Canon's Full-Frame Cmos Sensors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
“Digital Single Lens Reflex”
PHOTOGRAPHY GENERIC ELECTIVE SEM-II DSLR stands for “Digital Single Lens Reflex”. In simple language, a DSLR is a digital camera that uses a mirror mechanism to either reflect light from a camera lens to an optical viewfinder (which is an eyepiece on the back of the camera that one looks through to see what they are taking a picture of) or let light fully pass onto the image sensor (which captures the image) by moving the mirror out of the way. Although single lens reflex cameras have been available in various shapes and forms since the 19th century with film as the recording medium, the first commercial digital SLR with an image sensor appeared in 1991. Compared to point-and-shoot and phone cameras, DSLR cameras typically use interchangeable lenses. Take a look at the following image of an SLR cross section (image courtesy of Wikipedia): When you look through a DSLR viewfinder / eyepiece on the back of the camera, whatever you see is passed through the lens attached to the camera, which means that you could be looking at exactly what you are going to capture. Light from the scene you are attempting to capture passes through the lens into a reflex mirror (#2) that sits at a 45 degree angle inside the camera chamber, which then forwards the light vertically to an optical element called a “pentaprism” (#7). The pentaprism then converts the vertical light to horizontal by redirecting the light through two separate mirrors, right into the viewfinder (#8). When you take a picture, the reflex mirror (#2) swings upwards, blocking the vertical pathway and letting the light directly through. -
Depth of Field Lenses Form Images of Objects a Predictable Distance Away from the Lens. the Distance from the Image to the Lens Is the Image Distance
Depth of Field Lenses form images of objects a predictable distance away from the lens. The distance from the image to the lens is the image distance. Image distance depends on the object distance (distance from object to the lens) and the focal length of the lens. Figure 1 shows how the image distance depends on object distance for lenses with focal lengths of 35 mm and 200 mm. Figure 1: Dependence Of Image Distance Upon Object Distance Cameras use lenses to focus the images of object upon the film or exposure medium. Objects within a photographic Figure 2 scene are usually a varying distance from the lens. Because a lens is capable of precisely focusing objects of a single distance, some objects will be precisely focused while others will be out of focus and even blurred. Skilled photographers strive to maximize the depth of field within their photographs. Depth of field refers to the distance between the nearest and the farthest objects within a photographic scene that are acceptably focused. Figure 2 is an example of a photograph with a shallow depth of field. One variable that affects depth of field is the f-number. The f-number is the ratio of the focal length to the diameter of the aperture. The aperture is the circular opening through which light travels before reaching the lens. Table 1 shows the dependence of the depth of field (DOF) upon the f-number of a digital camera. Table 1: Dependence of Depth of Field Upon f-Number and Camera Lens 35-mm Camera Lens 200-mm Camera Lens f-Number DN (m) DF (m) DOF (m) DN (m) DF (m) DOF (m) 2.8 4.11 6.39 2.29 4.97 5.03 0.06 4.0 3.82 7.23 3.39 4.95 5.05 0.10 5.6 3.48 8.86 5.38 4.94 5.07 0.13 8.0 3.09 13.02 9.93 4.91 5.09 0.18 22.0 1.82 Infinity Infinite 4.775 5.27 0.52 The DN value represents the nearest object distance that is acceptably focused. -
Irix 45Mm F1.4
Explore the magic of medium format photography with the Irix 45mm f/1.4 lens equipped with the native mount for Fujifilm GFX cameras! The Irix Lens brand introduces a standard 45mm wide-angle lens with a dedicated mount that can be used with Fujifilm GFX series cameras equipped with medium format sensors. Digital medium format is a nod to traditional analog photography and a return to the roots that defined the vividness and quality of the image captured in photos. Today, the Irix brand offers creators, who seek iconic image quality combined with mystical vividness, a tool that will allow them to realize their wildest creative visions - the Irix 45mm f / 1.4 G-mount lens. It is an innovative product because as a precursor, it paves the way for standard wide-angle lenses with low aperture, which are able to cope with medium format sensors. The maximum aperture value of f/1.4 and the sensor size of Fujifilm GFX series cameras ensure not only a shallow depth of field, but also smooth transitions between individual focus areas and a high dynamic range. The wide f/1.4 aperture enables you to capture a clear background separation and work in low light conditions, and thanks to the excellent optical performance, which consists of high sharpness, negligible amount of chromatic aberration and great microcontrast - this lens can successfully become the most commonly used accessory that will help you create picturesque shots. The Irix 45mm f / 1.4 GFX is a professional lens designed for FujiFilm GFX cameras. It has a high-quality construction, based on the knowledge of Irix Lens engineers gained during the design and production of full-frame lenses. -
What's a Megapixel Lens and Why Would You Need One?
Theia Technologies white paper Page 1 of 3 What's a Megapixel Lens and Why Would You Need One? It's an exciting time in the security department. You've finally received approval to migrate from your installed analog cameras to new megapixel models and Also translated in Russian: expectations are high. As you get together with your integrator, you start selecting Что такое мегапиксельный the cameras you plan to install, looking forward to getting higher quality, higher объектив и для чего он resolution images and, in many cases, covering the same amount of ground with нужен one camera that, otherwise, would have taken several analog models. You're covering the basics of those megapixel cameras, including the housing and mounting hardware. What about the lens? You've just opened up Pandora's Box. A Lens Is Not a Lens Is Not a Lens The lens needed for an IP/megapixel camera is much different than the lens needed for a traditional analog camera. These higher resolution cameras demand higher quality lenses. For instance, in a megapixel camera, the focal plane spot size of the lens must be comparable or smaller than the pixel size on the sensor (Figures 1 and 2). To do this, more elements, and higher precision elements, are required for megapixel camera lenses which can make them more costly than their analog counterparts. Figure 1 Figure 2 Spot size of a megapixel lens is much smaller, required Spot size of a standard lens won't allow sharp focus on for good focus on megapixel sensors. a megapixel sensor. -
Selecting Cameras for UAV Surveys
ARTICLE A REVIEW OF CAMERAS POPULAR AMONGST AERIAL SURVEYORS Selecting Cameras for UAV Surveys With the boom in the use of consumer-grade cameras on unmanned aerial vehicles (UAVs) for surveying and photogrammetric applications, this article seeks to review a range of different cameras and their critical attributes. Firstly, it establishes the most important considerations when selecting a camera for surveying. Secondly, the authors make a number of recommendations at various price points. While this list is not exhaustive, it is intended to present a line of reasoning that UAV practitioners should consider when selecting a camera for survey purposes. Weight, Velocity and Flight Time for Aerial Imaging Weight is an important consideration for aerial imaging that is often not a limiting factor for terrestrial photography. The growth of newer, higher-spec, low- weight cameras is therefore the focus of this article. In addition, the potential areal coverage of a survey is controlled by flight height, flight duration and UAV velocity – these become more tightly constrained with increased payload. Figure 1, Decrease in flight time with payload for a generic battery-powered multi-rotor UAV at a velocity of 6m/s (Bershadsky, 2016). In order to maximise flexibility in the selection of flight height, duration and velocity, weight must be kept to a minimum. A number of lightweight cameras for UAV use are reviewed below. Imaging parameters Sensor size is one of the key imaging parameters as this, along with focal length of the lens, is the core component in defining the ground sample distance (GSD) – the pixel size in the real world – of a survey configuration. -
EVERYDAY MAGIC Bokeh
EVERYDAY MAGIC Bokeh “Our goal should be to perceive the extraordinary in the ordinary, and when we get good enough, to live vice versa, in the ordinary extraordinary.” ~ Eric Booth Welcome to Lesson Two of Everyday Magic. In this week’s lesson we are going to dig deep into those magical little orbs of light in a photograph known as bokeh. Pronounced BOH-Kə (or BOH-kay), the word “bokeh” is an English translation of the Japanese word boke, which means “blur” or “haze”. What is Bokeh? bokeh. And it is the camera lens and how it renders the out of focus light in Photographically speaking, bokeh is the background that gives bokeh its defined as the aesthetic quality of the more or less circular appearance. blur produced by the camera lens in the out-of-focus parts of an image. But what makes this unique visual experience seem magical is the fact that we are not able to ‘see’ bokeh with our superior human vision and excellent depth of field. Bokeh is totally a function ‘seeing’ through the lens. Playing with Focal Distance In addition to a shallow depth of field, the bokeh in an image is also determined by 1) the distance between the subject and the background and 2) the distance between the lens and the subject. Depending on how you Bokeh and Depth of Field compose your image, the bokeh can be smooth and ‘creamy’ in appearance or it The key to achieving beautiful bokeh in can be livelier and more energetic. your images is by shooting with a shallow depth of field (DOF) which is the amount of an image which is appears acceptably sharp. -
Using Depth Mapping to Realize Bokeh Effect with a Single Camera Android Device EE368 Project Report Authors (SCPD Students): Jie Gong, Ran Liu, Pradeep Vukkadala
Using Depth Mapping to realize Bokeh effect with a single camera Android device EE368 Project Report Authors (SCPD students): Jie Gong, Ran Liu, Pradeep Vukkadala Abstract- In this paper we seek to produce a bokeh Bokeh effect is usually achieved in high end SLR effect with a single image taken from an Android device cameras using portrait lenses that are relatively large in size by post processing. Depth mapping is the core of Bokeh and have a shallow depth of field. It is extremely difficult effect production. A depth map is an estimate of depth to achieve the same effect (physically) in smart phones at each pixel in the photo which can be used to identify which have miniaturized camera lenses and sensors. portions of the image that are far away and belong to However, the latest iPhone 7 has a portrait mode which can the background and therefore apply a digital blur to the produce Bokeh effect thanks to the dual cameras background. We present algorithms to determine the configuration. To compete with iPhone 7, Google recently defocus map from a single input image. We obtain a also announced that the latest Google Pixel Phone can take sparse defocus map by calculating the ratio of gradients photos with Bokeh effect, which would be achieved by from original image and reblured image. Then, full taking 2 photos at different depths to camera and defocus map is obtained by propagating values from combining then via software. There is a gap that neither of edges to entire image by using nearest neighbor method two biggest players can achieve Bokeh effect only using a and matting Laplacian. -
May2018-Highlight-Article.Pdf
234 May 2018 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING May 2018 Layout.indd 234 4/16/2018 12:05:54 PM ntroduction Since 2000, development and use of digital photogram- metric cameras for aerial survey has gained significant momentum. Many different cameras and systems de- signed for aerial photogrammetry were developed and presented to the market. After 15 years of intensive development, only a few of these products are in wide Productivity use in today’s mapping market. One of the prominent Isystems being provided is the medium format frame Analysis for camera from Phase One Industrial. With the development of CCD and CMOS technology, medium format cameras have come a long way from 40-60 Mpix to 80-100 Mpix cameras. Additionally, high Medium quality metric lenses with a wide range of focal lengths were developed and implemented. This enabled an ef- fective utilization of medium format cameras in many different small and medium sized urban and rural Format mapping projects, corridor mapping, oblique projects, and monitoring of areal and linear infrastructure. This article presents recent development in the ap- Mapping proach to flight planning and aerial survey productiv- ity analysis, firstly presented in Raizman (2012). The Raizman (2012) article referred only to large format Cameras cameras, whereas this article will compare large for- mat cameras vs. medium format cameras, which are getting more and more popular in aerial survey. This Yuri Raizman approach is based on some pre-defined common char- acteristics of the required mapping products. It en- Phase One Industrial ables an equivalent comparison between cameras with different parameters – focal length, sensor form and Denmark size, and pixel size. -
Aperture Efficiency and Wide Field-Of-View Optical Systems Mark R
Aperture Efficiency and Wide Field-of-View Optical Systems Mark R. Ackermann, Sandia National Laboratories Rex R. Kiziah, USAF Academy John T. McGraw and Peter C. Zimmer, J.T. McGraw & Associates Abstract Wide field-of-view optical systems are currently finding significant use for applications ranging from exoplanet search to space situational awareness. Systems ranging from small camera lenses to the 8.4-meter Large Synoptic Survey Telescope are designed to image large areas of the sky with increased search rate and scientific utility. An interesting issue with wide-field systems is the known compromises in aperture efficiency. They either use only a fraction of the available aperture or have optical elements with diameters larger than the optical aperture of the system. In either case, the complete aperture of the largest optical component is not fully utilized for any given field point within an image. System costs are driven by optical diameter (not aperture), focal length, optical complexity, and field-of-view. It is important to understand the optical design trade space and how cost, performance, and physical characteristics are influenced by various observing requirements. This paper examines the aperture efficiency of refracting and reflecting systems with one, two and three mirrors. Copyright © 2018 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com Introduction Optical systems exhibit an apparent falloff of image intensity from the center to edge of the image field as seen in Figure 1. This phenomenon, known as vignetting, results when the entrance pupil is viewed from an off-axis point in either object or image space. -
Nikon D2hs Brochure
Nikon Digital SLR Camera D2Hs Specifi cations Type of Camera Lens-interchangeable digital SLR camera Exposure Metering TTL full-aperture exposure metering system; Effective Pixels 4.1 million System 1) D-/G-type Nikkor lenses support 3D-Color Matrix Metering II using the Image Sensor JFET image sensor LBCAST, 23.3 x 15.5mm size, 4.26 million total pixels 1,005-pixel RGB Sensor while other AF Nikkor lenses with built-in CPUs Recording Pixels [L] 2,464 x 1,632-pixel / [M] 1,840 x 1,224-pixel support Matrix Metering (Non-CPU lenses require manual input of lens data) Sensitivity ISO equivalency 200 to 1600 (Hi-1 and Hi-2 available) 2) Center-Weighted Metering (75% of the meter’s sensitivity concentrated on the Storage System NEF (12-bit uncompressed or compressed RAW), 8mm dia. circle) given to 6, 10 or 13mm dia. circle in center of frame, or weighting Exif 2.21, DCF 2.0 and DPOF compliant based on average of entire frame (uncompressed TIFF-RGB or compressed JPEG) 3) Spot Metering (3mm dia. circle, approx. 2% of entire frame); metering position Storage Media CompactFlash™ (CF) Card (Type I / II) and Microdrive™ can be linked to the focus area when using Nikkor lenses with built-in CPU Shooting Modes 1) Single frame shooting [S] mode: advances one frame for each shutter release Exposure Metering 1) 3D-Color Matrix Metering II: EV 0 to 20 2) Continuous high shooting [CH ] mode: 8 frames per second (fps) Range 2) Center-Weighted Metering: EV 0 to 20 [up to 50 (JPEG)/40 (TIFF)/40 (RAW:NEF) consecutive shots] 3) Spot Metering: EV 2 to 20 [at normal -
12 Considerations for Thermal Infrared Camera Lens Selection Overview
12 CONSIDERATIONS FOR THERMAL INFRARED CAMERA LENS SELECTION OVERVIEW When developing a solution that requires a thermal imager, or infrared (IR) camera, engineers, procurement agents, and program managers must consider many factors. Application, waveband, minimum resolution, pixel size, protective housing, and ability to scale production are just a few. One element that will impact many of these decisions is the IR camera lens. USE THIS GUIDE AS A REFRESHER ON HOW TO GO ABOUT SELECTING THE OPTIMAL LENS FOR YOUR THERMAL IMAGING SOLUTION. 1 Waveband determines lens materials. 8 The transmission value of an IR camera lens is the level of energy that passes through the lens over the designed waveband. 2 The image size must have a diameter equal to, or larger than, the diagonal of the array. 9 Passive athermalization is most desirable for small systems where size and weight are a factor while active 3 The lens should be mounted to account for the back athermalization makes more sense for larger systems working distance and to create an image at the focal where a motor will weigh and cost less than adding the plane array location. optical elements for passive athermalization. 4 As the Effective Focal Length or EFL increases, the field 10 Proper mounting is critical to ensure that the lens is of view (FOV) narrows. in position for optimal performance. 5 The lower the f-number of a lens, the larger the optics 11 There are three primary phases of production— will be, which means more energy is transferred to engineering, manufacturing, and testing—that can the array. -
Hasselblad Expands Reach of Medium Format Imaging for Even More
Press information – for immediate release Gothenburg, Sweden 19 June 2019 HASSELBLAD EXPANDS REACH OF MEDIUM FORMAT IMAGING FOR EVEN MORE CREATIVE VERSATILITY Introducing the X1D II 50C, XCD 35-75 zoom lens, Phocus Mobile 2, and revealing details of the upcoming CFV II 50C digital back and 907X camera body Following the revolutionary introduction of the world’s first mirrorless medium format digital camera, the X1D-50c, Hasselblad introduces new additions to its product portfolio that bring the joy of medium format photography to image makers with the capabilities to support their creative endeavours. This includes the evolved X1D II 50C camera, the eagerly awaited XCD 3,5-4,5/35-75 Zoom Lens and Phocus Mobile 2. In addition, Hasselblad reveals the development details of the upcoming CFV II 50C digital back and 907X camera body. Hasselblad’s newest offerings yet again expand the potential of medium format pho- tography with modularity and flexibility, all while offering the brand’s renowned, stunning image quality. X1D II 50C – AN EVOLVED MEDIUM FORMAT PHOTOGRAPHY EXPERIENCE In the pursuit to continue the journey of taking medium format outside of the studio, Hasselblad is pleased to announce the next installment of the X System – the X1D II 50C Mirrorless Medium Format Digital Camera. Dedicated to optimising the X System for a wider audience of creatives, Hasselblad has listened to user feedback and improved upon the first generation with enhanced electronics for a quicker and more intuitive medium format experience. Continuing in the legacy of being the most portable and lightweight digital medium format camera, the X1D II 50C lets you take the power of medium format in a footprint smaller than most full frame DSLRs in a beautifully designed, compact package.