 g (0.1M) adipic acid was dissolved in organic compounds under green or sustainable chemistry such as micro- 20 ml absolute alcohol. To this solution, 3ml conc. H2SO4 was added. The wave irradiation because of increasing environmental consciousness.
    [Show full text]
  • Organic Chemistry/Fourth Edition: E-Text
    CHAPTER 17 ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION TO THE CARBONYL GROUP O X ldehydes and ketones contain an acyl group RC± bonded either to hydrogen or Ato another carbon. O O O X X X HCH RCH RCRЈ Formaldehyde Aldehyde Ketone Although the present chapter includes the usual collection of topics designed to acquaint us with a particular class of compounds, its central theme is a fundamental reaction type, nucleophilic addition to carbonyl groups. The principles of nucleophilic addition to alde- hydes and ketones developed here will be seen to have broad applicability in later chap- ters when transformations of various derivatives of carboxylic acids are discussed. 17.1 NOMENCLATURE O X The longest continuous chain that contains the ±CH group provides the base name for aldehydes. The -e ending of the corresponding alkane name is replaced by -al, and sub- stituents are specified in the usual way. It is not necessary to specify the location of O X the ±CH group in the name, since the chain must be numbered by starting with this group as C-1. The suffix -dial is added to the appropriate alkane name when the com- pound contains two aldehyde functions.* * The -e ending of an alkane name is dropped before a suffix beginning with a vowel (-al) and retained be- fore one beginning with a consonant (-dial). 654 Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website 17.1 Nomenclature 655 CH3 O O O O CH3CCH2CH2CH CH2 CHCH2CH2CH2CH HCCHCH CH3 4,4-Dimethylpentanal 5-Hexenal 2-Phenylpropanedial When a formyl group (±CHœO) is attached to a ring, the ring name is followed by the suffix -carbaldehyde.
    [Show full text]