1 International Journal Of Earth Sciences Archimer April 2020, Volume 109 Issue 3 Pages 847-876 https://doi.org/10.1007/s00531-020-01833-9 https://archimer.ifremer.fr https://archimer.ifremer.fr/doc/00613/72489/ Volcanoes and climate: the triggering of preboreal Jökulhlaups in Iceland Van Vliet-Lanoë Brigitte 1, * , Knudsen Oskar 2, Guðmundsson Agust 3, Guillou Hervé 4, Chazot Gilles 1, Langlade Jessica 5, Liorzou Celine 1, Nonnotte Philippe 1 1 Géosciences Ocean, UMR 6538 Brest University, CNRS, ue@b, IUEM, Pl.N.Copernic, 29280, Plouzané, France 2 Klettur Consulting Engineers, Bildshofda 12, 102, Reykjavik, Iceland 3 Jarðfræðistofan ehf, 200, Hafnarfjorður, Iceland 4 CNRS-CEA, UMR 8212 LSCE, Domaines CNRS, Bât. 12, Av. de la terrasse, 91198, Gif/Yvette, France 5 Microsonde de l’Ouest, Ifremer-Centre de BretagneTechnopole Brest Iroise, BP 70, 29280, Plouzané, France * Corresponding author : Brigitte Van Vliet-Lanoë, email address :
[email protected] Abstract : The Early Holocene (12–8.2 cal ka) deglaciation and pulsed warming was associated in Iceland with two major generations of jökulhlaups around the Vatna ice-cap (Vatnajökull), at ca 11.4–11.2 cal ka and ca 10.4–9.9 cal ka, and major tephra emissions from the Grímsvötn and Bárðarbunga subglacial volcanoes. The earliest flood events were recorded inland during the Middle Younger Dryas and their deposits were overlain by the Early Preboreal Vedde Ash (11.8 cal ka). The first Holocene flood events (ca 11.4– 11.2 cal ka) are issued from a glacial advance. The second, and major, set of floods was partly driven by the Erdalen cold events and advances (10.1–9.7 10Be ka) initially issued from the Bárðarbunga (10.4, 10.1–9.9 ka) and Grímsvötn volcanoes (Saksunarvatn tephra complex, ca.