Hypocholesterolemia: a Neglected Laboratory Finding
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Some ABCA3 Mutations Elevate ER Stress and Initiate Apoptosis of Lung Epithelial Cells
Some ABCA3 mutations elevate ER stress and initiate apoptosis of lung epithelial cells Nina Weichert Aus der Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital der Ludwig-Maximilians-Universität München Direktor: Prof. Dr. med. Dr. sci. nat. Christoph Klein Some ABCA3 mutations elevate ER stress and initiate apoptosis of lung epithelial cells Dissertation zum Erwerb des Doktorgrades der Humanmedizin an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München Vorgelegt von Nina Weichert aus Heidelberg 2011 Mit Genehmigung der Medizinischen Fakultät der Universität München 1. Berichterstatter: Prof. Dr. Matthias Griese 2. Berichterstatter: Prof. Dr. Dennis Nowak Mitberichterstatter: Priv. Doz. Dr. Angela Abicht Prof. Dr. Michael Schleicher Mitbetreuung durch den promovierten Mitarbeiter: Dr. Suncana Kern Dekan: Herr Prof. Dr. med. Dr. h. c. Maximilian Reiser, FACR, FRCR Tag der mündlichen Prüfung: 24.11.2011 Table of Contents 1.Abstract ................................................................................................................... 1 2.Zusammenfassung................................................................................................. 2 3.Intoduction .............................................................................................................. 3 3.1 Pediatric interstitial lung disease ............................................................................... 3 3.1.1 Epidemiology of pILD.............................................................................................. -
Hypocholesterolemia in Patients with Polycythemia Vera
J Clin Exp Hematopathol Vol. 52, No. 2, Oct 2012 Original Article Hypocholesterolemia in Patients with Polycythemia Vera Hiroshi Fujita,1) Tamae Hamaki,2) Naoko Handa,2) Akira Ohwada,2) Junji Tomiyama,2) and Shigeko Nishimura1) Polycythemia vera (PV) is characterized by low serum total cholesterol despite its association with vascular events such as myocardialand cerebralinfarction. Serum cholesterollevelhasnot been used as a diagnostic criterion for PV since the 2008 revision of the WHO classification. Therefore, we revisited the relationship between serum lipid profile, including total cholesterol level, and erythrocytosis. The medical records of 34 erythrocytosis patients (hemoglobin : men, > 18.5 g/dL ; women, > 16.5 g/dL) collected between August 2005 and December 2011 were reviewed for age, gender, and lipid profiles. The diagnoses of PV and non-PV erythrocytosis were confirmed and the in vitro efflux of cholesterol into plasma in whole blood examined. The serum levels of total cholesterol, low-density-lipoprotein cholesterol (LDL-Ch), and apolipoproteins A1 and B were lower in PV than in non-PV patients. The in vitro release of cholesterol into the plasma was greater in PV patients than in non-PV and non-polycythemic subjects. Serum total cholesterol, LDL-Ch, and apolipoproteins A1 and B levels are lower in patients with PV than in those with non-PV erythrocytosis. The hypocholesterolemia associated with PV may be attributable to the sequestration of circulating cholesterol into the increased number of erythrocytes. 〔J Clin Exp Hematopathol 52(2) : 85-89, 2012〕 Keywords: polycythemia vera, JAK2 V617F mutation, hypocholesterolemia rocytosis without the JAK2 V167F mutation.5 Although the INTRODUCTION serum cholesterol level in PV patients has been studied Polycythemia vera (PV) is classified as a myeloprolifera- previously,6 it has not been used as a diagnostic criterion for tive neoplasm and usually occurs in people aged 60-79 years. -
The Nuclear Envelope in Lipid Metabolism and Pathogenesis of NAFLD
biology Review The Nuclear Envelope in Lipid Metabolism and Pathogenesis of NAFLD Cecilia Östlund 1,2, Antonio Hernandez-Ono 1 and Ji-Yeon Shin 1,* 1 Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; [email protected] (C.Ö.); [email protected] (A.H.-O.) 2 Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA * Correspondence: [email protected]; Tel.: +1-212-305-4088 Received: 9 September 2020; Accepted: 12 October 2020; Published: 15 October 2020 Simple Summary: The liver is a major organ regulating lipid metabolism and a proper liver function is essential to health. Nonalcoholic fatty liver disease (NAFLD) is a condition with abnormal fat accumulation in the liver without heavy alcohol use. NAFLD is becoming one of the most common liver diseases with the increase in obesity in many parts of the world. There is no approved cure for the disease and a better understanding of disease mechanism is needed for effective prevention and treatment. The nuclear envelope, a membranous structure that surrounds the cell nucleus, is connected to the endoplasmic reticulum where the vast majority of cellular lipids are synthesized. Growing evidence indicates that components in the nuclear envelope are involved in cellular lipid metabolism. We review published studies with various cell and animal models, indicating the essential roles of nuclear envelope proteins in lipid metabolism. We also discuss how defects in these proteins affect cellular lipid metabolism and possibly contribute to the pathogenesis of NAFLD. -
Commonly Used Lipidcentric ICD-10 (ICD-9) Codes
Commonly Used Lipidcentric ICD-10 (ICD-9) Codes *This is not an all inclusive list of ICD-10 codes R.LaForge 11/2015 E78.0 (272.0) Pure hypercholesterolemia E78.3 (272.3) Hyperchylomicronemia (Group A) (Group D) Familial hypercholesterolemia Grütz syndrome Fredrickson Type IIa Chylomicronemia (fasting) (with hyperlipoproteinemia hyperprebetalipoproteinemia) Hyperbetalipoproteinemia Fredrickson type I or V Hyperlipidemia, Group A hyperlipoproteinemia Low-density-lipoid-type [LDL] Lipemia hyperlipoproteinemia Mixed hyperglyceridemia E78.4 (272.4) Other hyperlipidemia E78.1 (272.1) Pure hyperglyceridemia Type 1 Diabetes Mellitus (DM) with (Group B) hyperlipidemia Elevated fasting triglycerides Type 1 DM w diabetic hyperlipidemia Endogenous hyperglyceridemia Familial hyperalphalipoproteinemia Fredrickson Type IV Hyperalphalipoproteinemia, familial hyperlipoproteinemia Hyperlipidemia due to type 1 DM Hyperlipidemia, Group B Hyperprebetalipoproteinemia Hypertriglyceridemia, essential E78.5 (272.5) Hyperlipidemia, unspecified Very-low-density-lipoid-type [VLDL] Complex dyslipidemia hyperlipoproteinemia Elevated fasting lipid profile Elevated lipid profile fasting Hyperlipidemia E78.2 (272.2) Mixed hyperlipidemia (Group C) Hyperlipidemia (high blood fats) Broad- or floating-betalipoproteinemia Hyperlipidemia due to steroid Combined hyperlipidemia NOS Hyperlipidemia due to type 2 diabetes Elevated cholesterol with elevated mellitus triglycerides NEC Fredrickson Type IIb or III hyperlipoproteinemia with E78.6 (272.6) -
Fat Accumulation in Enterocytes: a Key to the Diagnosis of Abetalipoproteinemia Or Homozygous Hypobetalipoproteinemia
Cases and Techniques Library (CTL) E223 Fat accumulation in enterocytes: a key to the diagnosis of abetalipoproteinemia or homozygous hypobetalipoproteinemia Fig. 3 Microscopic image showing vacuo- lization, especially on the top of the villi. Vacuolization causes a paler aspect because of fat dissolving during the process of embed- ding the tissue in par- affin wax (“empty” vacuoles instead of fat accumulation). Fig. 4 Negative peri- Fig. 1 A 20-year-old woman was referred by odic acid-Schiff staining her ophthalmologist to investigate the reason shows no microorgan- for her hypovitaminosis A and secondary night isms nor accumulation blindness. A macroscopic image taken during of glycogen, supporting gastroscopy shows a pale duodenal mucosa. the assumption that the vacuolization is due to lipid accumulation. level of detection). Her level of 25-hydroxy These findings suggested a diagnosis of Fig. 2 Videocapsule image illustrating the vitamin D appeared to be normal, but at either abetalipoproteinemia or homo- pale yet pronounced aspect of the villi. the time of her first admission, vitamin D zygous hypolipobetaproteinemia, disor- substitution had already been started. A ders that are caused by mutations in both This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited. slightly raised alanine aminotransferase alleles of the microsomal triglycerides A 20-year-old woman was referred by her was also detected (33U/L). transfer protein (MTP) or in the APO-B ophthalmologist to investigate the reason Further work-up excluded cystic fibrosis, gene, respectively [1–2] This results in for her hypovitaminosis A and secondary exocrine pancreas insufficiency, and celiac the failure of APO B-100 synthesis in the night blindness. -
Pharmacogenomics Variability of Lipid-Lowering Therapies in Familial Hypercholesterolemia
Journal of Personalized Medicine Review Pharmacogenomics Variability of Lipid-Lowering Therapies in Familial Hypercholesterolemia Nagham N. Hindi 1,†, Jamil Alenbawi 1,† and Georges Nemer 1,2,* 1 Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; [email protected] (N.N.H.); [email protected] (J.A.) 2 Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut DTS-434, Lebanon * Correspondence: [email protected]; Tel.: +974-445-41330 † Those authors contributed equally to the work. Abstract: The exponential expansion of genomic data coupled with the lack of appropriate clinical categorization of the variants is posing a major challenge to conventional medications for many common and rare diseases. To narrow this gap and achieve the goals of personalized medicine, a collaborative effort should be made to characterize the genomic variants functionally and clinically with a massive global genomic sequencing of “healthy” subjects from several ethnicities. Familial- based clustered diseases with homogenous genetic backgrounds are amongst the most beneficial tools to help address this challenge. This review will discuss the diagnosis, management, and clinical monitoring of familial hypercholesterolemia patients from a wide angle to cover both the genetic mutations underlying the phenotype, and the pharmacogenomic traits unveiled by the conventional and novel therapeutic approaches. Achieving a drug-related interactive genomic map will potentially benefit populations at risk across the globe who suffer from dyslipidemia. Citation: Hindi, N.N.; Alenbawi, J.; Nemer, G. Pharmacogenomics Variability of Lipid-Lowering Keywords: familial hypercholesterolemia; pharmacogenomics; PCSK9 inhibitors; statins; ezetimibe; Therapies in Familial novel lipid-lowering therapy Hypercholesterolemia. -
Seme Protocolos051115.Pages
PROTOCOLOS DE PRÁCTICA CLÍNICA EN MEDICINA ESTÉTICA FEBRERO 2016 COMITÉ EDITORIAL Dra. Petra Mª Vega López. Presidenta de la SEME. Dra. Pilar Rodrigo Anoro. Presidenta de Honor de la SEME. Dra. Paloma Tejero. Socia de Honor de la SEME. Dr. Juan Antonio López López-Pitalúa. Vicepresidente 1º de la SEME. Dr. Fernando García Monforte. Vicepresidente 2º de la SEME. Dr. Manuel Sánchez Sánchez. Tesorero de la SEME. SOCIEDAD ESPAÑOLA DE MEDICINA ESTETICA Ronda General Mitre, 210.08006 Barcelona. E-mail [email protected] 3ª Edición Febrero de 2016 Dirección editorial: Dr. Antoni Baena Coordinación editorial: Mónica Rivero > página 3 > página 4 PRESENTACIÓN Los Protocolos de Práctica Clínica en Medicina Estetica son una iniciativa de la Sociedad Española de Medicina Estética, publicados por primera vez en febrero de 2008, ampliados, revisados y actualizados en febrero de 2015. Los objetivos de los mismos son: • Homogeneizar los criterios de la práctica clínica: las nomenclaturas, las clasificaciones y los tratamientos. • Aplicar la medicina basada en la evidencia. • Dotar a la Medicina Estética de una herramienta que mejore la seguridad del paciente y que facilite la actuación del profesional. Es la primera iniciativa internacional de este tipo en Medicina Estética y a través de estos protocolos la SEME quiere ofrecer al médico y a la sociedad la posibilidad de: • Facilitar el Desarrollo Profesional Continuo en beneficio de los ciudadanos. • Ofrecer una herramienta médico-legal que proteja al ciudadano y facilite la labor del profesional. • Ser una guía de actuación que fomente la buena práctica médica y que minimice los efectos adversos. > página 5 MARZO 2015 > página 6 ÍNDICE 1. -
WO 2014/018979 Al 30 January 2014 (30.01.2014) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/018979 Al 30 January 2014 (30.01.2014) P O P C T (51) International Patent Classification: Cambridge Center #7024C, Cambridge, MA 02142 (US). C07C 233/80 (2006.01) A61K 31/167 (2006.01) LEWIS, Michael; 7 Cambridge Center #7024C, Cam C07C 237/42 (2006.01) bridge, MA 02142 (US). (21) International Application Number: (74) Agents: ELRIFI, Ivor, R. et al; Mintz Levin Cohn Ferris PCT/US2013/052572 Glovsky And Popeo, P.C., One Financial Center, Boston, MA 021 11 (US). (22) International Filing Date: 29 July 2013 (29.07.2013) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (30) Priority Data: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, 61/676,496 27 July 2012 (27.07.2012) US KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (71) Applicants: THE BROAD INSTITUTE, INC. [US/US]; MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 7 Cambridge Center #7024c, Cambridge, MA 02142 (US). OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, THE GENERAL HOSPITAL CORPORATION d/b/a SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, MASSACHUSETTS GENERAL HOSPITAL [US/US]; TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
Pathology of Tangier Disease
J Clin Pathol: first published as 10.1136/jcp.24.7.609 on 1 October 1971. Downloaded from J. clin. Path., 1971, 24, 609-616 Pathology of Tangier disease PATRICIA M. BALE, P. CLIFTON-BLIGH, B. N. P. BENJAMIN, AND H. M. WHYTE From the Institute of Pathology, Royal Alexandra Hospital for Children, Camperdown, Sydney, and the Department of Clinical Science, Australian National University, Canberra sYNoPsis Two cases of Tangier disease are described in children from families unrelated to each other. Necropsy in one case, the first to be reported in this condition, showed large collections of cholesterol-laden macrophages in tonsils, thymus, lymph nodes, and colon, and moderate numbers in pyelonephritic scars and ureter. As the storage cells may be scanty in marrow, jejunum, and liver, the rectum is suggested as the site of choice for biopsy. The diagnosis was confirmed by demonstrating the absence of a-lipoproteins from the plasma of the living child, and by finding low plasma levels in both parents of both cases. The disease can be distinguished from other lipidoses by differences in the predominant sites of storage, staining re- actions, and serum lipid studies. Tangier disease is a familial storage disorder in necropsied case. The 12 subjects (Table I) have come which esterified cholesterol accumulates in macro- from eight families, the first of which lived on copyright. phages, while plasma cholesterol is low, and plasma Tangier Island, Chesapeake Bay, Virginia. Males high density lipoprotein is virtually absent. and females have been equally represented, and Ten cases have been reported, and we have studied affected relatives have always oeen siblings, never two additional patients, one of whom is the first parent and child, suggesting an autosomal recessive Received for publication 27 November 1970. -
Hypocholesterolemia in Clinically Serious Conditions – Review
Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2008, 152(2):181–189. 181 © P. Vyroubal, C. Chiarla, I. Giovannini, R. Hyspler, A. Ticha, D. Hrnciarikova, Z. Zadak HYPOCHOLESTEROLEMIA IN CLINICALLY SERIOUS CONDITIONS – REVIEW Pavel Vyroubala*, Carlo Chiarlab, Ivo Giovanninib, Radek Hysplera, Alena Tichaa, Dana Hrnciarikovaa, Zdenek Zadaka a Department of Gerontology and Metabolism, Faculty Hospital and Faculty of Medicine in Hradec Kralove, Sokolska 581, Hradec Kralove, Czech Republic b Centro de Studio per la fi ssiopatologia, Université Cattolica del S.Cuore, L.go A.Gemelli 8-00168 Roma, Italy e-mail: [email protected] Received: October 21, 2008; Accepted (with revisions): August 5, 2008 Key words: Cholesterol/Hypocholesterolemia/Hypolipoproteinemia/SIRS/Cytokines/Polytrauma/ Sepsis/Critically ill Background: Cholesterol is an essential component of cell membranes, precursor of steroids, biliary acids and other components of serious importance in live organism. Cholesterol synthesis is a complicated and energy-demand- ing process. Real daily need of cholesterol and mechanisms of decline cholesterol levels in critical ill are unknown. During stressful situations a signifi cant hypocholesterolaemia may be found. Hypocholesterolemia has been known for a number of years to be a signifi cant prognostic indicator of increased morbidity and mortality connected with a whole spectrum of pathological conditions. The aim of article is the elucidation of the role and importance of hypo- cholesterolaemia during the intensive care. Methods and Results: We examined studies that are engaged in problems of hypocholesterolemia in critically ill. Very low levels of total as well as LDL cholesterol are most frequently found in serious polytrauma, after extensive surgery, in serious infections, in protracted hypovolemic shock. -
Mutation of the ABCA1 Gene in Hypoalphalipoproteinemia with Corneal Lipidosis
4600/366J Hum Genet (2002) 47:366–369 N. Matsuda et al.: © Jpn EGF Soc receptor Hum Genet and osteoblastic and Springer-Verlag differentiation 2002 SHORT COMMUNICATION Jun Ishii · Makoto Nagano · Takeshi Kujiraoka Mitsuaki Ishihara · Tohru Egashira · Daisuke Takada Masahiro Tsuji · Hiroaki Hattori · Mitsuru Emi Clinical variant of Tangier disease in Japan: mutation of the ABCA1 gene in hypoalphalipoproteinemia with corneal lipidosis Received: March 1, 2002 / Accepted: March 15, 2002 Abstract Despite progress in molecular characterization, hypoalphalipoproteinemia syndromes have hampered their specific diagnoses of disorders belonging to a group of in- classification into distinct disease entities. From a clinical herited hypoalphalipoproteinemias, i.e., apolipoprotein AI standpoint, the term “inherited hypoalphalipoproteinemia” deficiency, lecithin-cholesterol acyltransferase deficiency, can apply to apolipoprotein AI (apoAI) deficiency, lecithin- Tangier disease (TD), and familial high-density lipoprotein cholesterol acyltransferase (LCAT) deficiency, Tangier (HDL) deficiency, remain difficult on a purely clinical basis. disease (TD), or so-called familial high-density lipoprotein Several TD patients were recently found to be homozygous (HDL) deficiency (Assmann et al. 1995). Despite some for mutations in the ABCA1 gene. We have documented progress in molecular characterization, specific diagnoses of here a clinical variant of TD in a Japanese patient who these disorders remain difficult because of their phenotypic manifested corneal lipidosis and premature coronary artery spectra overlap and because the penetrance of some symp- disease as well as an almost complete absence of HDL- toms is age related. cholesterol, by identifying a novel homozygous ABCA1 Mutation in ABCA1, a gene mapping to 9q31 and encod- mutation (R1680W). We propose that patients with ap- ing an ATP-binding cassette transporter, confers suscepti- parently isolated HDL deficiency who are found to carry bility to TD, a recessive disease (Bodzioch et al. -
Transient Dyslipidemia Mimicking the Plasma Lipid Profile of Tangier Disease in a Diabetic Patient with Gram Negative Sepsis
Available online at www.annclinlabsci.org 150 Annals of Clinical & Laboratory Science, vol. 41, no. 2, 2011 Transient Dyslipidemia Mimicking the Plasma Lipid Profile of Tangier Disease in a Diabetic Patient with Gram Negative Sepsis Carlos Palacio, M.D.,1 Irene Alexandraki, M.D.,1 Roger L. Bertholf, Ph.D.,2 and Arshag D. Mooradian, M.D.1 Department of Medicine1 and the Department of Pathology2, University of Florida - College of Medicine, Jacksonville, FL Abstract. Tangier disease is a rare genetic disorder of lipid metabolism characterized by low concentrations of plasma high density lipoprotein (HDL) and low density lipoprotein (LDL) cholesterol with normal or elevated levels of triglycerides. In this case report we describe a patient with diabetes who experienced an episode of urosepsis with a plasma lipid profile resembling Tangier disease. Experimental evidence in the literature suggests that similar lipid changes may occur due to cytokines released during sepsis. Clinicians should be aware of these changes to avoid misdiagnosis of lipid disorders. Introduction Tangier disease during an episode of urosepsis. Within two weeks post recovery the dyslilpidemia Tangier disease (familial alpha lipoprotein resolved and the plasma lipid profile returned to deficiency) is a rare genetic disorder of lipid baseline values. metabolism characterized principally by a severe deficiency of high density lipoprotein (HDL), Clinical History accompanied by low plasma levels of low density lipoprotein (LDL) cholesterol, normal or elevated The patient was a 58-year-old woman presenting plasma levels of triglycerides, and accumulation of with the chief complaint of generalized abdominal cholesteryl ester in reticuloendothelial tissue [1, 2]. pain with nausea, vomiting, and fever for four Phenotypically, patients with Tangier disease may days.