New Species of Clade B Symbiodinium (Dinophyceae) from the Greater Caribbean Belong to Different Functional Guilds: S

Total Page:16

File Type:pdf, Size:1020Kb

New Species of Clade B Symbiodinium (Dinophyceae) from the Greater Caribbean Belong to Different Functional Guilds: S J. Phycol. 51, 850–858 (2015) © 2015 Phycological Society of America DOI: 10.1111/jpy.12340 NEW SPECIES OF CLADE B SYMBIODINIUM (DINOPHYCEAE) FROM THE GREATER CARIBBEAN BELONG TO DIFFERENT FUNCTIONAL GUILDS: S. AENIGMATICUM SP. NOV., S. ANTILLOGORGIUM SP. NOV., S. ENDOMADRACIS SP. NOV., AND S. PSEUDOMINUTUM SP. NOV.1 John Everett Parkinson2 Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA Mary Alice Coffroth Graduate Program in Evolution, Ecology and Behavior and Department of Geological Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA and Todd C. LaJeunesse Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA Molecular approaches have begun to supersede as corals (Trench 1993). Despite their ecological traditional morphometrics in the species delineation importance, the formal taxonomic description of of micro-eukaryotes. In addition to fixed differences Symbiodinium species has lagged far behind the in DNA sequences, recent genetics-based recognition of molecular diversity within the system, descriptions within the dinoflagellate genus impeding research efforts (LaJeunesse et al. 2012). Symbiodinium have incorporated confirmatory One major reason for this delay is that most mem- morphological, physiological, and ecological bers of the genus bear striking morphological simi- evidence when possible. However, morphological larities to one another. Of the handful of species and physiological data are difficult to collect from descriptions that exist, earlier work emphasized species that have not been cultured, while the natural morphometrics (Freudenthal 1962, Trench and ecologies of many cultured species remain unknown. Blank 1987, Blank and Huss 1989, Trench and Here, we rely on genetic evidence—the only data Thinh 1995, Hansen and Daugbjerg 2009), while consistently available among all taxa investigated—to recent work has shifted toward greater reliance on describe four new Clade B Symbiodinium species. The genetic evidence (LaJeunesse et al. 2012, 2014, ‘host-specialized’ species (S. antillogorgium sp. nov. 2015, Jeong et al. 2014, Hume et al. 2015, Lee et al. and S. endomadracis sp. nov.) engage in mutualisms 2015). with specific cnidarian hosts, but exhibit differences Traditionally, only dinoflagellate species that in our ability to culture them in vitro. The could be cultured were formally described. How- ecologically ‘cryptic’ species (S. aenigmaticum sp. nov. ever, culturing is a highly selective process (von and S. pseudominutum sp. nov.) thrive in culture, but Wintzingerode et al. 1997), particularly for symbi- their roles or functions in the ecosystem (i.e., niches) otic dinoflagellates (Rowan 1998, Carlos et al. 1999, are yet to be documented. These new species call Santos et al. 2001). Efforts to culture the mutualists further attention to the spectrum of ecological guilds that are numerically dominant in a given host have among Symbiodinium. often failed (Santos et al. 2001, LaJeunesse 2002, Goulet and Coffroth 2003). Although most of these Key index words: Clade B; culture; ecological guilds; evolutionarily derived, ‘host-specialized’ lineages do free-living; species recognition; Symbiodinium; not persist in artificial culture (LaJeunesse et al. symbiosis; taxonomy 2005, Krueger and Gates 2012), they are some of Abbreviations: Cob, cytochrome b, cp23S, chloro- the most abundant and ecologically important Sym- plast 23S rDNA; ITS, internal transcribed spacer biodinium. At the same time, those Symbiodinium that perform well in culture are often low abundance types distinct from the dominant symbiont in hos- The genus Symbiodinium encompasses a diverse pite (Santos et al. 2001, LaJeunesse 2002). They array of unicellular dinoflagellates, many of which might be background endosymbionts, opportunistic participate in mutualisms with cnidarian hosts such parasites, ectosymbionts, or even free-living hetero- trophs temporarily captured in the gastrovascular cavity or surface mucus (LaJeunesse 2002, Jeong 1Received 1 April 2015. Accepted 24 July 2015. 2Author for correspondence: e-mail [email protected]. et al. 2014, LaJeunesse et al. 2015). As these Editorial Responsibility: S. Lin (Associate Editor) lineages are difficult to characterize ecologically, but 850 NEW SYMBIODINIUM SPECIES FROM DIFFERENT GUILDS 851 clearly occupy distinct niches compared to classically recently begun the process of speciation and those mutualistic host-specialized species, we refer to them that are farther along. as ‘cryptic’ (sensu LaJeunesse 2001). Here, we use a combination of genetic concor- Population genetic analyses have shown that sex- dance at multiple phylogenetic markers and some ual recombination occurs within but not between ecological information to test the hypothesis that sympatric Symbiodinium populations with distinct four Symbiodinium Clade B lineages are genetically ecological distributions (LaJeunesse et al. 2010, isolated and represent distinct species. Two of the 2014, Thornhill et al. 2014). Such patterns reflect focal lineages associate with cnidarian hosts and reproductive isolation and serve as a powerful appear host-specialized. The first, which has an ITS2 basis for species delineation (LaJeunesse et al. sequence corresponding to type B1 (sensu LaJe- 2014). However, developing microsatellite markers unesse 2001), is mutualistic with sea plumes in the can be resource-intensive, and their utility may be genus Antillogorgia. The second, corresponding to restricted to a few closely related lineages. In the type B7 (sensu LaJeunesse 2002) is mutualistic with absence of population genetic markers, the com- stony corals in the genus Madracis (Diekmann et al. bined analysis of more conservative, unlinked phy- 2003, Pettay and LaJeunesse 2007). The former logenetic markers spanning nuclear, shows a degree of culturability while the latter has mitochondrial, and plastid genomes can effectively not been successfully brought into unialgal culture distinguish evolutionarily divergent lineages (Sam- using current techniques and media. The other two payo et al. 2009). Recombination within species focal lineages thrive in culture but to date have not results in different genealogies among unlinked been detected in host tissues using conventional loci, while between species, drift removes ancestral genetic approaches, and therefore exhibit cryptic, alleles, producing concordant genealogies. Thus, potentially free-living ecologies. The first is closely species can be delimited if they exhibit congruent related to type B23 (sensu Finney et al. 2010). The reciprocal monophyly or nondiscordance at multi- second is closely related to S. minutum (with which ple unlinked loci (Sampayo et al. 2009, Leliaert it shares ITS2 type B1; LaJeunesse et al. 2012). et al. 2014). We recently used this multi-gene approach to delineate S. minutum and S. psygmophilum, two Clade MATERIALS AND METHODS B Symbiodinium (LaJeunesse et al. 2012). These taxa Specimen collection. Tissues from the host cnidarians Antillo- exhibited clear differentiation and reciprocal mono- gorgia bipinnata, A. elisabethae and Madracis spp. were collected phyly across multiple genomic loci, indicating a lack from the Florida Keys, Barbados, Belize and/or Curacßao to of sexual recombination which is consistent with the target symbionts with host-specialized associations. Some of Biological Species Concept (Mayr 1942, Avise and the samples had been used in an earlier study (Finney et al. Wollenberg 1997). Several additional lines of evi- 2010) and were previously screened for the presence of Clade dence were also available, though not all of them B Symbiodinium using denaturing gradient gel electrophoresis of the ITS region as described by Sampayo et al. (2009). New are needed to describe species. S. minutum and samples were similarly screened. Whole tissues were preserved S. psygmophilum were known to function as common in high-salt, 20% DMSO buffer (Seutin et al. 1991) and host-specialized symbionts, so their ecologies and stored at À20°C until processed for molecular analysis. biogeographies had been well studied and deter- Cultures and cell size analysis. Monoclonal cultures of Clade mined to be distinct (satisfying the Ecological Spe- B Symbiodinium isolated from western Atlantic cnidarian hosts cies Concept; Van Valen 1976). They were readily were acquired from the Robert K. Trench collection and the maintained in culture, allowing for physiological Buffalo Undersea Reef Research Culture Center (BURRCC) collection. Cultures were maintained in liquid media (ASP8- experiments that revealed further functional differ- A; Ahles 1967) and kept in incubators delivering 80– À À ences in thermal tolerance. Cell size disparities sug- 120 lmol photons Á m 2 Á s 1 photosynthetically active radia- gested morphological divergence reflective of tion on a 14:10 L:D photoperiod under Philips fluorescent evolutionary divergence. Indeed, subsequent elec- tubes (Koninklijke Philips Electrons, Amsterdam, the Nether- tron microscopy identified differences in amphies- lands) at a temperature of 26°C. mal plate tabulations between the species (Lee et al. Cultures were photographed during log phase growth 2014). Because ecological and morphological data under bright-field illumination at a magnification of 400–1,0009 using an Olympus BX61 compound microscope have thus far corresponded to concordant phyloge- (Olympus Corp., Tokyo, Japan) with a Jenoptik ProgRes CF netic data from multiple
Recommended publications
  • Unfolding the Secrets of Coral–Algal Symbiosis
    The ISME Journal (2015) 9, 844–856 & 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE Unfolding the secrets of coral–algal symbiosis Nedeljka Rosic1, Edmund Yew Siang Ling2, Chon-Kit Kenneth Chan3, Hong Ching Lee4, Paulina Kaniewska1,5,DavidEdwards3,6,7,SophieDove1,8 and Ove Hoegh-Guldberg1,8,9 1School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia; 2University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia; 3School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia; 4The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia; 5Australian Institute of Marine Science, Townsville, Queensland, Australia; 6School of Plant Biology, University of Western Australia, Perth, Western Australia, Australia; 7Australian Centre for Plant Functional Genomics, The University of Queensland, St Lucia, Queensland, Australia; 8ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia and 9Global Change Institute and ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia Dinoflagellates from the genus Symbiodinium form a mutualistic symbiotic relationship with reef- building corals. Here we applied massively parallel Illumina sequencing to assess genetic similarity and diversity among four phylogenetically diverse dinoflagellate clades (A, B, C and D) that are commonly associated with corals. We obtained more than 30 000 predicted genes for each Symbiodinium clade, with a majority of the aligned transcripts corresponding to sequence data sets of symbiotic dinoflagellates and o2% of sequences having bacterial or other foreign origin.
    [Show full text]
  • Symbiodinium Genomes Reveal Adaptive Evolution of Functions Related to Symbiosis
    bioRxiv preprint doi: https://doi.org/10.1101/198762; this version posted October 5, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Article 2 Symbiodinium genomes reveal adaptive evolution of 3 functions related to symbiosis 4 Huanle Liu1, Timothy G. Stephens1, Raúl A. González-Pech1, Victor H. Beltran2, Bruno 5 Lapeyre3,4, Pim Bongaerts5, Ira Cooke3, David G. Bourne2,6, Sylvain Forêt7,*, David J. 6 Miller3, Madeleine J. H. van Oppen2,8, Christian R. Voolstra9, Mark A. Ragan1 and Cheong 7 Xin Chan1,10,† 8 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, 9 Australia 10 2Australian Institute of Marine Science, Townsville, QLD 4810, Australia 11 3ARC Centre of Excellence for Coral Reef Studies and Department of Molecular and Cell 12 Biology, James Cook University, Townsville, QLD 4811, Australia 13 4Laboratoire d’excellence CORAIL, Centre de Recherches Insulaires et Observatoire de 14 l’Environnement, Moorea 98729, French Polynesia 15 5Global Change Institute, The University of Queensland, Brisbane, QLD 4072, Australia 16 6College of Science and Engineering, James Cook University, Townsville, QLD 4811, 17 Australia 18 7Research School of Biology, Australian National University, Canberra, ACT 2601, Australia 19 8School of BioSciences, The University of Melbourne, VIC 3010, Australia 1 bioRxiv preprint doi: https://doi.org/10.1101/198762; this version posted October 5, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • A Case of Modular Phenotypic Plasticity in the Depth
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Calixto-Botía and Sánchez BMC Evolutionary Biology (2017) 17:55 DOI 10.1186/s12862-017-0900-8 RESEARCH ARTICLE Open Access A case of modular phenotypic plasticity in the depth gradient for the gorgonian coral Antillogorgia bipinnata (Cnidaria: Octocorallia) Iván Calixto-Botía1,2* and Juan A. Sánchez2,3 Abstract Background: Phenotypic plasticity, as a phenotypic response induced by the environment, has been proposed as a key factor in the evolutionary history of corals. A significant number of octocoral species show high phenotypic variation, exhibiting a strong overlap in intra- and inter-specific morphologic variation. This is the case of the gorgonian octocoral Antillogorgia bipinnata (Verrill 1864), which shows three polyphyletic morphotypes along a bathymetric gradient. This research tested the phenotypic plasticity of modular traits in A. bipinnata with a reciprocal transplant experiment involving 256 explants from two morphotypes in two locations and at two depths. Vertical and horizontal length and number of new branches were compared 13 weeks following transplant. The data were analysed with a linear mixed-effects model and a graphic approach by reaction norms. Results: At the end of the experiment, 91.8% of explants survived. Lower vertical and horizontal growth rates and lower branch promotion were found for deep environments compared to shallow environments. The overall variation behaved similarly to the performance of native transplants. In particular, promotion of new branches showed variance mainly due to a phenotypic plastic effect. Conclusions: Globally, environmental and genotypic effects explain the variation of the assessed traits.
    [Show full text]
  • The Symbiotic Life of Symbiodinium in the Open Ocean Within a New Species of Calcifying Ciliate (Tiarina Sp.)
    The ISME Journal (2016) 10, 1424–1436 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej ORIGINAL ARTICLE The symbiotic life of Symbiodinium in the open ocean within a new species of calcifying ciliate (Tiarina sp.) Solenn Mordret1,2,5, Sarah Romac1,2, Nicolas Henry1,2, Sébastien Colin1,2, Margaux Carmichael1,2, Cédric Berney1,2, Stéphane Audic1,2, Daniel J Richter1,2, Xavier Pochon3,4, Colomban de Vargas1,2 and Johan Decelle1,2,6 1EPEP—Evolution des Protistes et des Ecosystèmes Pélagiques—team, Sorbonne Universités, UPMC Univ Paris 06, UMR 7144, Station Biologique de Roscoff, Roscoff, France; 2CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France; 3Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand and 4Institute of Marine Science, University of Auckland, Auckland, New Zealand Symbiotic partnerships between heterotrophic hosts and intracellular microalgae are common in tropical and subtropical oligotrophic waters of benthic and pelagic marine habitats. The iconic example is the photosynthetic dinoflagellate genus Symbiodinium that establishes mutualistic symbioses with a wide diversity of benthic hosts, sustaining highly biodiverse reef ecosystems worldwide. Paradoxically, although various species of photosynthetic dinoflagellates are prevalent eukaryotic symbionts in pelagic waters, Symbiodinium has not yet been reported in symbiosis within oceanic plankton, despite its high propensity for the symbiotic lifestyle. Here we report a new pelagic photosymbiosis between a calcifying ciliate host and the microalga Symbiodinium in surface ocean waters. Confocal and scanning electron microscopy, together with an 18S rDNA-based phylogeny, showed that the host is a new ciliate species closely related to Tiarina fusus (Colepidae).
    [Show full text]
  • Symbiodinium Genomes Reveal Adaptive Evolution of Functions Related to Coral-Dinoflagellate Symbiosis
    Corrected: Publisher correction ARTICLE DOI: 10.1038/s42003-018-0098-3 OPEN Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis Huanle Liu1, Timothy G. Stephens1, Raúl A. González-Pech1, Victor H. Beltran2, Bruno Lapeyre3,4,12, Pim Bongaerts5,6, Ira Cooke4, Manuel Aranda7, David G. Bourne2,8, Sylvain Forêt3,9, David J. Miller3,4, Madeleine J.H. van Oppen2,10, Christian R. Voolstra7, Mark A. Ragan1 & Cheong Xin Chan1,11 1234567890():,; Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world’s coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp) to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families (containing 5% of Symbiodinium genes) that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identify extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding of Symbiodinium biology and the coral-algal symbiosis. 1 Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia. 2 Australian Institute of Marine Science, Townsville, QLD 4810, Australia. 3 ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
    [Show full text]
  • Volume 19 Winter 2002 the Coral Hind, Lapu Lapu, Or Miniata
    FREE ISSN 1045-3520 Volume 19 Winter 2002 Introducing a Zonal Based Natural Photo by Robert Fenner Filtration System for Reef Aquariums by Steve Tyree Quite a few natural based filtration systems have been devised by reef aquarists and scientists in the past twenty years. Some systems utilized algae to remove organic and inorganic pollutants from the reef aquarium; others utilized sediment beds. The natural filtration system that I have been researching and designing is drastically different from both of these types. No external algae are used. I believe that all the algae a functional reef requires are already growing in the reef, even if they are not apparent. They include micro-algae, turf algae, coralline algae, single-cell algae within photosynthetic corals, and cyanobacteria with photosynthetic capabilities. Most of the systems that I have set up to research this concept have not included sediment beds. All organic matter and pollutants are recycled and processed within the system by macro-organisms. Sediment beds have not been utilized to process excess Miniata Grouper, Cephalopholis miniata organic debris, but that does not prevent other aquarists from adding them. The main concept behind my system is the use of living sponges, sea squirts, and filter feeders for filtration. Sponges consume bacteria, can reach about twenty inches in length in the wild, and dissolved and colloidal organic material, micro-plankton, The Coral Hind, Lapu about half that in captivity. It is undoubtedly the most and fine particulate matter. Sea squirts consume large Lapu, or Miniata prized member of the genus for the aquarium trade.
    [Show full text]
  • New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments.
    [Show full text]
  • Eighth International Conference on Modern and Fossil Dinoflagellates
    0 DINO8 Eighth International Conference on Modern and Fossil Dinoflagellates May 4 to May 10, 2008 Université du Québec à Montréal Complexe des Sciences Pierre Dansereau Building SH, 200 Sherbrooke Street West, Montreal, Quebec, Canada Abstracts 1 TABLE OF CONTENTS ABSTRACTS……………………………………………………………………………………...2 LIST OF PARTICIPANTS………………………………………………………………………66 Organizing commitee Organizers : Anne de Vernal GEOTOP-UQAM, Canada ([email protected]) André Rochon ISMER-UQAR, Canada ([email protected]) Scientific committee: Susan Carty, Heidelberg College, Ohio, USA ([email protected]) Lucy Edwards, US Geological Survey ([email protected]) Marianne Ellegaard, University of Copenhagen, Denmark ([email protected]) Martin J. Head, Brock University, Canada ([email protected]) Alexandra Kraberg, Alfred Wegener Institute for Polar and Marine Research, Germany ([email protected] ) Jane Lewis, University of Westminster, UK ([email protected] ) Fabienne Marret, University of Liverpool, UK ([email protected] ) Kazumi Matsuoka, University of Nagasaki, Japan ([email protected] ) Jens Matthiessen, Alfred Wegener Institute for Polar and Marine Research, Germany ([email protected] ) Edwige Masure, Université Pierre et Marie Curie, France ([email protected] ) Marina Montresor, Stazione zoologica "Anton Dohrn" di Napoli, Italy ([email protected] ) Vera Pospelova, University of Victoria, Canada ([email protected] ) Suzanne Roy, ISMER-UQAR, Canada ([email protected]) Karin Zonneveld, University of Bremen, Germany ([email protected]) 2 ABSTRACTS Toxic blooms of Alexandrium fundyense in the Monitoring of the regional abundance of cysts may Gulf of Maine: the role of cysts in population thus hold the key to interannual forecasts of A. dynamics and long-term patterns of shellfish fundyense bloom severity in this region.
    [Show full text]
  • Aquatic Ecosystems Bibliography Compiled by Robert C. Worrest
    Aquatic Ecosystems Bibliography Compiled by Robert C. Worrest Abboudi, M., Jeffrey, W. H., Ghiglione, J. F., Pujo-Pay, M., Oriol, L., Sempéré, R., . Joux, F. (2008). Effects of photochemical transformations of dissolved organic matter on bacterial metabolism and diversity in three contrasting coastal sites in the northwestern Mediterranean Sea during summer. Microbial Ecology, 55(2), 344-357. Abboudi, M., Surget, S. M., Rontani, J. F., Sempéré, R., & Joux, F. (2008). Physiological alteration of the marine bacterium Vibrio angustum S14 exposed to simulated sunlight during growth. Current Microbiology, 57(5), 412-417. doi: 10.1007/s00284-008-9214-9 Abernathy, J. W., Xu, P., Xu, D. H., Kucuktas, H., Klesius, P., Arias, C., & Liu, Z. (2007). Generation and analysis of expressed sequence tags from the ciliate protozoan parasite Ichthyophthirius multifiliis BMC Genomics, 8, 176. Abseck, S., Andrady, A. L., Arnold, F., Björn, L. O., Bomman, J. F., Calamari, D., . Zepp, R. G. (1998). Environmental effects of ozone depletion: 1998 assessment. Journal of Photochemistry and Photobiology B: Biology, 46(1-3), 1-108. doi: Doi: 10.1016/s1011-1344(98)00195-x Adachi, K., Kato, K., Wakamatsu, K., Ito, S., Ishimaru, K., Hirata, T., . Kumai, H. (2005). The histological analysis, colorimetric evaluation, and chemical quantification of melanin content in 'suntanned' fish. Pigment Cell Research, 18, 465-468. Adams, M. J., Hossaek, B. R., Knapp, R. A., Corn, P. S., Diamond, S. A., Trenham, P. C., & Fagre, D. B. (2005). Distribution Patterns of Lentic-Breeding Amphibians in Relation to Ultraviolet Radiation Exposure in Western North America. Ecosystems, 8(5), 488-500. Adams, N.
    [Show full text]
  • The Windblown: Possible Explanations for Dinophyte DNA
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.07.242388; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The windblown: possible explanations for dinophyte DNA in forest soils Marc Gottschlinga, Lucas Czechb,c, Frédéric Mahéd,e, Sina Adlf, Micah Dunthorng,h,* a Department Biologie, Systematische Botanik und Mykologie, GeoBio-Center, Ludwig- Maximilians-Universität München, D-80638 Munich, Germany b Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, D- 69118 Heidelberg, Germany c Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA d CIRAD, UMR BGPI, F-34398, Montpellier, France e BGPI, Université de Montpellier, CIRAD, IRD, Montpellier SupAgro, Montpellier, France f Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, S7N 5A8, SK, Canada g Eukaryotic Microbiology, Faculty of Biology, Universität Duisburg-Essen, D-45141 Essen, Germany h Centre for Water and Environmental Research (ZWU), Universität Duisburg-Essen, D- 45141 Essen, Germany Running title: Dinophytes in soils Correspondence M. Dunthorn, Eukaryotic Microbiology, Faculty of Biology, Universität Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany Telephone number: +49-(0)-201-183-2453; email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.08.07.242388; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Host-Microbe Interactions in Octocoral Holobionts - Recent Advances and Perspectives Jeroen A
    van de Water et al. Microbiome (2018) 6:64 https://doi.org/10.1186/s40168-018-0431-6 REVIEW Open Access Host-microbe interactions in octocoral holobionts - recent advances and perspectives Jeroen A. J. M. van de Water* , Denis Allemand and Christine Ferrier-Pagès Abstract Octocorals are one of the most ubiquitous benthic organisms in marine ecosystems from the shallow tropics to the Antarctic deep sea, providing habitat for numerous organisms as well as ecosystem services for humans. In contrast to the holobionts of reef-building scleractinian corals, the holobionts of octocorals have received relatively little attention, despite the devastating effects of disease outbreaks on many populations. Recent advances have shown that octocorals possess remarkably stable bacterial communities on geographical and temporal scales as well as under environmental stress. This may be the result of their high capacity to regulate their microbiome through the production of antimicrobial and quorum-sensing interfering compounds. Despite decades of research relating to octocoral-microbe interactions, a synthesis of this expanding field has not been conducted to date. We therefore provide an urgently needed review on our current knowledge about octocoral holobionts. Specifically, we briefly introduce the ecological role of octocorals and the concept of holobiont before providing detailed overviews of (I) the symbiosis between octocorals and the algal symbiont Symbiodinium; (II) the main fungal, viral, and bacterial taxa associated with octocorals; (III) the dominance of the microbial assemblages by a few microbial species, the stability of these associations, and their evolutionary history with the host organism; (IV) octocoral diseases; (V) how octocorals use their immune system to fight pathogens; (VI) microbiome regulation by the octocoral and its associated microbes; and (VII) the discovery of natural products with microbiome regulatory activities.
    [Show full text]
  • Comunidad De Octocorales Gorgonáceos Del Arrecife De Coral De Varadero En El Caribe Colombiano: Diversidad Y Distribución Espacial
    Instituto de Investigaciones Marinas y Costeras Boletín de Investigaciones Marinas y Costeras ISSN 0122-9761 “José Benito Vives de Andréis” Bulletin of Marine and Coastal Research e-ISSN: 2590-4671 48 (1), 55-64 Santa Marta, Colombia, 2019 Comunidad de octocorales gorgonáceos del arrecife de coral de Varadero en el Caribe colombiano: diversidad y distribución espacial Gorgonian octocoral community at Varadero coral reef in the Colombian Caribbean: diversity and spatial distribution Nelson Manrique-Rodríguez1, Claudia Agudelo2 y Adolfo Sanjuan-Muñoz2,3 0000-0003-4001-7838 0000-0002-4786-862X 1 Okeanos Asesoría Ambiental S.A.S. Carrera 3 # 1-14 Bello Horizonte. Santa Marta, Magdalena, Colombia. [email protected] 2 Sanjuan y Asociados Ltda. Calle 17 # 4-50 El Rodadero. Santa Marta, Magdalena, Colombia. [email protected] 3 Universidad de Bogotá Jorge Tadeo Lozano. Carrera 2 # 11 – 68 El Rodadero. Santa Marta, Magdalena, Colombia. [email protected] RESUMEN l arrecife de Varadero tiene características ecológicas únicas y enfrenta el riesgo de desaparecer debido al eventual dragado de un canal de acceso, que se construiría para el ingreso de grandes embarcaciones al puerto de Cartagena (Colombia). En este ecosistema, la comunidad bentónica sésil, como los octocorales gorgonáceos y la fauna asociada, se vería seriamente afectada. Se Eexaminó la diversidad y la distribución espacial de gorgonáceos de siete sitios ubicados en el área de arrecifes mixtos. Estos organismos se encontraron en el área de estudio a profundidades entre 6 y 10 m. La riqueza de especies de gorgonáceos fue menor que la registrada en otras áreas del Caribe. Los bajos valores de abundancia y riqueza de especies pueden obedecer a las características del relieve arrecifal y a los procesos de alta sedimentación que existen en la bahía de Cartagena.
    [Show full text]