FULLTEXT01.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

FULLTEXT01.Pdf http://www.diva-portal.org This is the published version of a paper published in International Journal of Oncology. Citation for the original published paper (version of record): Lindsten, T., Hedbrant, A., Ramberg, A., Wijkander, J., Solterbeck, A. et al. (2017) Effect of macrophages on breast cancer cell proliferation, and on expression of hormone receptors, uPAR and HER-2 International Journal of Oncology, 51(1): 104-114 https://doi.org/10.3892/ijo.2017.3996 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. © Lindsten et al. This is an open access article distributed under the terms of Creative Commons Attribution License. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-65678 104 INTERNATIONAL JOURNAL OF ONCOLOGY 51: 104-114, 2017 Effect of macrophages on breast cancer cell proliferation, and on expression of hormone receptors, uPAR and HER-2 THERÉSE LINDSTEN1, ALEXANDER HEDBRANT2, ANNA RAMBERG1,2, JONNy WIJKANDER3, ANJA Solterbeck1, Margareta ERIKSSON1,5, DICK DELBRO2 and ANN ERLANDSSON4,5 1Department of Clinical Pathology and Cytology, Central Hospital Karlstad, SE-651 88 Karlstad; 2School of Medical Sciences, Örebro University, SE-702 81 Örebro; Departments of 3Health Sciences, 4Environmental and Life Sciences/Biology, Karlstad University, SE-651 88 Karlstad; 5Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro University Hospital, SE-701 82 Örebro, Sweden Received February 13, 2017; Accepted March 27, 2017 DOI: 10.3892/ijo.2017.3996 Abstract. Malignant tumors, including breast cancers, capability to decrease the tumor cell expression of ERα and PR are frequently infiltrated with innate immune cells and in vitro. In the tumor environment in vivo macrophages also tumor-associated macrophages (TAMs) represent the major contribute to an increase in tumor cell expression of uPAR and inflammatory component in stroma of many tumors. In this Ki67, suggesting that macrophages are involved in impairing study, we examined the immunoreactivity of the macrophage the prognosis for breast cancer patients. markers CD68 and CD163 as well as the hormone recep- tors estrogen receptor α (ERα), progesterone receptor (PR), Introduction estrogen receptor β1 (ERβ1), human epidermal growth factor receptor 2 (HER-2), matrix metalloproteinase 9 (MMP-9), Breast cancer, the most frequently diagnosed cancer and the urokinase-type plasminogen activator receptor (uPAR) and leading cause of cancer deaths in women worldwide (1), is a the proliferations marker Ki67 in 17 breast cancer biopsies. heterogeneous disease with different biological hallmarks, The quantitative score for CD68+ and CD163+ strongly indi- and thereby varying prognostic and therapeutic characteris- cate M2 phenotype dominance in the currently investigated tics. Tumors are classified into different subtypes based on biopsies. We found that an increasing level of macrophages the immunohistochemical expression of estrogen receptor α was negatively associated with ERα or PR, whereas a positive (ERα), progesterone receptor (PR), human epidermal growth association was observed for Ki-67 or uPAR. No significant factor receptor-2 (HER-2) and Ki67 which also provides prog- association could be seen between the level of macrophage nostic and predictive information on response to hormonal and HER-2, ERβ1 or MMP-9 expression. Effect of conditioned or targeted therapies (2). Approximately 20-30% of all breast media (CM) generated from cultured human M1 and M2 cancers overexpress HER-2 leading to an uncontrolled growth macrophage phenotypes were investigated on the proliferation of cancer cells (3). Estrogen and progesterone are steroid and expression of selected markers in the T47D breast cancer hormones that play an essential role for normal mammary cell line. We found that in contrast to the in vivo situation, gland growth and development as well as for breast cancer in particularly the CM from M1 macrophages decreased progression. Most of their effects are mediated by ERs and PR the growth and Ki67 expression in T47D, and significantly which are intracellular receptors which constitute members increased ERβ1 mRNA levels. Moreover, in accordance to the of the nuclear receptor superfamily of transcription factors. in vivo situation the CM from the macrophages decreased the Approximately 75% of malignant breast tumors are ERα posi- expression of ERα protein as well as ERα or PR mRNA. In tive and more than half of these tumors also express PR (4,5). conclusion our results show that macrophages alone have the For decades, ERα was thought to be the only ER present in mammary epithelial cells until the identification of a second estrogen receptor, ERβ, in 1996 (6). ERβ is the most widely expressed ER in normal, mammary tissue. Five different isoforms (ERβ1-ERβ5) exist in humans, though ERβ1 is Correspondence to: Dr Ann Erlandsson, Department of Environmental and Life Sciences, Karlstad University, SE-651 88 considered the only fully functional isoform. The role for Karlstad, Sweden ERβ1 and other splice variants in breast cancer is still being E-mail: [email protected] investigated and may not be consistent among different breast cancer subtypes (7,8). Key words: breast cancer, breast cancer cell line, T47D, estrogen A solid, malignant tumor consists of cancer cells within receptors, progesterone receptor, M1 macrophages, M2 macrophages, a tumor stroma of essentially fibroblasts, endothelial cells, urokinase-type plasminogen activator receptor smooth muscle cells and immune cells (9). Of the latter, macro- phages appear to play a significant role in carcinogenesis (10). Thus, the association between inflammation and cancer is lindSten et al: EFFECTS OF MACROPHAGES IN BREAST CANCER 105 well established (11,12). An inflammatory microenvironment phenotypes, respectively, may influence the proliferation and influences every hallmark of cancer e.g. cell proliferation, the expression of the markers mentioned above. invasion, angiogenesis and metastasis (9). Macrophages are innate immune cells originating from peripheral blood mono- Materials and methods cytes with important roles in normal tissue homeostasis such as primary response to pathogens, resolution of inflammation Immunohistochemistry. Breast cancer specimens being and wound healing. They also constitute the most abundant analyzed in this study were archival material stored in immune cell present in the tumor stroma and display extensive paraffin blocks, having been taken for diagnostic purpose diversity and plasticity (13-15). Within the tumor microen- prior to any treatment at the Department of Clinical Pathology vironment monocytes differentiate into tumor-associated and Cytology, Karlstad Central Hospital (Karlstad, Sweden). macrophages (TAMs), mainly due to tumor-derived chemo- The study included tumor specimen from all patients (n=19) tactic factors. TAMs are active in the progression of tumors selected for neoadjuvant therapy at Karlstad Central Hospital and may, in response to various signals, exhibit dual roles in between 2009 and 2012, two samples were excluded because the microenvironment such as facilitate tumor growth, or in of too little materials left. All samples were de-identified prior contrast, contribute to destruction of tumors (16,17). Simplified, to analysis. Serial sections of 4 µm were cut from each sample human macrophages can be classified into two phenotypically and were mounted on IHC microscope glass slides (Dako, extremes, the classically activated M1 phenotype considered Glostrup, Denmark). The sections were de-paraffinized to exhibit tumoricidal activities arising from stimulation of followed by antigen retrieval using PT-link at 97˚C for 20 min macrophages with Th1-cytokines such as interferon-γ (IFNγ) in EnVision FLEX Target Retrieval Solution (Dako). The and/or microbial products like lipopolysaccharide (LPS). This sections were incubated for 30 min with either of the following phenotype is characterized by high levels of pro-inflammatory primary antibodies: Monoclonal rabbit anti-human estrogen cytokines such as interleukin (IL)12, IL23, IL6, tumor necrosis receptor (ER)α (clone EP1, ready-to-use), monoclonal mouse factor-α (TNF-α) and reactive oxygen/nitrogen intermediates anti-human progesterone receptor (PR; clone PgR 636, ready- (ROI/RNI) (10,15). to-use), monoclonal mouse anti-human-CD68 antibody (clone On the contrary, the alternatively activated M2 macro- Kp1, ready-to-use), HercepTest™ polyclonal rabbit anti-human phage is polarized by Th2-cytokines such as IL4 and IL13, HER2, monoclonal mouse anti-human estrogen receptor β1 and releases high levels of anti-inflammatory cytokines such (clone PPG5/10, dilution 1:40), monoclonal mouse anti- as IL10 and transforming growth factor-β. In most tumors human Ki-67 (clone MIB1, ready-to-use), polyclonal rabbit the infiltrating macrophages are polarized towards the M2 anti-human MMP-9 (1:50), monoclonal mouse anti-human phenotype and show a pro-tumoral role (10,15,16). CD163 is uPAR (clone R4, 1:50) (all from Dako) and monoclonal mouse a scavenger receptor that is regarded as highly specific for anti-human-CD163 antibody (clone 10D6, 1:200, Novocastra, M2 macrophages, while CD68 is a pan-macrophage marker Leica Microsystems, Newcastle, UK). The monoclonal and stains both M1 and M2 phenotypes (18,19). Furthermore, mouse anti-human estrogen receptor β1 (clone PPG5/10, 1:40) TAMs produce growth promoting and sustaining cytokines,
Recommended publications
  • IL-7 Receptor Blockade Blunts Antigen-Specific Memory T Cell
    ARTICLE DOI: 10.1038/s41467-018-06804-y OPEN IL-7 receptor blockade blunts antigen-specific memory T cell responses and chronic inflammation in primates Lyssia Belarif1,2, Caroline Mary1,2, Lola Jacquemont1, Hoa Le Mai1, Richard Danger1, Jeremy Hervouet1, David Minault1, Virginie Thepenier1,2, Veronique Nerrière-Daguin1, Elisabeth Nguyen1, Sabrina Pengam1,2, Eric Largy3,4, Arnaud Delobel3, Bernard Martinet1, Stéphanie Le Bas-Bernardet1,5, Sophie Brouard1,5, Jean-Paul Soulillou1, Nicolas Degauque 1,5, Gilles Blancho1,5, Bernard Vanhove1,2 & Nicolas Poirier1,2 1234567890():,; Targeting the expansion of pathogenic memory immune cells is a promising therapeutic strategy to prevent chronic autoimmune attacks. Here we investigate the therapeutic efficacy and mechanism of new anti-human IL-7Rα monoclonal antibodies (mAb) in non-human primates and show that, depending on the target epitope, a single injection of antagonistic anti-IL-7Rα mAbs induces a long-term control of skin inflammation despite repeated antigen challenges in presensitized monkeys. No modification in T cell numbers, phenotype, function or metabolism is observed in the peripheral blood or in response to polyclonal stimulation ex vivo. However, long-term in vivo hyporesponsiveness is associated with a significant decrease in the frequency of antigen-specific T cells producing IFN-γ upon antigen resti- mulation ex vivo. These findings indicate that chronic antigen-specific memory T cell responses can be controlled by anti-IL-7Rα mAbs, promoting and maintaining remission in T- cell mediated chronic inflammatory diseases. 1 Centre de Recherche en Transplantation et Immunologie (CRTI) UMR1064, INSERM, Université de Nantes, Nantes 44093, France. 2 OSE Immunotherapeutics, Nantes 44200, France.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Single-Cell RNA Sequencing Demonstrates the Molecular and Cellular Reprogramming of Metastatic Lung Adenocarcinoma
    ARTICLE https://doi.org/10.1038/s41467-020-16164-1 OPEN Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma Nayoung Kim 1,2,3,13, Hong Kwan Kim4,13, Kyungjong Lee 5,13, Yourae Hong 1,6, Jong Ho Cho4, Jung Won Choi7, Jung-Il Lee7, Yeon-Lim Suh8,BoMiKu9, Hye Hyeon Eum 1,2,3, Soyean Choi 1, Yoon-La Choi6,10,11, Je-Gun Joung1, Woong-Yang Park 1,2,6, Hyun Ae Jung12, Jong-Mu Sun12, Se-Hoon Lee12, ✉ ✉ Jin Seok Ahn12, Keunchil Park12, Myung-Ju Ahn 12 & Hae-Ock Lee 1,2,3,6 1234567890():,; Advanced metastatic cancer poses utmost clinical challenges and may present molecular and cellular features distinct from an early-stage cancer. Herein, we present single-cell tran- scriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell subtype deviating from the normal differentiation trajectory and dominating the metastatic stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional changes that create a pro-tumoral and immunosuppressive microenvironment. Normal resident myeloid cell populations are gradually replaced with monocyte-derived macrophages and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals potential diagnostic and therapeutic targets in cancer-microenvironment interactions. 1 Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea.
    [Show full text]
  • Distinctive Gene Expression Signatures in Rheumatoid Arthritis Synovial Tissue Fibroblast Cells: Correlates with Disease Activity
    Genes and Immunity (2007) 8, 480–491 & 2007 Nature Publishing Group All rights reserved 1466-4879/07 $30.00 www.nature.com/gene ORIGINAL ARTICLE Distinctive gene expression signatures in rheumatoid arthritis synovial tissue fibroblast cells: correlates with disease activity CL Galligan1,2, E Baig1,2, V Bykerk3,4, EC Keystone3,4 and EN Fish1,2 1Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; 2Department of Immunology, University of Toronto, Toronto, Ontario, Canada; 3The Rebecca MacDonald Centre for Arthritis and Autoimmune Diseases, Toronto, Ontario, Canada and 4Department of Medicine, University of Toronto, Toronto, Ontario, Canada Gene expression profiling of rheumatoid arthritis (RA) and osteoarthritis (OA) joint tissue samples provides a unique insight into the gene signatures involved in disease development and progression. Fibroblast-like synovial (FLS) cells were obtained from RA, OA and control trauma joint tissues (non-RA, non-OA) and RNA was analyzed by Affymetrix microarray. Thirty-four genes specific to RA and OA FLS cells were identified (Po0.05). HOXD10, HOXD11, HOXD13, CCL8 and LIM homeobox 2 were highly and exclusively expressed in RA and CLU, sarcoglycan-g, GPR64, POU3F3, peroxisome proliferative activated receptor-g and tripartite motif-containing 2 were expressed only in OA. The data also revealed expression heterogeneity for patients with the same disease. To address disease heterogeneity in RA FLS cells, we examined the effects of clinical disease parameters (Health Assessment Questionnaire (HAQ) score, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), rheumatoid factor (RF)) and drug therapies (methotrexate/prednisone) on RA FLS cell gene expression. Eight specific and unique correlations were identified: human leukocyte antigen (HLA)-DQA2 with HAQ score; Clec12A with RF; MAB21L2, SIAT7E, HAPLN1 and BAIAP2L1 with CRP level; RGMB and OSAP with ESR.
    [Show full text]
  • Integrin-Linked Kinase Deficiency in Collecting Duct Principal Cell
    BASIC RESEARCH www.jasn.org Integrin-Linked Kinase Deficiency in Collecting Duct Principal Cell Promotes Necroptosis of Principal Cell and Contributes to Kidney Inflammation and Fibrosis Ming Huang,1,2 Shuai Zhu,1,2 Huihui Huang,2 Jinzhao He,1,2 Kenji Tsuji,2 William W. Jin,2 Dongping Xie,3 Onju Ham,2 Diane E. Capen,2 Weining Lu,4 Teodor G. Paunescu, 2 Baoxue Yang,1 and Hua A. Jenny Lu2 1Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; 2Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; 3Department of Physiology, Tongji University School of Medicine, Shanghai, China; and 4Renal Section, Departments of Medicine, and Pathology & Laboratory Medicine, Boston University Medical Center, Boston, Massachusetts ABSTRACT Background Necroptosis is a newly discovered cell death pathway that plays a critical role in AKI. The involvement of integrin-linked kinase (ILK) in necroptosis has not been studied. BASIC RESEARCH Methods We performed experiments in mice with an Ilk deletion in collecting duct (CD) principal cells (PCs), and cultured tubular epithelial cells treated with an ILK inhibitor or ILK siRNA knockdown. Results Ilk deletion in CD PCs resulted in acute tubular injury and early mortality in mice. Progressive interstitial fibrosis and inflammation associated with the activation of the canonical TGF-b signaling cas- cade were detected in the kidneys of the mice lacking ILK in the CD PCs. In contrast to the minimal apoptosis detected in the animals’ injured CDs, widespread necroptosis was present in ILK-deficient PCs, characterized by cell swelling, deformed mitochondria, and rupture of plasma membrane.
    [Show full text]
  • Emerging Role of Tumor Cell Plasticity in Modifying Therapeutic Response
    Signal Transduction and Targeted Therapy www.nature.com/sigtrans REVIEW ARTICLE OPEN Emerging role of tumor cell plasticity in modifying therapeutic response Siyuan Qin1, Jingwen Jiang1,YiLu 2,3, Edouard C. Nice4, Canhua Huang1,5, Jian Zhang2,3 and Weifeng He6,7 Resistance to cancer therapy is a major barrier to cancer management. Conventional views have proposed that acquisition of resistance may result from genetic mutations. However, accumulating evidence implicates a key role of non-mutational resistance mechanisms underlying drug tolerance, the latter of which is the focus that will be discussed here. Such non-mutational processes are largely driven by tumor cell plasticity, which renders tumor cells insusceptible to the drug-targeted pathway, thereby facilitating the tumor cell survival and growth. The concept of tumor cell plasticity highlights the significance of re-activation of developmental programs that are closely correlated with epithelial–mesenchymal transition, acquisition properties of cancer stem cells, and trans- differentiation potential during drug exposure. From observations in various cancers, this concept provides an opportunity for investigating the nature of anticancer drug resistance. Over the years, our understanding of the emerging role of phenotype switching in modifying therapeutic response has considerably increased. This expanded knowledge of tumor cell plasticity contributes to developing novel therapeutic strategies or combination therapy regimens using available anticancer drugs, which are likely to
    [Show full text]
  • Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis
    REVIEW published: 09 July 2021 doi: 10.3389/fimmu.2021.686155 Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis † † Jie Huang 1 , Xuekun Fu 1 , Xinxin Chen 1, Zheng Li 1, Yuhong Huang 1 and Chao Liang 1,2* 1 Department of Biology, Southern University of Science and Technology, Shenzhen, China, 2 Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both Edited by: existing and emerging targets, including the proteins, small molecular metabolites, and Trine N. Jorgensen, epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that Case Western Reserve University, result in inflammation and the development of new drugs for blocking the various United States modulators in RA. Reviewed by: Åsa Andersson, Keywords: rheumatoid arthritis, targets, proteins, small molecular metabolites, epigenetic regulators Halmstad University, Sweden Abdurrahman Tufan, Gazi University, Turkey *Correspondence: INTRODUCTION Chao Liang [email protected] Rheumatoid arthritis (RA) is classified as a systemic poly-articular chronic autoimmune joint † disease that primarily affects hands and feet.
    [Show full text]
  • Elevated Seminal Plasma Estradiol and Epigenetic Inactivation of ESR1 and ESR2 Is Associated with CP/CPPS
    www.oncotarget.com Oncotarget, 2018, Vol. 9, (No. 28), pp: 19623-19639 Research Paper Elevated seminal plasma estradiol and epigenetic inactivation of ESR1 and ESR2 is associated with CP/CPPS Nils Nesheim1,2, Stuart Ellem3,4, Temuujin Dansranjavin1, Christina Hagenkötter1,2, Elena Berg1,2, Rupert Schambeck1,2, Hans-Christian Schuppe1, Adrian Pilatz1, Gail Risbridger3, Wolfgang Weidner1, Florian Wagenlehner1,* and Undraga Schagdarsurengin1,2,* 1Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany 2Working Group Epigenetics of the Urogenital System, Clinic of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany 3Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia 4Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia *These authors contributed equally Correspondence to: Undraga Schagdarsurengin, email: [email protected] Florian Wagenlehner, email: [email protected] Keywords: chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS); liquid biopsies; estradiol; estrogene receptor; epigenetic inactivation Received: October 05, 2017 Accepted: February 24, 2018 Published: April 13, 2018 Copyright: Nesheim et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
    [Show full text]
  • H3C -SO3H Patent Application Publication Apr
    US 20190099429A1 ( 19 ) United States ( 12) Patent Application Publication ( 10 ) Pub . No. : US 2019 / 0099429 A1 Lefebvre (43 ) Pub. Date : Apr. 4 , 2019 ( 54 ) CENICRIVIROC FOR THE TREATMENT OF A61K 45 / 06 (2006 .01 ) FIBROSIS A61K 9 /00 (2006 .01 ) A61K 4738 ( 2006 .01 ) (71 ) Applicant : Tobira Therapeutics, Inc . , South San A61K 38 /21 ( 2006 .01 ) Francisco , CA (US ) A61K 31 / 7072 ( 2006 . 01 ) A61K 38 / 13 ( 2006 . 01 ) ( 72 ) Inventor: Eric Lefebvre , South San Francisco , A61K 31 / 194 (2006 .01 ) CA (US ) A61K 31/ 427 ( 2006 .01 ) A61K 31 /513 (2006 . 01 ) ( 73 ) Assignee : Tobira Therapeutics , Inc ., South San A61K 31 /536 ( 2006 . 01 ) Francisco , CA (US ) ( 52) U . S . CI. CPC . .. .. A61K 31 /55 ( 2013 . 01 ) ; GOIN 33 /6893 ( 21 ) Appl. No. : 16 /148 , 749 ( 2013 .01 ) ; A61K 2300 / 00 ( 2013 .01 ) ; A61K 47 / 12 (2013 . 01 ) ; A61K 45 / 06 (2013 . 01 ) ; A61K (22 ) Filed : Oct . 1 , 2018 9 /0053 (2013 .01 ) ; GOIN 2800 / 52 ( 2013 .01 ) ; Related U . S . Application Data GOIN 2800 / 7052 (2013 . 01 ) ; A6IK 47 / 38 (2013 .01 ) ; A61K 38 / 212 ( 2013 .01 ) ; A61K (63 ) Continuation of application No. 15 / 127, 720 , filed on 31 / 7072 (2013 . 01 ) ; A61K 38 / 13 (2013 . 01 ) ; Sep . 20 , 2016 , now abandoned , filed as application A61K 31/ 194 ( 2013 .01 ) ; A61K 31/ 427 No. PCT /US2015 / 021828 on Mar. 20 , 2015 . ( 2013 .01 ) ; A61K 31/ 513 ( 2013 .01 ) ; A61K ( 60 ) Provisional application No. 61/ 968 , 829 , filed on Mar. 31/ 536 (2013 .01 ) ; A61K 38 / 12 ( 2013 .01 ) 21, 2014, provisional application No . 62 /024 ,713 , filed on Jul .
    [Show full text]
  • B Cells and Skin Score Progression
    Bosello et al. Arthritis Research & Therapy (2018) 20:75 https://doi.org/10.1186/s13075-018-1569-0 RESEARCH ARTICLE Open Access Characterization of inflammatory cell infiltrate of scleroderma skin: B cells and skin score progression Silvia Bosello1,2†, Cristiana Angelucci3†, Gina Lama3, Stefano Alivernini1,2, Gabriella Proietti3, Barbara Tolusso1,2, Gigliola Sica3, Elisa Gremese1,2 and Gianfranco Ferraccioli1,2* Abstract Background: The purpose of this study was to investigate the frequency and the distribution of inflammatory cell infiltrate in two sets of cutaneous biopsies derived from clinically affected and unaffected skin in patients with systemic sclerosis (SSc) and to test correlation between the cell infiltrate and the progression of skin involvement. Methods: Skin was immunohistochemically assessed to identify CD68, CD3, CD20 and CD138-positive (+) cells in clinically affected and unaffected skin in 28 patients with SSc. Patients were followed for 6 months and the characteristics of the infiltrate were analyzed according to disease duration, clinical features and skin involvement progression. Results: In all SSc cutaneous specimens, cellular infiltrates were found in a perivascular location predominantly in the mid and deeper portions of the dermis. All the analyzed biopsies showed a CD3+ and CD68+ cell infiltrate and the mean number of CD3+ and of CD68+ cells was higher in clinically involved skin (CD3+, 71.7 ± 34.6 and CD68+, 26.3 ± 8.4, respectively) than in clinically uninvolved skin (CD3+, 45.7 ± 36.0 and CD68+, 13.6 ± 6.1, respectively) (p < 0.001 for both comparisons). CD20+ cells were found in 17 (60.7%) patients and in these patients the mean number of CD20+ cells was higher in clinically involved (4.7 ± 5.9) than in uninvolved skin (1.9 ± 2.9), (p = 0.04).
    [Show full text]
  • Arming Tumor-Associated Macrophages to Reverse Epithelial
    Published OnlineFirst August 15, 2019; DOI: 10.1158/0008-5472.CAN-19-1246 Cancer Tumor Biology and Immunology Research Arming Tumor-Associated Macrophages to Reverse Epithelial Cancer Progression Hiromi I.Wettersten1,2,3, Sara M.Weis1,2,3, Paulina Pathria1,2,Tami Von Schalscha1,2,3, Toshiyuki Minami1,2,3, Judith A. Varner1,2, and David A. Cheresh1,2,3 Abstract Tumor-associated macrophages (TAM) are highly expressed it engaged macrophages but not natural killer (NK) cells to within the tumor microenvironment of a wide range of cancers, induce antibody-dependent cellular cytotoxicity (ADCC) of where they exert a protumor phenotype by promoting tumor avb3-expressing tumor cells despite their expression of the cell growth and suppressing antitumor immune function. CD47 "don't eat me" signal. In contrast to strategies designed Here, we show that TAM accumulation in human and mouse to eliminate TAMs, these findings suggest that anti-avb3 tumors correlates with tumor cell expression of integrin avb3, represents a promising immunotherapeutic approach to redi- a known driver of epithelial cancer progression and drug rect TAMs to serve as tumor killers for late-stage or drug- resistance. A monoclonal antibody targeting avb3 (LM609) resistant cancers. exploited the coenrichment of avb3 and TAMs to not only eradicate highly aggressive drug-resistant human lung and Significance: Therapeutic antibodies are commonly engi- pancreas cancers in mice, but also to prevent the emergence neered to optimize engagement of NK cells as effectors. In of circulating tumor cells. Importantly, this antitumor activity contrast, LM609 targets avb3 to suppress tumor progression in mice was eliminated following macrophage depletion.
    [Show full text]