Appendix 2: Genetic Interactions Surrounding ARV1, BTS1, HMG1, HMG2 and OPI3

Total Page:16

File Type:pdf, Size:1020Kb

Appendix 2: Genetic Interactions Surrounding ARV1, BTS1, HMG1, HMG2 and OPI3 Appendix 2: Genetic interactions surrounding ARV1, BTS1, HMG1, HMG2 and OPI3 The tables in this Appendix are the genes which show genetic interactions with ARV1, BTS1, HMG1, HMG2 or OPI3 in S288C, SK1, Y55 or YPS606. The genes depicted in bold also showed a genetic interaction in a second mini array SGA. Table 1 ARV1-S288C genetic interactions ................................................................. 2 Table 2 ARV1-Y55 genetic interactions ................................................................... 11 Table 3 ARV1-SK1 genetic interactions ................................................................... 25 Table 4 ARV1 - YPS606 genetic interactions ........................................................... 38 Table 5 BTS1 – S288C genetic interactions .............................................................. 50 Table 6 BTS1 Y55 genetic interactions .................................................................... 64 Table 7 BTS1 - SK1 genetic interactions .................................................................. 74 Table 8 BTS1 - YPS606 genetic interactions ............................................................ 93 Table 9 HMG1 - S288C genetic interactions .......................................................... 110 Table 10 HMG1 - Y55 genetic interactions ............................................................ 118 Table 11 HMG1 - SK1 genetic interactions ............................................................ 130 Table 12 HMG2 - S288C genetic interactions ........................................................ 151 Table 13 HMG2 - Y55 genetic interactions ............................................................ 157 Table 14 HMG2 - SK1 genetic interactions ............................................................ 166 Table 15 OPI3 - S288C genetic interactions ........................................................... 177 Table 16 OPI3 - Y55 genetic interactions .............................................................. 190 Table 17 OPI3 - YPS606 genetic interactions .........................................................
Recommended publications
  • The Role of Genetic Variation in Predisposition to Alcohol-Related Chronic Pancreatitis
    The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Marianne Lucy Johnstone April 2015 The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis 2015 Abstract Background Chronic pancreatitis (CP) is a disease of fibrosis of the pancreas for which alcohol is the main causative agent. However, only a small proportion of alcoholics develop chronic pancreatitis. Genetic polymorphism may affect pancreatitis risk. Aim To determine the factors required to classify a chronic pancreatic population and identify genetic variations that may explain why only some alcoholics develop chronic pancreatitis. Methods The most appropriate method of diagnosing CP was assessed using a systematic review. Genetics of different populations of alcohol-related chronic pancreatitics (ACP) were explored using four different techniques: genome-wide association study (GWAS); custom arrays; PCR of variable nucleotide tandem repeats (VNTR) and next generation sequencing (NGS) of selected genes. Results EUS and sMR were identified as giving the overall best sensitivity and specificity for diagnosing CP. GWAS revealed two associations with CP (identified and replicated) at PRSS1-PRSS2_rs10273639 (OR 0.73, 95% CI 0.68-0.79) and X-linked CLDN2_rs12688220 (OR 1.39, 1.28-1.49) and the association was more pronounced in the ACP group (OR 0.56, 0.48-0.64)and OR 2.11, 1.84-2.42). The previously identified VNTR in CEL was shown to have a lower frequency of the normal repeat in ACP than alcoholic liver disease (ALD; OR 0.61, 0.41-0.93).
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • Functional and Physical Interaction Between Yeast Hsp90 and Hsp70
    Functional and physical interaction between yeast PNAS PLUS Hsp90 and Hsp70 Andrea N. Kravatsa, Joel R. Hoskinsa, Michael Reidyb, Jill L. Johnsonc, Shannon M. Doylea, Olivier Genesta,1, Daniel C. Masisonb, and Sue Wicknera,2 aLaboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; bLaboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and cDepartment of Biological Sciences, University of Idaho, Moscow, ID 83844 Contributed by Sue Wickner, January 25, 2018 (sent for review November 17, 2017; reviewed by Daniel N. A. Bolon and Jeffrey L. Brodsky) Heat shock protein 90 (Hsp90) is a highly conserved ATP-dependent changes in response to ATP binding, hydrolysis, and ADP release molecular chaperone that is essential in eukaryotes. It is required for (1,3,6,14–16). In the absence of ATP, the Hsp90 dimer acquires the activation and stabilization of more than 200 client proteins, an open, V-shaped structure such that the protomers interact via including many kinases and steroid hormone receptors involved in the C-terminal dimerization domain (16). When ATP is bound, the cell-signaling pathways. Hsp90 chaperone activity requires collabo- protein takes on a closed conformation with the two N-domains of ration with a subset of the many Hsp90 cochaperones, including the the dimer interacting and a portion of the N-domain, the “lid,” Hsp70 chaperone. In higher eukaryotes, the collaboration between closing over the nucleotide in each protomer (16, 17). Additional Hsp90 and Hsp70 is indirect and involves Hop, a cochaperone that conformational changes occur upon ATP hydrolysis, resulting in a interacts with both Hsp90 and Hsp70.
    [Show full text]
  • Dottorato Di Ricerca the Effect of Finasteride
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UniCA Eprints Università degli Studi di Cagliari DOTTORATO DI RICERCA Scuola di Dottorato in Neuroscienze e Scienze Morfologiche Corso di Dottorato in Neuroscienze Ciclo XXIII THE EFFECT OF FINASTERIDE IN TOURETTE SYNDROME: RESULTS OF A CLINICAL TRIAL Settore scientifico disciplinari di afferenza BIO/14 Presentata da: Silvia Paba Coordinatore Dottorato Prof.ssa Alessandra Concas Tutor Dott.ssa Paola Devoto Esame finale anno accademico 2009 - 2010 1. INTRODUCTION 1 1.1 General characteristics of steroid 5α-reductase 2 1.2 S5αR inhibitors 15 1.3 S5αR inhibitors as putative therapeutic agents for some neuropsychiatric disorders. 23 2. AIMS OF THE STUDY 37 3. METHODS 38 3.1 Subjects 38 3.2 Procedures 39 3.3 Data analysis 40 4. RESULTS 41 4.1 Description of sample 41 4.2 Dosing, range and compliance 41 4.3 Effects of finasteride on TS and tic severity 44 4.4 Effects of finasteride on obsessive compulsive symptoms 46 4.5 Adverse effects 47 5. DISCUSSION 48 6. CONCLUSION 52 REFERENCES 54 1. INTRODUCTION The enzyme steroid 5α reductase (S5αR) catalyzes the conversion of Δ4-3-ketosteroid precursors - such as testosterone, progesterone and androstenedione - into their 5α- reduced metabolites. Although the current nomenclature assigns five enzymes to the S5αR family, only the types 1 and 2 appear to play an important role in steroidogenesis, mediating an overlapping set of reactions, albeit with distinct chemical characteristics and anatomical distribution. The discovery that the 5α-reduced metabolite of testosterone, 5α-dihydrotestosterone (DHT), is the most potent androgen and stimulates prostatic growth led to the development of S5αR inhibitors with high efficacy and tolerability.
    [Show full text]
  • The HSP70 Chaperone Machinery: J Proteins As Drivers of Functional Specificity
    REVIEWS The HSP70 chaperone machinery: J proteins as drivers of functional specificity Harm H. Kampinga* and Elizabeth A. Craig‡ Abstract | Heat shock 70 kDa proteins (HSP70s) are ubiquitous molecular chaperones that function in a myriad of biological processes, modulating polypeptide folding, degradation and translocation across membranes, and protein–protein interactions. This multitude of roles is not easily reconciled with the universality of the activity of HSP70s in ATP-dependent client protein-binding and release cycles. Much of the functional diversity of the HSP70s is driven by a diverse class of cofactors: J proteins. Often, multiple J proteins function with a single HSP70. Some target HSP70 activity to clients at precise locations in cells and others bind client proteins directly, thereby delivering specific clients to HSP70 and directly determining their fate. In their native cellular environment, polypeptides are participates in such diverse cellular functions. Their constantly at risk of attaining conformations that pre- functional diversity is remarkable considering that vent them from functioning properly and/or cause them within and across species, HSP70s have high sequence to aggregate into large, potentially cytotoxic complexes. identity. They share a single biochemical activity: an Molecular chaperones guide the conformation of proteins ATP-dependent client-binding and release cycle com- throughout their lifetime, preventing their aggregation bined with client protein recognition, which is typi- by protecting interactive surfaces against non-productive cally rather promiscuous. This apparent conundrum interactions. Through such inter actions, molecular chap- is resolved by the fact that HSP70s do not work alone, erones aid in the folding of nascent proteins as they are but rather as ‘HSP70 machines’, collaborating with synthesized by ribosomes, drive protein transport across and being regulated by several cofactors.
    [Show full text]
  • Cell-Specific Proteomic Analysis in Caenorhabditis Elegans
    Supporting Information Appendix (265 Pages) for Cell-Specific Proteomic Analysis in Caenorhabditis elegans Authors: Kai P. Yueta, Meenakshi K. Domab, c, John T. Ngoa, 2, Michael J. Sweredoskid, Robert L. J. Grahamd, 3, Annie Moradiand, Sonja Hessd, Erin M. Schumane, Paul W. Sternbergb,c and David A. Tirrella,1 Author Affiliations: aDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America bDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America cHoward Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America dProteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America eMax Planck Institute for Brain Research, Frankfurt am Main, Germany 1To whom correspondence may be addressed. 2Current Address: Department of Pharmacology, University of California, San Diego, La Jolla, California, United States of America 3Current Address: Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom Supporting Information Materials and Methods - Adenosine Triphosphate (ATP)-Pyrophosphate (PPi) Exchange Assay - Chloroform/Methanol Precipitation - Enrichment of p-Azido-L-Phenylalanine-Labeled Proteins - Fluorescence Microscopy of Live C. elegans - Fluorescence Microscopy of p-Azido-L-Phenylalanine-Labeled Proteins in Fixed C. elegans - In-Gel Fluorescence
    [Show full text]
  • Kinetics of the Conformational Cycle of Hsp70 Reveals the Importance of the Dynamic and Heterogeneous Nature of Hsp70 for Its Function
    Kinetics of the conformational cycle of Hsp70 reveals the importance of the dynamic and heterogeneous nature of Hsp70 for its function Si Wu (吴思)a,b,1, Liu Hong (洪柳)c,1, Yuqing Wang (王宇清)a,b,1, Jieqiong Yu (郁洁琼)a,b, Jie Yang (杨杰)a,b,2, Jie Yang (杨洁)a,b,3, Hong Zhang (张红)a,b, and Sarah Perrett (柯莎)a,b,4 aNational Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; bUniversity of the Chinese Academy of Sciences, Beijing 100049, China; and cZhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China Edited by Lila M. Gierasch, University of Massachusetts at Amherst, Amherst, MA, and approved February 21, 2020 (received for review September 4, 2019) Hsp70 is a conserved molecular chaperone that plays an indispens- Growing evidence suggests that the individual domains of Hsp70 able role in regulating protein folding, translocation, and degra- are highly dynamic (8, 9). Moreover, the application of sensitive dation. The conformational dynamics of Hsp70 and its regulation techniques such as single-molecule fluorescence resonance energy by cochaperones are vital to its function. Using bulk and single- transfer (smFRET), NMR, electron paramagnetic resonance, and molecule fluorescence resonance energy transfer (smFRET) tech- ion mobility native mass spectroscopy suggests that full-length niques, we studied the interdomain conformational distribution of Hsp70 adopts multiple conformations (10–16). These studies not human stress-inducible Hsp70A1 and the kinetics of conforma- only provide supplemental dynamic information to the classical tional changes induced by nucleotide and the Hsp40 cochaperone structural picture but also indicate the importance of the dynamic Hdj1.
    [Show full text]
  • A Novel Plant E3 Ligase Stabilizes Escherichia Coli Heat Shock Factor
    www.nature.com/scientificreports OPEN A novel plant E3 ligase stabilizes Escherichia coli heat shock factor σ32 Received: 10 October 2016 Yulong Niu 1, Xibing Xu1, Chengcheng Liu2, Tao Wang1, Ke Liang1, Jianmei Wang1, Zhibin Accepted: 24 April 2017 Liu1, Xufeng Li1 & Yi Yang1 Published: xx xx xxxx The heat shock response is crucial for organisms against heat-damaged proteins and maintaining homeostasis at a high temperature. Heterologous expression of eukaryotic molecular chaperones protects Escherichia coli from heat stress. Here we report that expression of the plant E3 ligase BnTR1 significantly increases the thermotolerance ofE . coli. Different from eukaryotic chaperones, BnTR1 expression induces the accumulation of heat shock factor σ32 and heat shock proteins. The active site of BnTR1 in E. coli is the zinc fingers of the RING domain, which interacts with DnaK resulting in stabilizing σ32. Our findings indicate the expression of BnTR1 confers thermoprotective effects onE . coli cells, and it may provide useful clues to engineer thermophilic bacterial strains. The heat shock response (HSR) is a universal signalling pathway in all organisms that maintains protein-folding homeostasis through the regulation of heat shock proteins (HSPs)1, 2. Although the HSR varies among species, a striking common feature is the rapid induction of evolutionarily conserved HSPs, including the chaperones and proteases that perform protein refolding and degradation, thereby protecting cells from stress-induced protein misfolding or aggregation3, 4. In Escherichia coli, the HSR is a complex circuit controlled by the alternative sigma factor (σ32), encoded by rpoH, which guides RNA polymerase to HSP gene promoters in heat stress5–7.
    [Show full text]
  • European Patent Office U.S. Patent and Trademark Office
    EUROPEAN PATENT OFFICE U.S. PATENT AND TRADEMARK OFFICE CPC NOTICE OF CHANGES 89 DATE: JULY 1, 2015 PROJECT RP0098 The following classification changes will be effected by this Notice of Changes: Action Subclass Group(s) Symbols deleted: C12Y 101/01063 C12Y 101/01128 C12Y 101/01161 C12Y 102/0104 C12Y 102/03011 C12Y 103/01004 C12Y 103/0103 C12Y 103/01052 C12Y 103/99007 C12Y 103/9901 C12Y 103/99013 C12Y 103/99021 C12Y 105/99001 C12Y 105/99002 C12Y 113/11013 C12Y 113/12012 C12Y 114/15002 C12Y 114/99028 C12Y 204/01119 C12Y 402/01052 C12Y 402/01058 C12Y 402/0106 C12Y 402/01061 C12Y 601/01025 C12Y 603/02027 Symbols newly created: C12Y 101/01318 C12Y 101/01319 C12Y 101/0132 C12Y 101/01321 C12Y 101/01322 C12Y 101/01323 C12Y 101/01324 C12Y 101/01325 C12Y 101/01326 C12Y 101/01327 C12Y 101/01328 C12Y 101/01329 C12Y 101/0133 C12Y 101/01331 C12Y 101/01332 C12Y 101/01333 CPC Form – v.4 CPC NOTICE OF CHANGES 89 DATE: JULY 1, 2015 PROJECT RP0098 Action Subclass Group(s) C12Y 101/01334 C12Y 101/01335 C12Y 101/01336 C12Y 101/01337 C12Y 101/01338 C12Y 101/01339 C12Y 101/0134 C12Y 101/01341 C12Y 101/01342 C12Y 101/03043 C12Y 101/03044 C12Y 101/98003 C12Y 101/99038 C12Y 102/01083 C12Y 102/01084 C12Y 102/01085 C12Y 102/01086 C12Y 103/01092 C12Y 103/01093 C12Y 103/01094 C12Y 103/01095 C12Y 103/01096 C12Y 103/01097 C12Y 103/0701 C12Y 103/08003 C12Y 103/08004 C12Y 103/08005 C12Y 103/08006 C12Y 103/08007 C12Y 103/08008 C12Y 103/08009 C12Y 103/99032 C12Y 104/01023 C12Y 104/01024 C12Y 104/03024 C12Y 105/01043 C12Y 105/01044 C12Y 105/01045 C12Y 105/03019 C12Y 105/0302
    [Show full text]
  • Ubiquitin-Interacting Motifs of Ataxin-3 Regulate Its Polyglutamine Toxicity Through Hsc70-4-Dependent Aggregation
    RESEARCH ARTICLE Ubiquitin-interacting motifs of ataxin-3 regulate its polyglutamine toxicity through Hsc70-4-dependent aggregation Sean L Johnson1, Bedri Ranxhi1, Kozeta Libohova1, Wei-Ling Tsou1*, Sokol V Todi1,2* 1Department of Pharmacology, Wayne State University, Detroit, United States; 2Department of Neurology, Wayne State University, Detroit, United States Abstract Spinocerebellar ataxia type 3 (SCA3) belongs to the family of polyglutamine neurodegenerations. Each disorder stems from the abnormal lengthening of a glutamine repeat in a different protein. Although caused by a similar mutation, polyglutamine disorders are distinct, implicating non-polyglutamine regions of disease proteins as regulators of pathogenesis. SCA3 is caused by polyglutamine expansion in ataxin-3. To determine the role of ataxin-3’s non- polyglutamine domains in disease, we utilized a new, allelic series of Drosophila melanogaster. We found that ataxin-3 pathogenicity is saliently controlled by polyglutamine-adjacent ubiquitin- interacting motifs (UIMs) that enhance aggregation and toxicity. UIMs function by interacting with the heat shock protein, Hsc70-4, whose reduction diminishes ataxin-3 toxicity in a UIM-dependent manner. Hsc70-4 also enhances pathogenicity of other polyglutamine proteins. Our studies provide a unique insight into the impact of ataxin-3 domains in SCA3, identify Hsc70-4 as a SCA3 enhancer, and indicate pleiotropic effects from HSP70 chaperones, which are generally thought to suppress polyglutamine degeneration. *For correspondence: [email protected] (W-LT); [email protected] (SVT) Introduction Competing interests: The Spinocerebellar ataxia type 3 (SCA3; also known as Machado-Joseph disease) is the most frequent authors declare that no dominant ataxia worldwide. SCA3 is caused by CAG repeat expansion in the gene ATXN3 that is competing interests exist.
    [Show full text]
  • Characterization of Human Hsp70 Chaperone Complexes and Chemical Control
    Characterization of Human Hsp70 Chaperone Complexes and Chemical Control Over Their Formation by Srikanth Patury A dissertation submitted in partial fulfillment Of the requirements for the degree of Doctor of Philosophy (Molecular and Cellular Pathology) In The University of Michigan 2012 Doctoral Committee: Associate Professor Jason E. Gestwicki, Chair Associate Professor George A. Garcia Assistant Professor Yali Dou Assistant Professor Jolanta Grembecka © Srikanth Patury 2012 To my family ii Acknowledgements I would like to thank Jason for being an amazing advisor and patiently guiding me while I was meandering around in my Ph.D journey. His door was always open and I would always walk out of his office with a fresher perspective. Thanks to the ‘Gestwicki Gang’, both past and present for making the lab a happy place. I would also like to thank Dr. Nick Lukacs for his advice and support. I am indebted to my committee members for their patience and advice. And finally, this journey would not have been possible without the love and understanding of Nanditha while I try to discover my calling. iii Table of Contents Dedication ii Acknowledgements iii List of Figures xi List of Tables xiii List of Abbreviations xiv Abstract xv Chapter 1. Introduction to the Hsp70 Chaperone Complexes and Their Use as Potential Drug Targets 1 1.1. Abstract 1 1.2. Structure and Funcation of Hsp70 Family 2 1.2.1. Introduction 2 1.2.2. Domain Architecture 3 1.2.3. J-Domain co-chaperones 4 1.2.4. Nucleotide exchange factors 6 1.2.5. TPR-domain proteins 8 1.2.6.
    [Show full text]
  • The Holdase Function of Escherichia Coli Hsp70 (Dnak) Chaperone
    bioRxiv preprint doi: https://doi.org/10.1101/305854; this version posted April 21, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The holdase function of Escherichia coli Hsp70 (DnaK) chaperone Ricksen S. Winardhi,1, 2, ∗ Qingnan Tang,1, 2, ∗ Huijuan You,2 Michael Sheetz,2 and Jie Yan1, 2, 3, y 1Department of Physics, National University of Singapore, Singapore 117542 2Mechanobiology Institute, National University of Singapore, Singapore 117411 3Centre for Bioimaging Sciences, National University of Singapore, Singapore 117546 (Dated: April 21, 2018) In Escherichia coli, the DnaK/DnaJ/GrpE system plays a critical role in mediating protein re- folding and buffering against protein aggregation due to environmental stress. The underlying mechanism remains unclear. In this work, we probe the activity of DnaK/DnaJ/GrpE system with single-molecule protein refolding assay using tandem repeats of titin immunoglobulin 27 (I27)8. We provide direct evidence that DnaK in apo- and ADP-bound state is predominantly a holdase, which kinetically stabilizes the polyprotein in its unfolded form. Binding of ATP relieves DnaK's holding, allowing protein refolding. The presence of co-chaperone DnaJ and GrpE modulates this holding- release switching, possibly by altering DnaK's nucleotide state. Our findings thus provide important insights to the molecular mechanism of DnaK/DnaJ/GrpE system. INTRODUCTION Hsp70 is of special interest due to its implication in var- ious neurodegenerative diseases, as many of these are In virtually all living organisms, proteins are synthe- caused by accumulation of aggregates/misfolded proteins sized by a molecular machine called ribosome by sequen- [3].
    [Show full text]