Intel® Parallel Studio XE 2020 Update 3 Release Notes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Intel® Parallel Studio
Intel® Parallel Studio Product Brief Parallelism for Your Development Lifecycle Intel® Parallel Studio Intel® Parallel Studio brings comprehensive parallelism to C/C++ Microsoft Visual Studio* application development. Parallel Studio was created in direct response to the concerns of software industry leaders and developers. From the way the products work together to support the development lifecycle to their unique feature sets, parallelism is now easier and more viable than ever before. The tools are designed so those new to parallelism can learn as they go, and experienced parallel programmers can work more efficiently and with more confidence. Parallel Studio is interoperable with common parallel programming libraries and API standards, such as Intel® Threading Building Blocks (Intel® TBB) and OpenMP*, and provides an immediate opportunity to realize the benefits of multicore platforms. “Intel® Parallel Studio makes the new Envivio 4Caster Series Transcoder’s development faster and more efficient. The tools included in Intel Parallel Studio, such as Intel® Parallel Inspector, Intel® Parallel Amplifier, and Intel® Parallel Composer (which consists of the Intel® C++ Compiler, Intel® IPP, and Intel® TBB) shortens our overall software development time by increasing the code’s reliability and its performance in a multicore multithreaded environment. At the qualification stage, the number of dysfunctions is reduced due to a safer implementation, and the bug tracking becomes easier too. Intel Parallel Studio globally speeds up our software products’ time-to-market”. Eric Rosier V.P. Engineering Envivio Intel® Parallel Studio Tools c. How can you actually boost performance of your threaded application on multicore processors and make the performance scale with additional cores? Intel® Parallel Studio Workflow The workflow diagram below depicts a typical usage model across all Intel Parallel Studio Addresses the Issues Listed Above. -
Michael Steyer Technical Consulting Engineer Intel Architecture, Graphics & Software Analysis Tools
Michael Steyer Technical Consulting Engineer Intel Architecture, Graphics & Software Analysis Tools Optimization Notice Copyright © 2020, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Aspects of HPC/Throughput Application Performance What are the Aspects of Performance Intel Hardware Features Multi-core Intel® Omni Intel® Optane™ Intel® Advanced Intel® Path HBM DC persistent Vector Xeon® Extensions 512 Architecture memory (Intel® AVX-512) processor Distributed memory Memory I/O Threading CPU Core Message size False Sharing File I/O Threaded/serial ratio uArch issues (IPC) Rank placement Access with strides I/O latency Thread Imbalance Vectorization Rank Imbalance Latency I/O waits RTL overhead FPU usage efficiency RTL Overhead Bandwidth System-wide I/O (scheduling, forking) Network Bandwidth NUMA Synchronization Cluster Node Core Optimization Notice Copyright © 2020, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. IntelWhat Parallel are the Studio Aspects Tools covering of Performance the Aspects Intel Hardware Features Multi-core Intel® Intel® Omni Intel® Optane™ Advanced Intel®Path DC persistent Intel® Vector HBM Extensions Architectur Intel® VTune™memory AmplifierXeon® processor 512 (Intel® Tracee Intel®AVX-512) DistributedAnalyzer memory Memory I/O Threading AdvisorCPU Core Messageand size False Sharing File I/O Threaded/serial ratio uArch issues (IPC) Rank placement Access with strides I/O latency Thread Imbalance Vectorization RankCollector Imbalance Latency I/O waits RTL overhead FPU usage efficiency RTL Overhead Bandwidth System-wide I/O (scheduling, forking) Network Bandwidth NUMA Synchronization Cluster Node Core Optimization Notice Copyright © 2020, Intel Corporation. All rights reserved. -
Accelerate AI, HPC, Enterprise & Cloud Applications
Accelerate AI, HPC, Enterprise & Cloud Applications April 2019 @ CiTIUS: Centro Singular de Investigación en Tecnoloxías da Información Intel Computing Performance and Software Products (CPDP) Edmund Preiss Agenda • Intel Software Development Tools • Intel optimized AI Solutions Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. 3 *Other names and brands may be claimed as the property of others. Intel® Software Developer Tools & SDKs Intel® Parallel Studio XE Intel® System Studio Comprehensive Enterprise , HPC Embedded Tools Suite Tools suite Comprehensive, all-in-one, cross-platform Shared and distributed memory system & IoT development tool suite systems Simplifies system bring-up, boosts Code creation and versatile SW performance and power efficiency, Analysis Tools strengthens system reliability Intel® Media Server Studio OpenVINO™ Media Encode/Decode Tools Machine Learning / Deep Learning Inference Media SDK Computer Vision SDK Graphics Perf Analyzer Deep Learning (DL) Deployment Toolkit Computer Vision SDK Deep Learning Algorithms Open CL SDK Optimized DL Frameworks Context SDK Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. INTEL CONFIDENTIAL 11 *Other names and brands may be claimed as the property of others. What’s Inside Intel® Parallel Studio XE Comprehensive Software Development Tool Suite Cluster Edition Composer Edition Professional Edition BUILD ANALYZE SCALE Compilers & Libraries Analysis Tools Cluster Tools C / C++ Compiler Intel® Math Kernel Library Intel® VTune™ -
Intel® Software Products Highlights and Best Practices
Intel® Software Products Highlights and Best Practices Edmund Preiss Business Development Manager Entdecken Sie weitere interessante Artikel und News zum Thema auf all-electronics.de! Hier klicken & informieren! Agenda • Key enhancements and highlights since ISTEP’11 • Industry segments using Intel® Software Development Products • Customer Demo and Best Practices Copyright© 2012, Intel Corporation. All rights reserved. 2 *Other brands and names are the property of their respective owners. Key enhancements & highlights since ISTEP’11 3 All in One -- Intel® Cluster Studio XE 2012 Analysis & Correctness Tools Shared & Distributed Memory Application Development Intel Cluster Studio XE supports: -Shared Memory Processing MPI Libraries & Tools -Distributed Memory Processing Compilers & Libraries Programming Models -Hybrid Processing Copyright© 2012, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Intel® VTune™ Amplifier XE New VTune Amplifier XE features very well received by Software Developers Key reasons : • More intuitive – Improved GUI points to application inefficiencies • Preconfigured & customizable analysis profiles • Timeline View highlights concurrency issues • New Event/PC counter ratio analysis concept easy to grasp Copyright© 2012, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Intel® VTune™ Amplifier XE The Old Way versus The New Way The Old Way: To see if there is an issue with branch misprediction, multiply event value (86,400,000) by 14 cycles, then divide by CPU_CLK_UNHALTED.THREAD (5,214,000,000). Then compare the resulting value to a threshold. If it is too high, investigate. The New Way: Look at the Branch Mispredict metric, and see if any cells are pink. -
Intel(R) Math Kernel Library for Linux* OS User's Guide
Intel® Math Kernel Library for Linux* OS User's Guide MKL 10.3 - Linux* OS Document Number: 315930-012US Legal Information Legal Information INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. -
Intel® Math Kernel Library for Windows* OS User's Guide
Intel® Math Kernel Library for Windows* OS User's Guide Intel® MKL - Windows* OS Document Number: 315930-027US Legal Information Contents Contents Legal Information................................................................................7 Introducing the Intel® Math Kernel Library...........................................9 Getting Help and Support...................................................................11 Notational Conventions......................................................................13 Chapter 1: Overview Document Overview.................................................................................15 What's New.............................................................................................15 Related Information.................................................................................15 Chapter 2: Getting Started Checking Your Installation.........................................................................17 Setting Environment Variables ..................................................................17 Compiler Support.....................................................................................19 Using Code Examples...............................................................................19 What You Need to Know Before You Begin Using the Intel® Math Kernel Library...............................................................................................19 Chapter 3: Structure of the Intel® Math Kernel Library Architecture Support................................................................................23 -
Quick-Reference Guide to Optimization with Intel® Compilers
Quick Reference Guide to Optimization with Intel® C++ and Fortran Compilers v19.1 For IA-32 processors, Intel® 64 processors, Intel® Xeon Phi™ processors and compatible non-Intel processors. Contents Application Performance .............................................................................................................................. 2 General Optimization Options and Reports ** ............................................................................................. 3 Parallel Performance ** ................................................................................................................................ 4 Recommended Processor-Specific Optimization Options ** ....................................................................... 5 Optimizing for the Intel® Xeon Phi™ x200 product family ............................................................................ 6 Interprocedural Optimization (IPO) and Profile-Guided Optimization (PGO) Options ................................ 7 Fine-Tuning (All Processors) ** ..................................................................................................................... 8 Floating-Point Arithmetic Options .............................................................................................................. 10 Processor Code Name With Instruction Set Extension Name Synonym .................................................... 11 Frequently Used Processor Names in Compiler Options ........................................................................... -
5. Oneapi in Der Praxis
Praxis Gekonntes Zusammenspiel von HPC und AI im Alltag der Software-Entwickler oneAPI in der Praxis von Harald Odendahl Aus Parallel Studio XE wird oneAPI Toolkit: Software-Entwickler können ab Dezember 2020 auf die neue Generation der Programmier-Tools von Intel zugreifen. Die klassischen Intel-Tools sowie der professionelle Kunden-Support bleiben erhalten. Der Praxiseinsatz wird jedoch mächtig erweitert. Mit oneAPI bekräftigt Intel seinen Umschwung zu einer „Software First“-Strategie, um die Herausforderungen und Bedürfnisse der Programmierer bei der Entwicklung hochperformanter wissenschaftlicher und technischer Applikationen sowie KI-Anwendungen zu priorisieren. Das Design neuer Architekturen und Komponenten wie CPUs oder GPUs soll nun gleichzeitig und im Einklang mit den Innovationen bei Programmiermodellen und Entwicklertools erfolgen. So kündigte Intel auf der (virtuellen) Konferenz SuperComputing 2020 an, dass das von Native-Code-Entwicklern geschätzte und intensiv genutzte Intel Parallel Studio XE Toolkit ab Anfang 2021 von den neuen Toolkits der Produktfamilie oneAPI abgelöst werden wird. Intel will auf diesem Weg auch seinen Entwicklerkreis erweitern und bietet deshalb eine Reihe separater Toolkits für verschiedene Anwendungsgebiete. Historisch gesehen sind die klassischen Intel-Entwicklertools die Compiler für C/C++ sowie Fortran, die Analyse-Tools für Code- Optimierung sowie die bestbewährten Bibliotheken, wie zum Beispiel MKL oder IPP. Alle Komponenten werden in den neuen Toolkits vollständig übernommen. Die Leistungen für professionelle Nutzer, wie direkter Support von Intel-Ingenieuren und die Softwarewartung, bleiben bei weitgehend gleicher Preisstruktur erhalten. Erweiterte Tool-Palette für neue Nutzerkreise Im Packaging wird es jedoch eine Reihe von Änderungen geben. Zunächst führt Intel ein sogenanntes „oneAPI Base Toolkit“ ein, das einerseits die wesentlichen Komponenten für die architekturübergreifende Entwicklung zur Verfügung stellt und andererseits als Grundlage für weitere Toolkits dient. -
Intel Edge Computing Portfolio E-Booklet
Intel Edge Computing Portfolio e-Booklet Learn how Intel products, developer tools, programs, and ecosystem solutions accelerate the development and deployment of edge computing solutions 2021 Febuary Release Legal Notices and Disclaimers Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer to learn more. Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction. Other names and brands may be claimed as the property of others. Any third-party information referenced on this document is provided for information only. Intel does not endorse any specific third-party product or entity mentioned on this document. Intel, the Intel Logo and other Intel marks are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel Statement on Product Usage Intel is committed to respecting human rights and avoiding complicity in human rights abuses. See Intel’s Global Human Rights Principles. Intel’s products and software are intended only to be used in applications that do not cause or contribute to a violation of an internationally recognized human right. © Intel Corporation. Contents Unmatched -
Intel(R) Fortran Compiler Options
Intel(R) Fortran Compiler Options Document Number: 307780-005US Disclaimer and Legal Information INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. -
Intel® Fortran Compiler for Linux* Systems Options Quick Reference Guide
Intel® Fortran Compiler Options Quick Reference Intel® Fortran Compiler for Linux* Systems Options Quick Reference Guide Legal Information Document Number: 253258-002 Disclaimer and Legal Information Disclaimer and Legal Information Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. This Quick Reference Guide as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms of the license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. -
Data Layout Optimization Techniques for Modern and Emerging Architectures
DATA LAYOUT OPTIMIZATION TECHNIQUES FOR MODERN AND EMERGING ARCHITECTURES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Qingda Lu, B.E., M.S. ***** The Ohio State University 2008 Dissertation Committee: Approved by Dr. P. Sadayappan, Adviser Dr. Xiaodong Zhang Adviser Dr. J. Ramanujam Graduate Program in Dr. Atanas Rountev Computer Science and Engineering c Copyright by ° Qingda Lu 2008 ABSTRACT The never-ending pursuit of higher performance is one fundamental driving force of computer science research. Although the semiconductor industry has fulfilled Moore’s Law over the last forty years by doubling transistor density every two years, the effectiveness of hardware advances cannot be fully exploited due to the mismatch between the architectural environment and the user program. Program optimization is a key to bridge this gap. In this dissertation, instead of restructuring programs’ control flow as in many previous efforts, we have applied several new data layout optimization techniques to answer many optimization challenges on modern and emerging architectures. In particular, the developed techniques and their unique contributions are as follows. We describe an approach where a class of computations is modeled in terms of con- • stituent operations that are empirically measured, thereby allowing modeling of the overall execution time. The performance model with empirically determined cost components is used to perform data layout