Activity Stability, Binding to MBL, and Enzymatic

Total Page:16

File Type:pdf, Size:1020Kb

Activity Stability, Binding to MBL, and Enzymatic Polymorphisms in Mannan-Binding Lectin (MBL)-Associated Serine Protease 2 Affect Stability, Binding to MBL, and Enzymatic Activity This information is current as of September 26, 2021. Steffen Thiel, Martin Kolev, Søren Degn, Rudi Steffensen, Annette G. Hansen, Marieta Ruseva and Jens C. Jensenius J Immunol 2009; 182:2939-2947; ; doi: 10.4049/jimmunol.0802053 http://www.jimmunol.org/content/182/5/2939 Downloaded from References This article cites 31 articles, 14 of which you can access for free at: http://www.jimmunol.org/content/182/5/2939.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Polymorphisms in Mannan-Binding Lectin (MBL)-Associated Serine Protease 2 Affect Stability, Binding to MBL, and Enzymatic Activity1 Steffen Thiel,2* Martin Kolev,* Søren Degn,* Rudi Steffensen,† Annette G. Hansen,* Marieta Ruseva,* and Jens C. Jensenius* Mannan-binding lectin-associated serine protease 2 (MASP-2) is an enzyme of the innate immune system. MASP-2 forms com- plexes with the pattern recognition molecules mannan-binding lectin (MBL), H-ficolin, L-ficolin, or M-ficolin, and is activated when one of these proteins recognizes microorganisms and subsequently cleaves complement factors C4 and C2, thus initiating the activation of the complement system. Missense polymorphisms of MASP-2 exist in different ethnic populations. To further char- acterize the nature of these, we have produced and characterized rMASP-2s representing the following naturally occurring Downloaded from polymorphisms: R99Q, D120G, P126L, H155R, 156_159dupCHNH (CHNHdup), V377A, and R439H. Only very low levels of CHNHdup were secreted from the cells, whereas quantities similar to wild-type MASP-2 were found intracellularly, indicating that this mutation results in a misfolded protein. We found that D120G and CHNHdup could not associate with MBL, whereas R99Q, P126L, H155R, V377A, R439H, and wild-type MASP-2 bound equally well to MBL. Accordingly, when D120G and CHNHdup were mixed with MBL, no activation of complement factor C4 was observed, whereas R99Q, P126L, and V377A cleaved C4 with an activity comparable to wild-type MASP-2 and H155R slightly better. In contrast, the R439H variant was http://www.jimmunol.org/ deficient in this process despite its normal binding to MBL. This variant was also not able to autoactivate in the presence of MBL and mannan. We find the R439H variant is common in Sub-Saharan Africans with a gene frequency of 10%. Our results indicate that individuals with different types of MASP-2 defects may be identified through genotyping. The Journal of Immunology, 2009, 182: 2939–2947. nderstanding the workings of the complement system is pathway are all found in complexes with the same set of proen- important for unraveling the innate immune defense and zymes, the MBL-associated serine proteases (MASPs): MASP-1, its interactions with the adaptive immune response (1, MASP-2, and MASP-3, as well as MBL-associated protein of 19 U by guest on September 26, 2021 2). The complement system includes more than 30 soluble and kDa, MAp19 (3–5). MASP-1, MASP-2, and MASP-3 all present membrane-bound proteins. A number of these proteins are serine domain structures identical with those of the C1 proteases, C1r proteases found as zymogens in the circulation. To activate these and C1s, and all five proenzymes are activated through the proenzymes, three pathways have evolved over time, as follows: 1) cleavage of the polypeptide chain between the A segment and the classical pathway is activated when the C1 complex recognizes the B segment, with the latter presenting the protease domain patterns of Fc regions from Ig molecules; 2) the lectin pathway is (exemplified by the structure of MASP-2 in Fig. 1). MAp19 3 activated when mannan-binding lectin (MBL) or one of the three presents the two N-terminal domains (of six domains) of ficolins (H-ficolin, L-ficolin, or M-ficolin) recognizes a pattern of MASP-2, and in addition, four unique amino acids, and is de- carbohydrates or acetylated molecules; and 3) the alternative path- void of enzymatic activity (6). When MBL or ficolin in complex way is activated when the balance between inhibition and activa- with MASP recognizes a ligand, the MASPs are activated. The tion of C3 activation is shifted and is also important for amplifying physiological relevant substrates for activated MASP-1 and the first two pathways. The recognition molecules of the lectin MASP-3 are still under debate, although MASP-1 has been shown to cleave C2 and to possess some thrombin-like activity (7, 8). The activity of MASP-2, in contrast, is clearer. Activated *Department of Medical Microbiology and Immunology, University of Aarhus, Aar- MASP-2 very efficiently cleaves the complement factors C4 and hus, Denmark; and †Regional Centre for Blood Transfusion and Clinical Immunol- ogy, Aalborg Hospital, Aalborg, Denmark C2 to the fragments C4b and C4a, and C2b and C2a, respec- Received for publication June 25, 2008. Accepted for publication December 17, 2008. tively, and C4b and C2b join to form a C3 convertase (9, 10). MASP-2 is thus a central molecule in the activation of the com- The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance plement system as it translates the recognition of microorgan- with 18 U.S.C. Section 1734 solely to indicate this fact. isms (or altered self) by four pattern recognition molecules, i.e., 1 This work was partly supported by the Danish Research Council and Novo Nordic MBL, H-ficolin, L-ficolin, and M-ficolin, into initiation of the Foundation. enzymatic cascades of the complement system. 2 Address correspondence and reprint requests to Dr. Steffen Thiel, Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark. Uncovering mutations resulting in selective deficiencies in the E-mail address: [email protected] immune system may not only further our understanding of basic 3 Abbreviations used in this paper: MBL, mannan-binding lectin; EGF, epidermal mechanisms, but may also have significant clinical implications. growth factor; MASP, MBL-associated serine protease; wt, wild type; SNP, single We and others have defined a number of nonsynonymous poly- nucleotide polymorphism. morphisms in the gene encoding MASP-2. We have previously Copyright © 2009 by The American Association of Immunologists, Inc. 0022-1767/09/$2.00 identified and characterized the distribution of naturally occurring www.jimmunol.org/cgi/doi/10.4049/jimmunol.0802053 2940 ACTIVITIES OF MASP-2 VARIANTS Table I. The primers used for site-directed mutagenesis Mutants Primer R99Qa Forward: 5Ј-GCACAGACACGGAGCAGGCCCCTGGCAAGGAC-3Ј Reverse: 5Ј-GTCCTTGCCAGGGGCCTGCTCCGTGTCTGTGC-3Ј P126L Forward: 5Ј-GACTACTCCAACGAGAAGCTGTTCACGGGGTTCGAG-3Ј Reverse: 5Ј-CTCGAACCCCGTGAACAGCTTCTCGTTGGAGTAGTC-3Ј H155R Forward: 5Ј-CCCACCTGCGACCACCGCTGCCACAACCACCTG-3Ј Reverse: 5Ј-CAGGTGGTTGTGGCAGCGGTGGTCGCAGGTGGG-3Ј CHNHdup Forward: 5Ј-GAAACCGCCCAGGTGGTTGTGGCAGTGGTTGTGGCAG-3Ј Reverse: 5Ј-CTGCCACAACCACTGCCACAACCACCTGGGCGGTTTC-3Ј V377A Forward: 5Ј-CTACCCAGTGGCCGAGCGGAGTACATCACAGGTC-3Ј Reverse: 5Ј-GACCTGTGATGTACTCCGCTCGGCCACTGGGTAG-3Ј R439H Forward: 5Ј-CTACCCAGTGGCCGAGCGGAGTACATCACAGGTC-3Ј Reverse: 5Ј-GACCTGTGATGTACTCCGCTCGGCCACTGGGTAG-3Ј a Variant of rMASP-2. missense polymorphisms of MASP-2 in different ethnic popula- change R444Q (Fig. 1). This is a change at the P1 position of the cleavage tions, i.e., Caucasians, Hong Kong Chinese, Sub-Saharan Africans, between the A chain and the B chain. This mutant cannot be cleaved and Downloaded from South-African Indians, and Inuits, and have observed associations is thus not activated. with circulating levels of MASP-2 (11). In the present study, we Production of rMASP-2 characterize the functional effects of the resulting naturally occur- Plasmids containing the MASP-2 cDNA inserts were used for the trans- ring variants of the MASP-2 protein through the production of the fection of HEK293 cells (Freestyle 293-F cells; Invitrogen). Briefly, plas- recombinant forms of the different MASP-2 allotypes. Most have mids (1 ␮g/ml) were mixed with lipofectamine 2000 (Invitrogen) and Opti- no effect on the function of the MBL pathway of complement MEM (Invitrogen), according to the manufacturer’s instructions, and used 6 http://www.jimmunol.org/ activation, but one blocks, not the synthesis, but the secretion of for transfection of early passage 293-F cells (30 ml of 10 cells/ml). Cells were cultured for 4 days in Freestyle expression medium (Invitrogen), and the variant, another binds to MBL as potently as the wild type (wt), supernatants
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Are Complement Deficiencies Really Rare?
    G Model MIMM-4432; No. of Pages 8 ARTICLE IN PRESS Molecular Immunology xxx (2014) xxx–xxx Contents lists available at ScienceDirect Molecular Immunology j ournal homepage: www.elsevier.com/locate/molimm Review Are complement deficiencies really rare? Overview on prevalence, ଝ clinical importance and modern diagnostic approach a,∗ b Anete Sevciovic Grumach , Michael Kirschfink a Faculty of Medicine ABC, Santo Andre, SP, Brazil b Institute of Immunology, University of Heidelberg, Heidelberg, Germany a r a t b i c s t l e i n f o r a c t Article history: Complement deficiencies comprise between 1 and 10% of all primary immunodeficiencies (PIDs) accord- Received 29 May 2014 ing to national and supranational registries. They are still considered rare and even of less clinical Received in revised form 18 June 2014 importance. This not only reflects (as in all PIDs) a great lack of awareness among clinicians and gen- Accepted 23 June 2014 eral practitioners but is also due to the fact that only few centers worldwide provide a comprehensive Available online xxx laboratory complement analysis. To enable early identification, our aim is to present warning signs for complement deficiencies and recommendations for diagnostic approach. The genetic deficiency of any Keywords: early component of the classical pathway (C1q, C1r/s, C2, C4) is often associated with autoimmune dis- Complement deficiencies eases whereas individuals, deficient of properdin or of the terminal pathway components (C5 to C9), are Warning signs Prevalence highly susceptible to meningococcal disease. Deficiency of C1 Inhibitor (hereditary angioedema, HAE) Meningitis results in episodic angioedema, which in a considerable number of patients with identical symptoms Infections also occurs in factor XII mutations.
    [Show full text]
  • Targeting of Mannan-Binding Lectin-Associated Serine Protease-2 Confers Protection from Myocardial and Gastrointestinal Ischemia/Reperfusion Injury
    Targeting of mannan-binding lectin-associated serine protease-2 confers protection from myocardial and gastrointestinal ischemia/reperfusion injury Wilhelm J. Schwaeblea,1, Nicholas J. Lyncha, James E. Clarkb, Michael Marberb, Nilesh J. Samanic, Youssif Mohammed Alia,d, Thomas Dudlere, Brian Parente, Karl Lhottaf, Russell Wallisa, Conrad A. Farrarg, Steven Sacksg, Haekyung Leeh, Ming Zhangh, Daisuke Iwakii, Minoru Takahashii, Teizo Fujitai, Clark E. Tedforde, and Cordula M. Stovera Departments of aInfection, Immunity, and Inflammation and cCardiovascular Sciences, University of Leicester, Leicester LE1 9HN, United Kingdom; bBritish Heart Foundation Centre and gMedical Research Council Centre for Transplantation and National Institute for Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service Foundation Trust, King’s College London, London SE1 9RT, United Kingdom; dFaculty of Pharmacy, Department of Microbiology, University of Mansoura, Mansoura 35516, Egypt; eOmeros Corporation, Seattle, WA 98101; fLandeskrankenhaus Feldkirch, 6807 Feldkirch, Austria; hDepartment of Anesthesiology, State University of New York-Downstate Medical Center, New York, NY 11203; and iDepartment of Immunology, Fukushima Medical University, Fukushima 960-1295, Japan Edited* by Douglas T. Fearon, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom, and approved March 16, 2011 (received for review February 1, 2011) Complement research experienced a renaissance with the discovery aberrant glycosylation
    [Show full text]
  • Molecular Classification of the Placebo Effect in Nausea Karin Meissner1,2*†, Dominik Lutter3,4†, Christine Von Toerne5, Anja Haile1, Stephen C
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.19.955740; this version posted February 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Molecular classification of the placebo effect in nausea Karin Meissner1,2*†, Dominik Lutter3,4†, Christine von Toerne5, Anja Haile1, Stephen C. Woods6, Verena Hoffmann1, Uli Ohmayer5, Stefanie M. Hauck5‡, Matthias Tschöp3,4,7‡ Affiliations: 1Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany. 2Division of Health Promotion, Coburg University of Applied Sciences, Coburg, Germany. 3Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany. 4German Center for Diabetes Research (DZD), Neuherberg, Germany. 5Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany. 6Metabolic Diseases Institute, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, USA. 7Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany † these authors contributed equally to the work. ‡ these authors contributed equally to the work. *To whom correspondence should be addressed: Prof. Dr. Karin Meissner Institute of Medical Psychology Medical Faculty LMU Munich Goethestr. 31 80336 Munich Germany Tel. +49 (0)89 2180-75613 Email: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/2020.02.19.955740; this version posted February 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
    [Show full text]
  • Engineered Type 1 Regulatory T Cells Designed for Clinical Use Kill Primary
    ARTICLE Acute Myeloid Leukemia Engineered type 1 regulatory T cells designed Ferrata Storti Foundation for clinical use kill primary pediatric acute myeloid leukemia cells Brandon Cieniewicz,1* Molly Javier Uyeda,1,2* Ping (Pauline) Chen,1 Ece Canan Sayitoglu,1 Jeffrey Mao-Hwa Liu,1 Grazia Andolfi,3 Katharine Greenthal,1 Alice Bertaina,1,4 Silvia Gregori,3 Rosa Bacchetta,1,4 Norman James Lacayo,1 Alma-Martina Cepika1,4# and Maria Grazia Roncarolo1,2,4# Haematologica 2021 Volume 106(10):2588-2597 1Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 2Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA; 3San Raffaele Telethon Institute for Gene Therapy, Milan, Italy and 4Center for Definitive and Curative Medicine, Stanford School of Medicine, Stanford, CA, USA *BC and MJU contributed equally as co-first authors #AMC and MGR contributed equally as co-senior authors ABSTRACT ype 1 regulatory (Tr1) T cells induced by enforced expression of interleukin-10 (LV-10) are being developed as a novel treatment for Tchemotherapy-resistant myeloid leukemias. In vivo, LV-10 cells do not cause graft-versus-host disease while mediating graft-versus-leukemia effect against adult acute myeloid leukemia (AML). Since pediatric AML (pAML) and adult AML are different on a genetic and epigenetic level, we investigate herein whether LV-10 cells also efficiently kill pAML cells. We show that the majority of primary pAML are killed by LV-10 cells, with different levels of sensitivity to killing. Transcriptionally, pAML sensitive to LV-10 killing expressed a myeloid maturation signature.
    [Show full text]
  • Supplemental Results
    SUPPLEMENTAL RESULTS Supplemental Figure 1. CasCADE platform (Capture and Sequencing of Complement- Associated Disease Exons) includes 1,071 exons in 85 complement/coagulation genes, with a length of 198,457 base pairs. Targeted sequence is captured using a modified Agilent SureSelect protocol. Supplemental Figure 1. Supplemental table 1: Identification of novel nonsynonymous rare variants Gene Nucleotide AA Change Pathology FCN1 c.685 G>A p.A229T 1 F5 1c.3221 A>G p.N1074S 3 MBTPS1 c.2658 G>T p.Q886H 2 CR1 c.997 A>G p.R333G - C3 c.188 C>T p.P63L 3 C3 c.3085 G>A p.D1029N 6 VWF c.4165 G>C p.E1389Q 4 KLKB1 c.514 C>A p.P172T 0 ADAMTS13 c.3056 T>C p.M1019T 0 MASP2 c.1633 A>G p.N545D 4 CR1 c.4750 C>T p.R1584W 4 C2 c.443_453 del p.148_151del - CFH c.272 C>G p.T91S 2 F12 c.193 G>A p.G65S 3 CFH c.1160-2 A>G - MASP1 c.1770 del G p.G590fs - CFH c.595 A>G p.S199G 4 1 Mutation carried by two patients. Supplemental table 2: Patients carrying multiple deleterious variants 1Pathology 2MAF Patients Gene Nucleotide AA change dbSNP 137 Reference Score (EVS_EA) 1 CD46 c.692 C>G p.P231R 6 - - aHUS 1 VWF c.2561 G>A p.R854Q 4 0.0056 rs41276738 Von Willebrand disease 2 2 C8A c.1331 G>A p.R444H 6 0.0050 rs143908758 - CFHR5 c.832 G>A p.G278S 4 0.0088 rs139017763 - PLG c.505 C>T p.P169S 4 0.0005 rs143256245 - 3 CFI c.355 G>A p.G119R 3 0.0013 rs141853578 aHUS 1 CFI c.859 G>A p.G287R 5 0.0001 rs182078921 aHUS 1 THBD c.1502 C>T p.P501L 3 0.0029 rs1800579 aHUS 3 4 CFH c.1825 G>A p.V609I 1 0.0006 rs148165372 aHUS 1 CFHR5 c.832 G>A p.G278S 4 0.0088 rs139017763 - 5 C9 c.460 C>T p.R154X - 0.0002 rs144138616 C9 deficiency 4 PLG c.2134 G>A p.G712R 3 0.0007 - Plasminogen deficiency 5 6 CFH c.3644 G>A p.R1215Q 2 - - aHUS 6 PHB c.128 G>T p.R43L 4 0.0088 rs2233665 - 7 C1S c.943 G>A p.D315N 6 0.0053 rs117907409 - C3 c.3085 G>A p.D1029N 6 - - - PLG c.758 G>A p.R253H 5 0.0006 rs143034754 Plasminogen deficiency 7 8 CD46 c.565 T>G p.Y189D 5 - - aHUS 8 F12 c.1681-1 G>A - 0.0006 - Factor XII deficiency 9 VWF c.4165 G>C p.E1389Q 4 - - - 9 CFH c.3644 G>A p.R1215Q 2 - - aHUS 6 CR1 c.
    [Show full text]
  • MASP-1 of the Complement System Promotes Clotting Via Prothrombin
    This accepted author manuscript is copyrighted and published by Elsevier. It is posted here by agreement between Elsevier and MTA. The definitive version of the text was subsequently published in 2015 Mol. Immunol. 65, 398–405. doi:10.1016/j.molimm.2015.02.014. Available under license CC-BY-NC-ND. MASP-1 of the complement system promotes clotting via prothrombin activation Lorenz Jenny a,b , József Dobó c, Péter Gál c, Verena Schroeder a,b a University Clinic of Haematology, Haemostasis Research Laboratory, University Hospital Bern, 3010 Bern, Switzerland b Department of Clinical Research, University of Bern, Bern, Switzerland; c Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt 2, H-1113 Budapest, Hungary Corresponding author: Verena Schroeder, PhD University Clinic of Haematology Haemostasis Research Laboratory University Hospital Inselspital 3010 Bern, Switzerland Tel. +41 31 632 9618, Fax +41 31 632 1882 E-mail [email protected] 1 Abbreviations CAPS, N-cyclohexyl-3-aminopropanesulfonic acid; CFT, clot formation time; CT, clotting time; FXa, activated factor X; FXIII, factor XIII; MAp, MBL-associated protein; MASP, mannan-binding lectin- associated serine protease; MBL, mannose binding lectin; MCF, maximum clot firmness; MES, 2- (N-Morpholino)- ethanesulfonic acid; PAR4, protease activated receptor 4; PPP, platelet-poor plasma; PT-DP, Prothrombin-depleted plasma; PVDF, polyvinylidene difluoride; rMASP-1cf, MASP-1 catalytic fragment; SGMI, Schistocerca gregaria protease inhibitor (SGPI)-based MASP- inhibitor; WB, whole blood. Abstract Mannan-binding lectin-associated serine protease-1 (MASP-1), a protein of the complement lectin pathway, resembles thrombin in terms of structural features and substrate specificity, and it has been shown to activate coagulation factors.
    [Show full text]
  • Comprehensive Genetic Analysis of Complement and Coagulation Genes in Atypical Hemolytic Uremic Syndrome
    BASIC RESEARCH www.jasn.org Comprehensive Genetic Analysis of Complement and Coagulation Genes in Atypical Hemolytic Uremic Syndrome † † † ‡ † Fengxiao Bu,* Tara Maga,* Nicole C. Meyer, Kai Wang, Christie P. Thomas, § † † Carla M. Nester, § and Richard J. H. Smith* § *Interdisciplinary PhD Program in Genetics, †Molecular Otolaryngology and Renal Research Laboratories, ‡Department of Biostatistics, College of Public Health, and §Rare Renal Disease Clinic, Departments of Pediatrics and Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa ABSTRACT Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy caused by uncontrolled activation of the alternative pathway of complement at the cell surface level that leads to microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney failure. In approximately one half of affected patients, pathogenic loss-of-function variants in regulators of complement or gain-of-function variants in effectors of complement are identified, clearly implicating complement in aHUS. However, there are strong lines of evidence supporting the presence of additional genetic contributions to this disease. To identify novel aHUS-associated genes, we completed a comprehensive screen of the complement and coagulation pathways in 36 patients with sporadic aHUS using targeted genomic enrichment and mas- sively parallel sequencing. After variant calling, quality control, and hard filtering, we identified 84 reported or novel nonsynonymous variants, 22 of which have been previously associated with disease. Using computational prediction methods, 20 of the remaining 62 variants were predicted to be dele- terious. Consistent with published data, nearly one half of these 42 variants (19; 45%) were found in genes implicated in the pathogenesis of aHUS. Several genes in the coagulation pathway were also identified as important in the pathogenesis of aHUS.
    [Show full text]
  • Downloaded from the Biogrid Database [30] Contain- the Immune System [12–15]
    Adhami et al. BMC Biotechnology (2021) 21:22 https://doi.org/10.1186/s12896-021-00680-z RESEARCH ARTICLE Open Access Repurposing novel therapeutic candidate drugs for coronavirus disease-19 based on protein-protein interaction network analysis Masoumeh Adhami1, Balal Sadeghi2, Ali Rezapour3, Ali Akbar Haghdoost4 and Habib MotieGhader5,6* Abstract Background: The coronavirus disease-19 (COVID-19) emerged in Wuhan, China and rapidly spread worldwide. Researchers are trying to find a way to treat this disease as soon as possible. The present study aimed to identify the genes involved in COVID-19 and find a new drug target therapy. Currently, there are no effective drugs targeting SARS-CoV-2, and meanwhile, drug discovery approaches are time-consuming and costly. To address this challenge, this study utilized a network-based drug repurposing strategy to rapidly identify potential drugs targeting SARS-CoV-2. To this end, seven potential drugs were proposed for COVID-19 treatment using protein- protein interaction (PPI) network analysis. First, 524 proteins in humans that have interaction with the SARS-CoV-2 virus were collected, and then the PPI network was reconstructed for these collected proteins. Next, the target miRNAs of the mentioned module genes were separately obtained from the miRWalk 2.0 database because of the important role of miRNAs in biological processes and were reported as an important clue for future analysis. Finally, the list of the drugs targeting module genes was obtained from the DGIDb database, and the drug-gene network was separately reconstructed for the obtained protein modules. Results: Based on the network analysis of the PPI network, seven clusters of proteins were specified as the complexes of proteins which are more associated with the SARS-CoV-2 virus.
    [Show full text]
  • SI Appendix Supplementary Methods Animals Both Male Db/Db and Db/M+ Mice Were Supplied by the Laboratory Animal Center, the Chinese University of Hong Kong (CUHK)
    SI Appendix Supplementary methods Animals Both male db/db and db/m+ mice were supplied by the Laboratory Animal Center, The Chinese University of Hong Kong (CUHK). Twelve-week old male db/db and db/m+ mice were used. The body weights for all db/m+ mice and db/db mice were similar. Obese mice were induced by 12-week feeding of male C57BL/6J mice (6 weeks old) with a high-fat rodent diet containing 45% kcal% fat (D12451; Research Diets Inc., New Brunswick, NJ). Obese mice had the similar body weight at the time of sacrifice. All animal protocols were approved by the CUHK Animal Experimentation Ethics Committee and in compliance with the Guide for the Care and Use of Laboratory Animals (NIH Publication Eighth Edition, updated 2011). For in vivo studies, endothelial function was measured 2 days after tail intravenous + + injection of db/m SExo or db/db SExos to db/m mice. For the ex vivo studies, after mice were sacrificed by CO2 inhalation, aortas and mesenteric arteries were dissected out for functional and molecular assays while serum was used for preparation of exosomes. Endothelial cell culture Primary mouse endothelial cells (MAECs) and primary rat endothelial cells (RAECs) were cultured as reported (1, 2). Porcine coronary artery endothelial cells (PCECs) were cultured from pig left ascending coronary arteries as previously described (3). H5V mouse endothelial cell line, human umbilical vein endothelial cell (HUVEC), and bovine aortic endothelial cell (BAEC) were purchased from American Type Culture Collection. H5Vcells were cultured in Dulbecco’s Modified Eagle’s Media (DMEM, Gibco, USA), HUVEC and BAEC were cultured in 20% FBS-containing endothelial cell growth medium (EGM, Lonza, USA).
    [Show full text]
  • Highly Pathogenic Coronavirus N Protein Aggravates Lung Injury By
    medRxiv preprint doi: https://doi.org/10.1101/2020.03.29.20041962; this version posted March 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2- mediated complement over-activation Authors: Ting Gao1#, Mingdong Hu3, 5#, Xiaopeng Zhang1, 4#, Hongzhen Li6, Lin Zhu1, Hainan Liu1, Qincai Dong1, Zhang Zhang1, 4, Zhongyi Wang1, 4, Yong Hu1, Yangbo Fu1, Yanwen Jin1, 5 Kaitong Li6, Songtao Zhao2, 5, Yongjiu Xiao5, 10, Shuping Luo10, Lufeng Li2, 5, Lingfang Zhao5, 10, Junli Liu1, Huailong Zhao1, Yue Liu1, Weihong Yang1, Jing Peng2, 5, Xiaoyu Chen5, 7, Ping Li1, Yaoning Liu1, Yonghong Xie5, 8, Jibo Song5, 9, Lu Zhang5, 10, Qingjun Ma1, Xiuwu Bian2, Wei Chen1, 4, Xuan Liu1*, Qing Mao2, 5*, and Cheng Cao1, 4* Affiliations: 10 1State Key Laboratory of Pathogen Biosecurity, Beijing Institute of Biotechnology, Beijing, 100850, China 2First Affiliated Hospital, Army Medical University, Chongqing, 400038, China 3Second Affiliated Hospital, Army Medical University, Chongqing, 400038, China 4COVID-19 Investigation Team dispatched to Wuhan by Beijing Institute of Biotechnology. 15 Hubei, 430072, China 5COVID-19 Medical Team dispatched to Wuhan Huoshenshan Hospital by People’s Liberation Army, Wuhan, Hubei, 430100, China 6Beijing Key Laboratory of Bio-products Safety Assessment, Joinn Laboratories
    [Show full text]
  • Download PDF (Inglês)
    Genetics and Molecular Biology, 44, 1(suppl 1), e20200199 (2020) Copyright © Sociedade Brasileira de Genética. DOI: https://doi.org/10.1590/1678-4685-GMB-2020-0199 Review Article COVID-19 – Special Issue MASPs at the crossroad between the complement and the coagulation cascades - the case for COVID-19 1,2,* 3,* 4,2 Valéria Bumiller-Bini , Camila de Freitas Oliveira-Toré , Tamyres Mingorance Carvalho , 1,2 5,2 6 Gabriela Canalli Kretzschmar , Letícia Boslooper Gonçalves , Nina de Moura Alencar , 1 1 1, Miguel Angelo Gasparetto Filho , Marcia Holsbach Beltrame and Angelica Beate Winter Boldt * 1Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Genética Molecular Humana, Curitiba, PR, Brazil. 2Universidade Federal do Paraná (UFPR), Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, PR, Brazil. 3Universidade Federal do Paraná (UFPR), Programa de Pós-Graduação em Medicina Interna e Ciências da Saúde, Laboratório de Imunopatologia Molecular, Curitiba, PR, Brazil. 4Universidade Federal do Paraná, Departamento de Genética, Laboratório de Citogenética Humana e Oncogenética, Curitiba, PR, Brazil. 5Universidade Federal do Paraná (UFPR), Departamento de Genética, Laboratório de Imunogenética e Histocompatibilidade (LIGH), Curitiba, PR, Brazil. 6Fundação Oswaldo Cruz (Fiocruz), Instituto Carlos Chagas, Programa de Pós-Graduação em Biociências e Biotecnologia, Laboratório de Virologia Molecular, Curitiba, PR, Brazil. Abstract Components of the complement system and atypical parameters of coagulation were reported in COVID-19 patients, as well as the exacerbation of the inflammation and coagulation activity. Mannose binding lectin (MBL)- associated serine proteases (MASPs) play an important role in viral recognition and subsequent activation of the lectin pathway of the complement system and blood coagulation, connecting both processes.
    [Show full text]