A Block Cipher Using Key-Dependent S-Box and P-Boxes

Total Page:16

File Type:pdf, Size:1020Kb

A Block Cipher Using Key-Dependent S-Box and P-Boxes A Block Cipher Using Key-Dependent S-box and P-boxes Runtong Zhang Like Chen College of Computer Science and Technology, Dalian College of Computer Science and Technology, Dalian Maritime University, Dalian, China; Maritime University, Dalian, China Institute of Information Systems, School of Economics and [email protected] Management, Beijing Jiaotong University, Beijing, China [email protected] Abstract-Block ciphers based on key-dependent cipher be proved. However these ciphers usually have to do more structures have been investigated for years, however, their round encryptions to achieve security and their fixed overall performance in terms of security and speed has not been sufficiently addressed. In this paper, we propose a 128-bit building structure leaves opportunities to potential attacks. Feistel block cipher, which simultaneously engages key- The number of the existing block ciphers belong to the dependent S-box and key-dependent P-box. With these two key- second group is much less than that of the first group. This dependent transformations, the internal structure of this cipher group of ciphers engages key-dependent cryptanalytic algorithm is secured, so as to resist the linear and differential structures, such as key-dependent S-boxes, to strengthen cryptanalysis in a few round encryptions. Hence, the encryption and decryption functions are quite efficiency. We named this their security level. Because the S-boxes of these ciphers are key-dependent structure the DSDP structure, and the cipher unknown to the attackers, they could defy analysis based on DSDP. A fast permutation algorithm is used to generate both specific properties of the S-box. In general, this kind of the key-dependent S-box and key-dependent P-boxes. This ciphers could achieve higher security level within less round greatly compensates the performance penalty of complex key encryptions [8]. Theoretically, the ciphers of this group schedule. The basic operations used in DSDP are all efficient bytewise operations, so the algorithm will have a reasonable fast should have been more practical and popular, especially in speed on recent processors, 16-bit processors and smart cards those resource limited environment. However the existing as well as 8-bit processors. We implement the algorithm with C ones of this group, such as Khufu [9] and Blowfish [10], are and Java respectively on several PCs with different processors, not quite successful to some extend. and estimate the optimized assembly performance on Pentium. Khufu is a 64-bit block 512-bit key cipher designed by The experimental results and the estimation show that DSDP has a very fast encryption/decryption speed and a reasonable Merkle with a fast software implementation in mind. The fast key scheduling implementation. strength of Khufu is based on key-dependent 8-32-bit S- boxes, and it is faster than Khafre, which has a similar cryptanalytic structure with fixed S-boxes, due to a smaller I. INTRODUCTION number of rounds. It is believed that Khufu is stronger than Khafre, since Khufu has secret key-dependent S-boxes, Since the introduction of the differential and linear which prohibit attacks based on analysis of specific S-boxes. cryptanalysis [1][2], the theory of these two powerful However, due to the drawback of its cryptanalytic structure, cryptanalytic tools became the potential rule guiding the new the avalanche effect of the difference could be postponed by block cipher design. In the last two decades, many block eight rounds [8]. And the large expanding S-boxes (n bits of ciphers are designed to resist these two kinds of attacks [26], input, m bits of output, n<<m) facilitates the construction of and their central ideas can be mainly classified into two impossible differentials, so the cipher is vulnerable to the groups. meet in the middle attacks. In addition, its key setup stage is The first group chooses the fixed cipher structures with the complicated and quite time consuming. maximum difference propagation probability and the Blowfish encrypts a 64-bit plaintext into 64-bit ciphertext maximum input-output correlation probability as small as using a variable key length [10]. This cipher only engages possible in consecutive rounds. Under this guideline, the the simplest operations in its cryptographic structure, so it is cipher must modestly choose specific S-boxes (nonlinear quite efficient in the encryption and decryption stage. transformation) where the maximum difference propagation However, its key scheduling stage is so complicated that the probability and the maximum input-output correlation are as keys should not be changed frequently [10]. Usually, the small as possible, and the linear part can not be with few keys have to be precomputed and stored. Furthermore, all its active S-boxes [3]. Many advanced ciphers such as AES, four 8-32-bit S-boxes are randomly generated, and may lead Square, MISTY, and Camellia [4][3][5][6], etc., belong to to weak keys [11]. this group. The advantage of this group of ciphers is that their security against the differential and linear attacks could 978-1-4244-1666-0/08/$25.00 '2008 IEEE 1463 Authorized licensed use limited to: NATIONAL CHANGHUA UNIVERSITY OF EDUCATION. Downloaded on April 24, 2009 at 02:09 from IEEE Xplore. Restrictions apply. In this paper, a novel bytewise block cipher algorithm is into two parts Li-1 and Ri-1. The right part Ri-1 is left proposed. This cipher encrypts a 128-bit block with a unchanged variable of key length utilizing the Feistel structure. The L R purpose of this cipher is to offer a reasonable fast software K implementation on most processors, including recent processors, 16-bit processors, smart cards as well as 8-bit F processors. In order to meet our purpose, a novel key- dependent cipher structure is introduced to the round function. We engage a fast key-dependent permutation technique to speed up the key schedule. Through this permutation, one S-box and R P-boxes are calculated (R is the round number). The S-box is designed with 8-bit input Fig. 1. Feistel structure. and 8-bit output without repetition of S-box entry values. Since the S-box is generated with great random, this cipher and forms the left part of the output Li. The right part of the could defy any attack based on specific properties of the S- output is constructed by adding a modified copy of Ri-1 to the box. In each round, a different key-dependent P-box is used left part of the input Li-1, i.e., to secure the permutation layer, so as to hide all the linear Li = Ri-1, ⊕ and differential trails from the attackers and to resist the Ri= Li-1 f(Ri-1, Ki). linear and differential cryptanalysis completely. S-box and An example of such a structure is given in Fig. 1. the P-boxes are all quite key-dependent, so we name this Examples of block ciphers in this class are data encryption structure DSDP structure, and the cipher DSDP. In addition, standard (DES), Khufu, CAST, and Twofish only a few generally supported basic operations are involved, [12][9][13][7][17]. An advantage of this approach is that the so the algorithm offers a good compatibility. We implement same round function can be used for both encryption and the algorithm with C and Java. The experimental result decryption, while a round function itself need not be shows that this cipher has a very efficient implementation. invertible. Since DES is a Feistel network, more This paper is organized as follows: Section 2 briefly cryptanalytic experience is available on Feistel ciphers than reviews preliminary concepts of modern block ciphers. on any other general structure. Section 3 describes the high-level structure and the design The second commonly used structure is usually called rationale of DSDP. Section 4 evaluates DSDP’s software substitution-permutation networks (short for SPN). In this performance and section 5 analyzes the advantages of this structure, every input bit is treated in a similar way. An algorithm. We conclude in section 6. example of such a network is given in Fig2. Examples of block ciphers in this class are SAFER, SHARK, Rijndael, and 3-WAY [14][15][16][13][17]. An advantage of this II. PRELIMINARIES approach is inherent parallelism, while a disadvantage is that Block ciphers divide the plaintext into separate blocks of inverse algorithm, which is required for decryption, may be fixed size (e.g., 64 or 128 bits), and encrypts each of them different from the encryption algorithm. independently using the same key-dependent transformation. B. Nonlinear Substitution Transformations (S-Boxes) Two general principles guiding the design of block ciphers A nonlinear Substitution transformation, also called an S- are diffusion and confusion. Diffusion means the spread of box, is essential for every strong encryption algorithm. S- the influence of a single plaintext bit over many ciphertext boxes can be either fixed for all keys or key dependent. Since bits so as to hide the statistical feature of the plaintext. no specific properties of the key-dependent S-box is offered Confusion means the use of transformations that complicate to attackers, it is our belief that key-dependent S-boxes are the dependence of the statistical feature of the ciphertext on more secure than fixed S-boxes. Most key-dependent S- that of the plaintext. Most ciphers achieve the diffusion and boxes created by some process are effectively random. For the confusion by means of product cipher, which repeats a example, SEAL [18] uses SHA [19] to create its key- simpler SPN (Substitution & Permutation Network) cipher dependent S-boxes. structure a number of times to construct the whole algorithm. This contributes the cipher’s simplicity and ease of implementation.
Recommended publications
  • The Data Encryption Standard (DES) – History
    Chair for Network Architectures and Services Department of Informatics TU München – Prof. Carle Network Security Chapter 2 Basics 2.1 Symmetric Cryptography • Overview of Cryptographic Algorithms • Attacking Cryptographic Algorithms • Historical Approaches • Foundations of Modern Cryptography • Modes of Encryption • Data Encryption Standard (DES) • Advanced Encryption Standard (AES) Cryptographic algorithms: outline Cryptographic Algorithms Symmetric Asymmetric Cryptographic Overview En- / Decryption En- / Decryption Hash Functions Modes of Cryptanalysis Background MDC’s / MACs Operation Properties DES RSA MD-5 AES Diffie-Hellman SHA-1 RC4 ElGamal CBC-MAC Network Security, WS 2010/11, Chapter 2.1 2 Basic Terms: Plaintext and Ciphertext Plaintext P The original readable content of a message (or data). P_netsec = „This is network security“ Ciphertext C The encrypted version of the plaintext. C_netsec = „Ff iThtIiDjlyHLPRFxvowf“ encrypt key k1 C P key k2 decrypt In case of symmetric cryptography, k1 = k2. Network Security, WS 2010/11, Chapter 2.1 3 Basic Terms: Block cipher and Stream cipher Block cipher A cipher that encrypts / decrypts inputs of length n to outputs of length n given the corresponding key k. • n is block length Most modern symmetric ciphers are block ciphers, e.g. AES, DES, Twofish, … Stream cipher A symmetric cipher that generats a random bitstream, called key stream, from the symmetric key k. Ciphertext = key stream XOR plaintext Network Security, WS 2010/11, Chapter 2.1 4 Cryptographic algorithms: overview
    [Show full text]
  • Investigating Profiled Side-Channel Attacks Against the DES Key
    IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925, Vol. 2020, No. 3, pp. 22–72. DOI:10.13154/tches.v2020.i3.22-72 Investigating Profiled Side-Channel Attacks Against the DES Key Schedule Johann Heyszl1[0000−0002−8425−3114], Katja Miller1, Florian Unterstein1[0000−0002−8384−2021], Marc Schink1, Alexander Wagner1, Horst Gieser2, Sven Freud3, Tobias Damm3[0000−0003−3221−7207], Dominik Klein3[0000−0001−8174−7445] and Dennis Kügler3 1 Fraunhofer Institute for Applied and Integrated Security (AISEC), Germany, [email protected] 2 Fraunhofer Research Institution for Microsystems and Solid State Technologies (EMFT), Germany, [email protected] 3 Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany, [email protected] Abstract. Recent publications describe profiled single trace side-channel attacks (SCAs) against the DES key-schedule of a “commercially available security controller”. They report a significant reduction of the average remaining entropy of cryptographic keys after the attack, with surprisingly large, key-dependent variations of attack results, and individual cases with remaining key entropies as low as a few bits. Unfortunately, they leave important questions unanswered: Are the reported wide distributions of results plausible - can this be explained? Are the results device- specific or more generally applicable to other devices? What is the actual impact on the security of 3-key triple DES? We systematically answer those and several other questions by analyzing two commercial security controllers and a general purpose microcontroller. We observe a significant overall reduction and, importantly, also observe a large key-dependent variation in single DES key security levels, i.e.
    [Show full text]
  • Block Ciphers and the Data Encryption Standard
    Lecture 3: Block Ciphers and the Data Encryption Standard Lecture Notes on “Computer and Network Security” by Avi Kak ([email protected]) January 26, 2021 3:43pm ©2021 Avinash Kak, Purdue University Goals: To introduce the notion of a block cipher in the modern context. To talk about the infeasibility of ideal block ciphers To introduce the notion of the Feistel Cipher Structure To go over DES, the Data Encryption Standard To illustrate important DES steps with Python and Perl code CONTENTS Section Title Page 3.1 Ideal Block Cipher 3 3.1.1 Size of the Encryption Key for the Ideal Block Cipher 6 3.2 The Feistel Structure for Block Ciphers 7 3.2.1 Mathematical Description of Each Round in the 10 Feistel Structure 3.2.2 Decryption in Ciphers Based on the Feistel Structure 12 3.3 DES: The Data Encryption Standard 16 3.3.1 One Round of Processing in DES 18 3.3.2 The S-Box for the Substitution Step in Each Round 22 3.3.3 The Substitution Tables 26 3.3.4 The P-Box Permutation in the Feistel Function 33 3.3.5 The DES Key Schedule: Generating the Round Keys 35 3.3.6 Initial Permutation of the Encryption Key 38 3.3.7 Contraction-Permutation that Generates the 48-Bit 42 Round Key from the 56-Bit Key 3.4 What Makes DES a Strong Cipher (to the 46 Extent It is a Strong Cipher) 3.5 Homework Problems 48 2 Computer and Network Security by Avi Kak Lecture 3 Back to TOC 3.1 IDEAL BLOCK CIPHER In a modern block cipher (but still using a classical encryption method), we replace a block of N bits from the plaintext with a block of N bits from the ciphertext.
    [Show full text]
  • Known and Chosen Key Differential Distinguishers for Block Ciphers
    Known and Chosen Key Differential Distinguishers for Block Ciphers Ivica Nikoli´c1?, Josef Pieprzyk2, Przemys law Soko lowski2;3, Ron Steinfeld2 1 University of Luxembourg, Luxembourg 2 Macquarie University, Australia 3 Adam Mickiewicz University, Poland [email protected], [email protected], [email protected], [email protected] Abstract. In this paper we investigate the differential properties of block ciphers in hash function modes of operation. First we show the impact of differential trails for block ciphers on collision attacks for various hash function constructions based on block ciphers. Further, we prove the lower bound for finding a pair that follows some truncated differential in case of a random permutation. Then we present open-key differential distinguishers for some well known round-reduced block ciphers. Keywords: Block cipher, differential attack, open-key distinguisher, Crypton, Hierocrypt, SAFER++, Square. 1 Introduction Block ciphers play an important role in symmetric cryptography providing the basic tool for encryp- tion. They are the oldest and most scrutinized cryptographic tool. Consequently, they are the most trusted cryptographic algorithms that are often used as the underlying tool to construct other cryp- tographic algorithms. One such application of block ciphers is for building compression functions for the hash functions. There are many constructions (also called hash function modes) for turning a block cipher into a compression function. Probably the most popular is the well-known Davies-Meyer mode. Preneel et al. in [27] have considered all possible modes that can be defined for a single application of n-bit block cipher in order to produce an n-bit compression function.
    [Show full text]
  • Miss in the Middle
    Miss in the middle By: Gal Leonard Keret Miss in the Middle Attacks on IDEA, Khufu and Khafre • Written by: – Prof. Eli Biham. – Prof. Alex Biryukov. – Prof. Adi Shamir. Introduction • So far we used traditional differential which predict and detect statistical events of highest possible probability. Introduction • A new approach is to search for events with probability one, whose condition cannot be met together (events that never happen). Impossible Differential • Random permutation: 휎 푀0 = 푎푛푦 퐶 표푓 푠푖푧푒 푀0. • Cipher (not perfect): 퐸 푀0 = 푠표푚푒 퐶 표푓 푠푖푧푒 푀0. • Events (푚 ↛ 푐) that never happen distinguish a cipher from a random permutation. Impossible Differential • Impossible events (푚 ↛ 푐) can help performing key elimination. • All the keys that lead to impossibility are obviously wrong. • This way we can filter wrong key guesses and leaving the correct key. Enigma – for example • Some of the attacks on Enigma were based on the observation that letters can not be encrypted to themselves. 퐸푛푖푔푚푎(푀0) ≠ 푀0 In General • (푀0, 퐶1) is a pair. If 푀0 푀0 → 퐶1. • 푀 ↛ 퐶 . 0 0 Some rounds For any key • ∀ 푘푒푦| 퐶1 → 퐶0 ↛ is an impossible key. Cannot lead to 퐶0. Some rounds Find each keys Decrypt 퐶1back to 퐶0. IDEA • International Data Encryption Algorithm. • First described in 1991. • Block cipher. • Symmetric. • Key sizes: 128 bits. • Block sizes: 64 bits. ⊕ - XOR. ⊞ - Addition modulo 216 ⊙ - Multiplication modulo 216+1 Encryption security • Combination of different mathematical groups. • Creation of "incompatibility“: ∗ • 푍216+1 → 푍216 ∗ • 푍216 → 푍216+1 ∗ ∗ Remark: 푍216+1 doesn’t contain 0 like 푍216 , so in 푍216+1 0 will be converted to 216 since 0 ≡ 216(푚표푑 216).
    [Show full text]
  • Development of the Advanced Encryption Standard
    Volume 126, Article No. 126024 (2021) https://doi.org/10.6028/jres.126.024 Journal of Research of the National Institute of Standards and Technology Development of the Advanced Encryption Standard Miles E. Smid Formerly: Computer Security Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA [email protected] Strong cryptographic algorithms are essential for the protection of stored and transmitted data throughout the world. This publication discusses the development of Federal Information Processing Standards Publication (FIPS) 197, which specifies a cryptographic algorithm known as the Advanced Encryption Standard (AES). The AES was the result of a cooperative multiyear effort involving the U.S. government, industry, and the academic community. Several difficult problems that had to be resolved during the standard’s development are discussed, and the eventual solutions are presented. The author writes from his viewpoint as former leader of the Security Technology Group and later as acting director of the Computer Security Division at the National Institute of Standards and Technology, where he was responsible for the AES development. Key words: Advanced Encryption Standard (AES); consensus process; cryptography; Data Encryption Standard (DES); security requirements, SKIPJACK. Accepted: June 18, 2021 Published: August 16, 2021; Current Version: August 23, 2021 This article was sponsored by James Foti, Computer Security Division, Information Technology Laboratory, National Institute of Standards and Technology (NIST). The views expressed represent those of the author and not necessarily those of NIST. https://doi.org/10.6028/jres.126.024 1. Introduction In the late 1990s, the National Institute of Standards and Technology (NIST) was about to decide if it was going to specify a new cryptographic algorithm standard for the protection of U.S.
    [Show full text]
  • Chapter 3 – Block Ciphers and the Data Encryption Standard
    Symmetric Cryptography Chapter 6 Block vs Stream Ciphers • Block ciphers process messages into blocks, each of which is then en/decrypted – Like a substitution on very big characters • 64-bits or more • Stream ciphers process messages a bit or byte at a time when en/decrypting – Many current ciphers are block ciphers • Better analyzed. • Broader range of applications. Block vs Stream Ciphers Block Cipher Principles • Block ciphers look like an extremely large substitution • Would need table of 264 entries for a 64-bit block • Arbitrary reversible substitution cipher for a large block size is not practical – 64-bit general substitution block cipher, key size 264! • Most symmetric block ciphers are based on a Feistel Cipher Structure • Needed since must be able to decrypt ciphertext to recover messages efficiently Ideal Block Cipher Substitution-Permutation Ciphers • in 1949 Shannon introduced idea of substitution- permutation (S-P) networks – modern substitution-transposition product cipher • These form the basis of modern block ciphers • S-P networks are based on the two primitive cryptographic operations we have seen before: – substitution (S-box) – permutation (P-box) (transposition) • Provide confusion and diffusion of message Diffusion and Confusion • Introduced by Claude Shannon to thwart cryptanalysis based on statistical analysis – Assume the attacker has some knowledge of the statistical characteristics of the plaintext • Cipher needs to completely obscure statistical properties of original message • A one-time pad does this Diffusion
    [Show full text]
  • Key Schedule Algorithm Using 3-Dimensional Hybrid Cubes for Block Cipher
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 8, 2019 Key Schedule Algorithm using 3-Dimensional Hybrid Cubes for Block Cipher Muhammad Faheem Mushtaq1, Sapiee Jamel2, Siti Radhiah B. Megat3, Urooj Akram4, Mustafa Mat Deris5 Faculty of Computer Science and Information Technology Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, 86400 Batu Pahat, Johor, Malaysia1, 2, 3, 5 Faculty of Computer Science and Information Technology Khwaja Fareed University of Engineering and Information Technology, 64200 Rahim Yar Khan, Pakistan1, 4 Abstract—A key scheduling algorithm is the mechanism that difficulty for a cryptanalyst to recover the secret key [8]. All generates and schedules all session-keys for the encryption and cryptographic algorithms are recommended to follow 128, 192 decryption process. The key space of conventional key schedule and 256-bits key lengths proposed by Advanced Encryption algorithm using the 2D hybrid cubes is not enough to resist Standard (AES) [9]. attacks and could easily be exploited. In this regard, this research proposed a new Key Schedule Algorithm based on Permutation plays an important role in the development of coordinate geometry of a Hybrid Cube (KSAHC) using cryptographic algorithms and it contains the finite set of Triangular Coordinate Extraction (TCE) technique and 3- numbers or symbols that are used to mix up a readable message Dimensional (3D) rotation of Hybrid Cube surface (HCs) for the into ciphertext as shown in transposition cipher [10]. The logic block cipher to achieve large key space that are more applicable behind any cryptographic algorithm is the number of possible to resist any attack on the secret key.
    [Show full text]
  • ASIC Design of High Speed Kasumi Block Cipher
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 3 Issue 2, February - 2014 ASIC design of High Speed Kasumi Block Cipher Dilip kumar1 Sunil shah2 1M. Tech scholar, Asst. Prof. Gyan ganga institute of technology and science Jabalpur Gyan ganga institute of technology and science Jabalpur M.P. M.P. Abstract - The nature of the information that flows throughout modern cellular communications networks has evolved noticeably since the early years of the first generation systems, when only voice sessions were possible. With today’s networks it is possible to transmit both voice and data, including e-mail, pictures and video. The importance of the security issues is higher in current cellular networks than in previous systems because users are provided with the mechanisms to accomplish very crucial operations like banking transactions and sharing of confidential business information, which require high levels of protection. Weaknesses in security architectures allow successful eavesdropping, message tampering and masquerading attacks to occur, with disastrous consequences for end users, companies and other organizations. The KASUMI block cipher lies at the core of both the f8 data confidentiality algorithm and the f9 data integrity algorithm for Universal Mobile Telecommunications System networks. The design goal is to increase the data conversion rate i.e. the throughput to a substantial value so that the design can be used as a cryptographic coprocessor in high speed network applications. Keywords— Xilinx ISE, Language used: Verilog HDL, Platform Used: family- Vertex4, Device-XC4VLX80 I. INTRODUCTION Symmetric key cryptographic algorithms have a single keyIJERT IJERT for both encryption and decryption.
    [Show full text]
  • The Long Road to the Advanced Encryption Standard
    The Long Road to the Advanced Encryption Standard Jean-Luc Cooke CertainKey Inc. [email protected], http://www.certainkey.com/˜jlcooke Abstract 1 Introduction This paper will start with a brief background of the Advanced Encryption Standard (AES) process, lessons learned from the Data Encryp- tion Standard (DES), other U.S. government Two decades ago the state-of-the-art in cryptographic publications and the fifteen first the private sector cryptography was—we round candidate algorithms. The focus of the know now—far behind the public sector. presentation will lie in presenting the general Don Coppersmith’s knowledge of the Data design of the five final candidate algorithms, Encryption Standard’s (DES) resilience to and the specifics of the AES and how it dif- the then unknown Differential Cryptanaly- fers from the Rijndael design. A presentation sis (DC), the design principles used in the on the AES modes of operation and Secure Secure Hash Algorithm (SHA) in Digital Hash Algorithm (SHA) family of algorithms Signature Standard (DSS) being case and will follow and will include discussion about point[NISTDSS][NISTDES][DC][NISTSHA1]. how it is directly implicated by AES develop- ments. The selection and design of the DES was shrouded in controversy and suspicion. This very controversy has lead to a fantastic acceler- Intended Audience ation in private sector cryptographic advance- ment. So intrigued by the NSA’s modifica- tions to the Lucifer algorithm, researchers— This paper was written as a supplement to a academic and industry alike—powerful tools presentation at the Ottawa International Linux in assessing block cipher strength were devel- Symposium.
    [Show full text]
  • A Proposed SAFER Plus Security Algorithm Using Fast Walsh Hadamard Transform for Bluetooth Technology D.Sharmila 1, R.Neelaveni 2
    International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 2, November 2009 A Proposed SAFER Plus Security algorithm using Fast Walsh Hadamard transform for Bluetooth Technology D.Sharmila 1, R.Neelaveni 2 1(Research Scholar), Associate Professor, Bannari Amman Institute of Technology, Sathyamangalam. Tamil Nadu-638401. [email protected] 2 Asst.Prof. PSG College of Technology, Coimbatore.Tamil Nadu -638401. [email protected] ABSTRACT realtime two-way voice transfer providing data rates up to 3 Mb/s. It operates at 2.4 GHz frequency in the free ISM-band (Industrial, Scientific, and Medical) using frequency hopping In this paper, a modified SAFER plus algorithm is [18]. Bluetooth can be used to connect almost any kind of presented. Additionally, a comparison with various device to another device. Typical range of Bluetooth communication varies from 10 to 100 meters indoors. security algorithms like pipelined AES, Triple DES, Bluetooth technology and associated devices are susceptible Elliptic curve Diffie Hellman and the existing SAFER plus to general wireless networking threats, such as denial of service attacks, eavesdropping, man-in-the-middle attacks, are done. Performance of the algorithms is evaluated message modification, and resource misappropriation. They based on the data throughput, frequency and security are also threatened by more specific Bluetooth-related attacks that target known vulnerabilities in Bluetooth level. The results show that the modified SAFER plus implementations and specifications. Attacks against algorithm has enhanced security compared to the existing improperly secured Bluetooth implementations can provide attackers with unauthorized access to sensitive information algorithms. and unauthorized usage of Bluetooth devices and other Key words : Secure And Fast Encryption Routine, Triple Data systems or networks to which the devices are connected.
    [Show full text]
  • Chapter 2 the Data Encryption Standard (DES)
    Chapter 2 The Data Encryption Standard (DES) As mentioned earlier there are two main types of cryptography in use today - symmet- ric or secret key cryptography and asymmetric or public key cryptography. Symmet- ric key cryptography is the oldest type whereas asymmetric cryptography is only being used publicly since the late 1970’s1. Asymmetric cryptography was a major milestone in the search for a perfect encryption scheme. Secret key cryptography goes back to at least Egyptian times and is of concern here. It involves the use of only one key which is used for both encryption and decryption (hence the use of the term symmetric). Figure 2.1 depicts this idea. It is necessary for security purposes that the secret key never be revealed. Secret Key (K) Secret Key (K) ? ? - - - - Plaintext (P ) E{P,K} Ciphertext (C) D{C,K} Plaintext (P ) Figure 2.1: Secret key encryption. To accomplish encryption, most secret key algorithms use two main techniques known as substitution and permutation. Substitution is simply a mapping of one value to another whereas permutation is a reordering of the bit positions for each of the inputs. These techniques are used a number of times in iterations called rounds. Generally, the more rounds there are, the more secure the algorithm. A non-linearity is also introduced into the encryption so that decryption will be computationally infeasible2 without the secret key. This is achieved with the use of S-boxes which are basically non-linear substitution tables where either the output is smaller than the input or vice versa. 1It is claimed by some that government agencies knew about asymmetric cryptography before this.
    [Show full text]