Reconstructing Relative Genome Size of Vascular Plants Through
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Early Jurassic Microbial Mats—A Potential Response to Reduced Biotic Activity in the Aftermath of the End-Triassic Mass Extinction Event
Palaeogeography, Palaeoclimatology, Palaeoecology 464 (2016) 76–85 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Early Jurassic microbial mats—A potential response to reduced biotic activity in the aftermath of the end-Triassic mass extinction event Olof Peterffy a, Mikael Calner a, Vivi Vajda a,b,⁎ a Department of Geology, Lund University, SE-22362 Lund, Sweden b Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden article info abstract Article history: Wrinkle structures are microbially induced sedimentary structures (MISS) formed by cyanobacteria and are com- Received 6 June 2015 mon in pre-Cambrian and Cambrian siltstones and sandstones but are otherwise rare in the Phanerozoic geolog- Received in revised form 4 December 2015 ical record. This paper reports the first discovery of Mesozoic wrinkle structures from Sweden. These are Accepted 22 December 2015 preserved in fine-grained and organic-rich heterolithic strata of the Lower Jurassic (Hettangian) Höganäs Forma- Available online 30 December 2015 tion in Skåne, southern Sweden. The strata formed in a low-energy, shallow subtidal setting in the marginal parts fi Keywords: of the Danish rift-basin. Palynological analyses of ne-grained sandstones hosting the wrinkle structures show Hettangian that the local terrestrial environment probably consisted of a wetland hosting ferns, cypress and the extinct co- Mass extinction nifer family Cheirolepidaceae. Palynostratigraphy indicates a Hettangian age, still within the floral recovery phase Microbial mat following the end-Triassic mass extinction event. The finding of wrinkle structures is significant as the presence Cyanobacteria of microbial mats in the shallow subtidal zone, (in a deeper setting compared to where modern epibenthic mi- Wrinkle structures crobial mats grow) suggests decreased benthic biodiversity and suppressed grazing in shallow marine environ- Sweden ments in the early aftermath of the end-Triassic mass extinction event. -
COMMONWEALTH of VIRGINIA DEPARTMENT of CONSERVATION and ECONOMIC DEVELOPMENT DIVISION of MINERAL RESOURCES Robert C
VIRGINIA DIVISION OF MINERAL RESOURCES PUBLICATION 20 GEOLOGY OF THE OAK GROVE CORE . e- 1lg**** - rlrl""*"-*-lq j4;i; s" r "e .-e l;"* l* - :-* l,i.l-1" -*"4{ ' *-q-S''q-"_ l -a,T-,! - !:: ts"--l ::9: : ::5 :e 'l I ." t::::,:1,a::-:d:; r--" 4 f-d;:s ,:,S r,! ,:a:16:":, 9:-4:-:r:: -':"-lii;3? -F - d,* COMMONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES Robert C. Milici, Commissioner of Mineral Resources and State Geologist CHARLOTTESVILLE, VIRGINIA 1980 VIRGINIA DIVISION OF MINERAL RESOURCES PUBLICATION 20 GEOLOGY OF THE OAK GROVE CORE COMMONWEALTH OF VI RGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES Robert C. Milici, Commissioner of Mineral Resources and State Geologist CHAR LOTTESVI LLE, VI RGI N IA 1980 VIRGINIA DIVISION OF MINERAL RESOURCES PUBLICATION 20 GEOLOGY OF THE OAK GROVE CORE COMMONWEALTH OF VI RGIN IA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES Robert C. Milici, Commissioner of Mineral Resources and State Geologist CHARLOTTESVILLE, VIRGINIA 1980 COMMONWEALTH OT VIRGINIA DEPARTMENT OF PURCHASES AND SUPPLY . RICHMOND 1980 DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT Richmond, Virginia FRED W. WALKER, Director JERALDF. MOORE, Deputy Director BOARD J. H. JOHNSON, West Point, Chairman A. R. DUNNING, Millwood, Vice Chairman MYRON P. ERKILETIAN, Alexandria ARTHUR P. FLIPPO. Doswell HENRY T. N. GRAVES, Luray MILDRED LAYNE, Williamsburg FREDERIC S. REED, Manakin-Sabot GEORGE P. SHAFRAN, Arlington SHELDON H. SHORT,III, Chase City NICHOLAS D. STREET, Grundy SHERMAN WALLACE, Cleveland E. FLOYD YATES, Powhatan CONTENTS' Page Part 1. -
9/3/2019 1 Bonnie Fine Jacobs Curriculum Vitae Address
9/3/2019 BONNIE FINE JACOBS CURRICULUM VITAE ADDRESS: Roy M. Huffington Department of Earth Sciences P.O. Box 750395 Southern Methodist University Dallas, Texas 75275-0395 EDUCATION: Ph.D. 1983, Geosciences, University of Arizona. Past Vegetation and Climate of the Mogollon Rim Area, Arizona. M.S. 1978, Geosciences, University of Arizona. Vegetation and Modern Pollen Spectra in Sinaloa and Nayarit, Mexico. B.A. 1974, Geology/Anthropology, State University of New York at Buffalo. EMPLOYMENT: 2013 – Present. Professor, Roy M. Huffington Department of Earth Sciences, Southern Methodist University. 2006 – 2013. Associate Professor, Roy M. Huffington Department of Earth Sciences, Southern Methodist University. 2009 – 2010. Founding Director, SMU Center for the Environment, Southern Methodist University. 2000 – 2010. Director, Environmental Science Program; 2008 – 2010 founding Director Environmental Studies Program, Southern Methodist University. 2000 – 2006. Assistant Professor Southern Methodist University. 2001- Present. Research Associate Professor II of Biological Sciences, Southern Methodist University. 1995 - 2000. Adjunct Associate Professor, Departments of Anthropology and Geological Sciences, Southern Methodist University. 1986 - 1995. Adjunct Assistant Professor, Southern Methodist University, Department of Geological Sciences, Southern Methodist University. 1 9/3/2019 1985 – Present. Scientist, and Director of Palynology Laboratory, Southern Methodist University. 1984 - 2000. Adjunct Assistant Professor, Department of Biological -
Broadleaf Evergreens Cocculus Laurifolia, Or Available
Acca Sellowiana Acca sellowiana, or pineapple BROADLEAF guava, has been used in the Central Florida area for years and EVERGREENS can form the backbone of the garden as it is drought tolerant, FOR CENTRAL grows in sun or shade, is cold FLORIDA hardy, can be sheared for a hedge or grown loose as a specimen and also has attractive flowers vergreens are divided into two followed by an edible fruit. The groups: Broadleaf and needle. plant has recently been renamed, E Our concentration will be on the as many people will recognize it first group, as Leu Gardens is aware of as Feijoa. the vast variety of broadleaf evergreens Cocculus laurifolia, or available. A good number has been snailseed, is another good choice planted to show the visitor how they can for screening as the plant can get be used in the landscape. Most are easy to to be fifteen feet tall. Snailseed is grow, require little care and maintenance parviflorum, are both Florida natives, tolerant of almost any location, will and have a relatively long life span. grow five to fifteen feet tall and are used grow in sun or shade, needs little care One of the most important evergreens for hedges or large screens. The yellow and its glossy leaves provide a good at Leu Gardens is, of course, the camellia. anise has fragrant foliage backdrop for There are over 400 species and cultivars and pale greenish-yellow plants with throughout the Gardens in most areas flowers. The Florida anise lighter colored that provide dappled shade. Harry P. -
Article in Press
Türkiye Jeoloji Bülteni Geological Bulletin of Turkey 64 (2021) 267-276 doi: 10.25288/tjb.854704 The First Report of Gangamopteris rajaensis from Rajmahal Gondwana Basin (Jharkhand, India) Arun Joshi1 , Raj Kumar Priya2* 1 Council of Scientific and Industrial Research (CSIR) and SGRR (P.G.) College, Dehradun, India 2 Department of Geology, Sikkim University, Gangtok, Sikkim, India • Geliş/Received: 05.01.2021 • Düzeltilmiş Metin Geliş/Revised Manuscript Received: 13.05.2021 • Kabul/Accepted: 14.05.2021 • Çevrimiçi Yayın/Available online: 29.06.2021 • Baskı/Printed: 25.08.2021 Research Article/Araştırma Makalesi Türkiye Jeol. Bül. / Geol. Bull. Turkey Abstract: The present study deals with the systematic description of macro and miofloral analysis ofGangamopteris rajaensis and Glossopteris indica from the carbonaceous shale-coal bearing sequences of the Rajmahal Open Cast Mine, Rajmahal Basin, Jharkhand, India. The floral diversity, age correlation, and the paleoenvironment of the Barakar Formation were well described. Morphological analysis revealed the reticulate venation pattern, anastomosing of veins, and the absence of the midrib in Gangamopteris rajaensis. The recovered megafloral assemblages of Gangamopteris rajaensis and Glossopteris indica suggest a late early Permian (Artiskian-Kungurian) age for the Barakar strata of Rajmahal coal mine and the prevalence of a moderately warm climate during their deposition. Earlier the species was reported from the Barakar Formation of Damodar and Mahanadi Gondwana basins in India. However, this is the first detailed systematic investigation of this species from the Rajmahal Gondwana Basin, Jharkhand, India. Keywords: Barakar Formation, Early Permian, Gangamopteris rajaensis, Rajmahal Gondwana Basin. INTRODUCTION the Permo-Carboniferous period (Mukhopadhyay The warm and humid climate after the Late et al., 2010). -
Curriculum Vitae
CURRICULUM VITAE ORCID ID: 0000-0003-0186-6546 Gar W. Rothwell Edwin and Ruth Kennedy Distinguished Professor Emeritus Department of Environmental and Plant Biology Porter Hall 401E T: 740 593 1129 Ohio University F: 740 593 1130 Athens, OH 45701 E: [email protected] also Courtesy Professor Department of Botany and PlantPathology Oregon State University T: 541 737- 5252 Corvallis, OR 97331 E: [email protected] Education Ph.D.,1973 University of Alberta (Botany) M.S., 1969 University of Illinois, Chicago (Biology) B.A., 1966 Central Washington University (Biology) Academic Awards and Honors 2018 International Organisation of Palaeobotany lifetime Honorary Membership 2014 Fellow of the Paleontological Society 2009 Distinguished Fellow of the Botanical Society of America 2004 Ohio University Distinguished Professor 2002 Michael A. Cichan Award, Botanical Society of America 1999-2004 Ohio University Presidential Research Scholar in Biomedical and Life Sciences 1993 Edgar T. Wherry Award, Botanical Society of America 1991-1992 Outstanding Graduate Faculty Award, Ohio University 1982-1983 Chairman, Paleobotanical Section, Botanical Society of America 1972-1973 University of Alberta Dissertation Fellow 1971 Paleobotanical (Isabel Cookson) Award, Botanical Society of America Positions Held 2011-present Courtesy Professor of Botany and Plant Pathology, Oregon State University 2008-2009 Visiting Senior Researcher, University of Alberta 2004-present Edwin and Ruth Kennedy Distinguished Professor of Environmental and Plant Biology, Ohio -
Early Cenomanian Palynofloras and Inferred Resiniferous
Early Cenomanian palynofloras and inferred resiniferous forests and vegetation types in Charentes (southwestern France) Daniel Peyrot, Eduardo Barron, France Polette, David Batten, Didier Néraudeau To cite this version: Daniel Peyrot, Eduardo Barron, France Polette, David Batten, Didier Néraudeau. Early Cenomanian palynofloras and inferred resiniferous forests and vegetation types in Charentes (southwestern France). Cretaceous Research, Elsevier, 2019, 94, pp.168-189. 10.1016/j.cretres.2018.10.011. insu-01897273 HAL Id: insu-01897273 https://hal-insu.archives-ouvertes.fr/insu-01897273 Submitted on 17 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Early Cenomanian palynofloras and inferred resiniferous forests and vegetation types in Charentes (southwestern France) Daniel Peyrot, Eduardo Barrón, France Polette, David J. Batten, Didier Néraudeau PII: S0195-6671(18)30252-0 DOI: 10.1016/j.cretres.2018.10.011 Reference: YCRES 3988 To appear in: Cretaceous Research Received Date: 21 June 2018 Revised Date: 19 September 2018 Accepted Date: 12 October 2018 Please cite this article as: Peyrot, D., Barrón, E., Polette, F., Batten, D.J., Néraudeau, D., Early Cenomanian palynofloras and inferred resiniferous forests and vegetation types in Charentes (southwestern France), Cretaceous Research (2018), doi: https://doi.org/10.1016/j.cretres.2018.10.011. -
Ecology and Distribution of the Malesian Podocarps Neal J
4 Ecology and Distribution of the Malesian Podocarps Neal J. Enright and Tanguy Jaffré ABSTRACT. Podocarp species and genus richness is higher in the Malesian region than anywhere else on earth, with maximum genus richness in New Guinea and New Caledo- nia and maximum species richness in New Guinea and Borneo. Members of the Podo- carpaceae occur across the whole geographic and altitudinal range occupied by forests and shrublands in the region. There is a strong tendency for podocarp dominance of vegetation to be restricted either to high- altitude sites close to the limit of tree growth or to other sites that might restrict plant growth in terms of water relations and nutri- ent supply (e.g., skeletal soils on steep slopes and ridges, heath forests, ultramafic parent material). Although some species are widespread in lowland forests, they are generally present at very low density, raising questions concerning their regeneration ecology and competitive ability relative to co- occurring angiosperm tree species. A number of species in the region are narrowly distributed, being restricted to single islands or mountain tops, and are of conservation concern. Our current understanding of the distribution and ecology of Malesian podocarps is reviewed in this chapter, and areas for further research are identified. INTRODUCTION The Malesian region has the highest diversity of southern conifers (i.e., Podocarpaceae and Araucariaceae) in the world (Enright and Hill, 1995). It is a large and heterogeneous area, circumscribing tropical and subtropical lowland to montane forest (and some shrubland) assemblages, extending from Tonga in Neal J. Enright, School of Environmental Science, the east to India in the west and from the subtropical forests of eastern Australia Murdoch University, Murdoch, Western Austra- in the south to Taiwan and Nepal in the north (Figure 4.1). -
Reproductive Biology of the Permian Glossopteridalesand Their
Proc. Natd. Acad. Sci. USA Vol. 89, pp. 11495-11497, December 1992 Plant Biology Reproductive biology of the Permian Glossopteridales and their suggested relationship to flowering plants (Gndwan/seed fen/p d peat/phogy) EDITH L. TAYLOR AND THOMAS N. TAYLOR Byrd Polar Research Center and Department of Plant Biology, Ohio State University, Columbus, OH 43210 Communicated by Henry N. Andrews, August 27, 1992 ABSTRACT The discovery of pn rid reproductive organs fm Le ard- mr Glacier regV_io Antarctica proides anato l eidene for the ada iat- tachment of the seeds to the megasporophyll in this Impant group of Late Paeooic seed plants. The position of the seeds is in direct contradiction to many earlier Pbs predominantly on impression/compressIon remains. The at- tachment of the ovules on the adaxial surface of a leaf-like megasftiorophyfl, combinedwithotherfetre, suchasm g- metophyte development, sugs a sler reproductive biology in this group than has prev been hypothesized. These findings confirm the of the Glessopteridales as seed ferns and are important coider- FIG. 1. Cross section of megasporophyll (below) showing three ato in dc ons f the of the group, cldg ovules attached to the adaxial (upper) surface. Arrow points to ovule phylogey that has been broken off and is reoriented with the micropyle facing their suggestd role as close relatives or possible c of the megasporophyll. Note circular pads of resistant tissue around the a osperms. micropyle. Arrowheads delimit outer edge of megasporophyll. (x15.) The Glossopteridales are a group of extinct gymnospermous plants that dominated many terrestrial habitats in Gondwana locality along Skaar Ridge in the Beardmore Glacier region of during Permian times. -
Palynology of the Permian Sanangoe
PALYNOLOGY OF THE PERMIAN SANANGOE- MEFIDEZI COAL BASIN,TETE PROVINCE, MOZAMBIQUE AND CORRELATIONS WITH GONDWANAN MICROFLORAL ASSEMBLAGES Kierra Caprice Mahabeer A Dissertation submitted to the Faculty of Science, University of the Witwatersrand, in partial fulfilment of the requirements for the Degree of Master of Science June, 2017 The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. Declaration I hereby certify that this Dissertation is my own unaided work. It is being submitted for the degree of Master of Science at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at any other University. aT Kierra Caprice Mahabeer June 2017 n Acknowledgements My deepest gratitude goes to my supervisors Prof. Marion Bamford and Dr. Natasha Barbolini. Without their help and guidance this dissertation would not be possible. Thank you for always pushing me further and making me a better researcher. Thanks also goes to Dr. Jennifer Fitchett for the R script as well as for training in the statistical programs used in this study. Thank you to Eurasian Natural Resources Corporation (Mozambique Limitada) for access to core. Thank you to Dr. John Hancox for always being willing to assist with any questions and for facilitating access to core and for providing geological core logs. Thanks also goes to Prosper Bande for assistance with laboratory preparation. I am grateful for the financial assistance from the National Research Foundation the Palaeontological Scientific Trust (PAST) and the University of the Witwatersrand. -
Fossil Calibrations for the Arthropod Tree of Life
bioRxiv preprint doi: https://doi.org/10.1101/044859; this version posted June 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. FOSSIL CALIBRATIONS FOR THE ARTHROPOD TREE OF LIFE AUTHORS Joanna M. Wolfe1*, Allison C. Daley2,3, David A. Legg3, Gregory D. Edgecombe4 1 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK 3 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PZ, UK 4 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK *Corresponding author: [email protected] ABSTRACT Fossil age data and molecular sequences are increasingly combined to establish a timescale for the Tree of Life. Arthropods, as the most species-rich and morphologically disparate animal phylum, have received substantial attention, particularly with regard to questions such as the timing of habitat shifts (e.g. terrestrialisation), genome evolution (e.g. gene family duplication and functional evolution), origins of novel characters and behaviours (e.g. wings and flight, venom, silk), biogeography, rate of diversification (e.g. Cambrian explosion, insect coevolution with angiosperms, evolution of crab body plans), and the evolution of arthropod microbiomes. We present herein a series of rigorously vetted calibration fossils for arthropod evolutionary history, taking into account recently published guidelines for best practice in fossil calibration. -
The Architecture of Permian Glossopterid Ovuliferous Reproductive Organs
Alcheringa: An Australasian Journal of Palaeontology ISSN: 0311-5518 (Print) 1752-0754 (Online) Journal homepage: https://www.tandfonline.com/loi/talc20 The architecture of Permian glossopterid ovuliferous reproductive organs Stephen Mcloughlin & Rose Prevec To cite this article: Stephen Mcloughlin & Rose Prevec (2019) The architecture of Permian glossopterid ovuliferous reproductive organs, Alcheringa: An Australasian Journal of Palaeontology, 43:4, 480-510, DOI: 10.1080/03115518.2019.1659852 To link to this article: https://doi.org/10.1080/03115518.2019.1659852 Published online: 01 Oct 2019. Submit your article to this journal Article views: 138 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=talc20 The architecture of Permian glossopterid ovuliferous reproductive organs STEPHEN MCLOUGHLIN and ROSE PREVEC MCLOUGHLIN,S.&PREVEC, R. 20 September 2019. The architecture of Permian glossopterid ovuliferous reproductive organs. Alcheringa 43, 480–510. ISSN 0311-5518 A historical account of research on glossopterid ovuliferous reproductive structures reveals starkly contrasting interpretations of their architecture and homologies from the earliest investigations. The diversity of interpretations has led to the establishment of a multitude of genera for these fossil organs, many of the taxa being synonymous. We identify a need for taxonomic revision of these genera to clearly demarcate taxa before they can be used effectively as palaeobiogeographic or biostratigraphic indices. Our assessment of fructification features based on extensive studies of adpression and permineralized fossils reveals that many of the character states for glossopterids used in previous phylogenetic analyses are erroneous.