Application of Computer Simulation Technology in Chemical Synthesis of Resin Material ADH
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supporting Information For
Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011 Supporting Information for: 2- Quadruple-CO3 Bridged Octanuclear Dysprosium(III) Compound Showing Single-Molecule Magnet Behaviour Experimental Section Synthetic procedures All chemicals were of reagent grade and were used without any further purification. Synthesis of pyrazine-2-carbohydrazide The pyrazine-2-carboxylic acid methyl ester was prepared by a literature procedure described elsewhere. A mixture of pyrazine-2-carboxylic acid methyl ester (1.38 g, 10 mmol) and hydrazine hydrate (85%, 15 ml) in methanol (20 ml) was refluxed overnight, at a temperature somewhat below 80°C. The resulting pale-yellow solution set aside 12 hrs. During this period, a colorless product, i.e. pyrazine-2-carbohydrazide, precipitated from the reaction mixture as a crystalline solid (yield = 0.84 g, 61%). Synthesis of (E)-N'-(2-hyborxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide Pyrazine-2-carbohydrazide (2 mmol, 0.276 g) was suspended together with o-vanillin (2 mmol, 0.304 g) in methanol (20 ml), and the resulting mixture was stirred at the room temperature overnight. The pale yellow solid was collected by filtration (yield = 0.56 g, 83%). Elemental analysis (%) calcd for C13H12N4O3: C, 57.35, H, 4.44, N, 20.58: found C, 57.64, H, 4.59, N, 20.39. IR (KBr, cm-1): 3415(w), 3258(w), 1677(vs), 1610(s), 1579(m). 1530(s), 1464(s), 1363(m), 1255(vs), 1153(s), 1051(w), 1021(s), 986(w), 906(m), 938(w), 736(s), 596(m), 498(w). Synthesis of the complex 1 The solution of DyCl3⋅6H2O (56.5 mg, 0.15 mmol) and the H2L (40.5 mg, 0.15 mmol) in 15 ml CH3OH/CH2Cl2 (1:2 v/v) was stirred with triethylamine (0.4 mmol) for 6h. -
Chapter 21 the Chemistry of Carboxylic Acid Derivatives
Instructor Supplemental Solutions to Problems © 2010 Roberts and Company Publishers Chapter 21 The Chemistry of Carboxylic Acid Derivatives Solutions to In-Text Problems 21.1 (b) (d) (e) (h) 21.2 (a) butanenitrile (common: butyronitrile) (c) isopentyl 3-methylbutanoate (common: isoamyl isovalerate) The isoamyl group is the same as an isopentyl or 3-methylbutyl group: (d) N,N-dimethylbenzamide 21.3 The E and Z conformations of N-acetylproline: 21.5 As shown by the data above the problem, a carboxylic acid has a higher boiling point than an ester because it can both donate and accept hydrogen bonds within its liquid state; hydrogen bonding does not occur in the ester. Consequently, pentanoic acid (valeric acid) has a higher boiling point than methyl butanoate. Here are the actual data: INSTRUCTOR SUPPLEMENTAL SOLUTIONS TO PROBLEMS • CHAPTER 21 2 21.7 (a) The carbonyl absorption of the ester occurs at higher frequency, and only the carboxylic acid has the characteristic strong, broad O—H stretching absorption in 2400–3600 cm–1 region. (d) In N-methylpropanamide, the N-methyl group is a doublet at about d 3. N-Ethylacetamide has no doublet resonances. In N-methylpropanamide, the a-protons are a quartet near d 2.5. In N-ethylacetamide, the a- protons are a singlet at d 2. The NMR spectrum of N-methylpropanamide has no singlets. 21.9 (a) The first ester is more basic because its conjugate acid is stabilized not only by resonance interaction with the ester oxygen, but also by resonance interaction with the double bond; that is, the conjugate acid of the first ester has one more important resonance structure than the conjugate acid of the second. -
Oxalic Acid As a Heterogeneous Ice Nucleus in the Upper Troposphere and Its Indirect Aerosol Effect” by B
Atmos. Chem. Phys. Discuss., 6, S1765–S1768, 2006 Atmospheric www.atmos-chem-phys-discuss.net/6/S1765/2006/ Chemistry ACPD c Author(s) 2006. This work is licensed and Physics 6, S1765–S1768, 2006 under a Creative Commons License. Discussions Interactive Comment Interactive comment on “Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect” by B. Zobrist et al. B. Zobrist et al. Received and published: 13 July 2006 The authors would like to thank anonymous referee #1 for his/her constructive comments. We have addressed the referee’s concerns point-by-point below. Full Screen / Esc Succinic and Adipic acid as immersion IN: The solubility of these dicarboxylic acids is very low at temperatures of about 235 K, Printer-friendly Version as supported by the deliquescence measurements of Parsons et al. (JGR 109, D06212, 2004) which are close to 100 % RH. In our experiments, the droplets of Interactive Discussion these acids are completely liquid in the first cooling cycle with concentrations of Discussion Paper 7.3 wt% for succinic acid and 1.6 wt% for adipic acid, which is why they nucleate ice S1765 EGU homogeneously at temperatures below that of pure water. When the acids precipitate, the concentration of the remaining liquid corresponds to the equilibrium solubility at ACPD each temperature when the samples are cooled in the second cycle. Because of the 6, S1765–S1768, 2006 low solubility at lower temperatures we expect the observed rise in the homogeneous ice nucleation temperature when compared to the first cooling run. In fact, if we use the measured freezing temperatures and assume they are due to homogeneous ice Interactive nucleation, we can use water-activity-based ice nucleation theory to deduce the water Comment activity of the liquid part of the samples. -
Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/Ceo2: Effect of Reaction Parameters on the Activity
nanomaterials Article Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity Davide Motta 1, Ilaria Barlocco 2 , Silvio Bellomi 2, Alberto Villa 2,* and Nikolaos Dimitratos 3,* 1 Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK; [email protected] 2 Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy; [email protected] (I.B.); [email protected] (S.B.) 3 Dipartimento di Chimica Industriale e dei Materiali, Alma Mater Studiorum Università di Bologna, 40136 Bologna, Italy * Correspondence: [email protected] (A.V.); [email protected] (N.D.) Abstract: In the present work, an Ir/CeO2 catalyst was prepared by the deposition–precipitation method and tested in the decomposition of hydrazine hydrate to hydrogen, which is very important in the development of hydrogen storage materials for fuel cells. The catalyst was characterised using different techniques, i.e., X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with X-ray detector (EDX) and inductively coupled plasma—mass spectroscopy (ICP-MS). The effect of reaction conditions on the activity and selectivity of the material was evaluated in this study, modifying parameters such as temperature, the mass of the catalyst, stirring speed and concentration of base in order to find the optimal conditions of reaction, which allow performing the test in a kinetically limited regime. Citation: Motta, D.; Barlocco, I.; Bellomi, S.; Villa, A.; Dimitratos, N. Keywords: iridium; cerium oxide; hydrous hydrazine; hydrogen production Hydrous Hydrazine Decomposition for Hydrogen Production Using of Ir/CeO2: Effect of Reaction Parameters on the Activity. -
Synthesis of Optically Pure Macroheterocycles with 2,6-Pyridinedicarboxylic and Adipic Acid Fragments from ∆3-Carene
Macrolides Paper Макролиды Статья DOI: 10.6060/mhc190660y Synthesis of Optically Pure Macroheterocycles with 2,6-Pyridinedicarboxylic and Adipic Acid Fragments from ∆3-Carene Marina P. Yakovleva,@ Kseniya S. Denisova, Galina R. Mingaleeva, Valentina A. Vydrina, and Gumer Yu. Ishmuratov Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia @Corresponding author E-mail: [email protected] Based on the available natural monoterpene ∆3-carene we have developed the synthesis of four optically pure macroheterocycles with ester and dihydrazide fragments through the intermediate 1-((1S,3R)-3-(2-hydroxyethyl- 2,2-dimethylcyclopropyl)propan-2-one using its [2+1]-interaction with dichloranhydrides of adipic or 2,6-pyridinedicarboxylic acids and [1+1]-condensation of the obtained α,ω-diketodiesters with dihydrazides of adipic or 2,6-pyridinedicarboxylic acids. The structure of new compounds was confirmed by IR and NMR spectroscopy and mass spectrometry. Keywords: 3-Carenes, ozonolysis, sodium hypochlorite, macroheterocycles with ester and dihydrazide fragments, [2+1] and [1+1] condensations, synthesis. Синтез оптически чистых макрогетероциклов со сложноэфирными и дигидразидными фрагментами адипиновой и 2,6-пиридиндикарбоновой кислот из D3-карена М. П. Яковлева,@ К. С. Денисова, Г. Р. Мингалеева, В. А. Выдрина, Г. Ю. Ишмуратов Уфимский Институт химии – обособленное структурное подразделение Федерального бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии -
Periodic Trends in the Main Group Elements
Chemistry of The Main Group Elements 1. Hydrogen Hydrogen is the most abundant element in the universe, but it accounts for less than 1% (by mass) in the Earth’s crust. It is the third most abundant element in the living system. There are three naturally occurring isotopes of hydrogen: hydrogen (1H) - the most abundant isotope, deuterium (2H), and tritium 3 ( H) which is radioactive. Most of hydrogen occurs as H2O, hydrocarbon, and biological compounds. Hydrogen is a colorless gas with m.p. = -259oC (14 K) and b.p. = -253oC (20 K). Hydrogen is placed in Group 1A (1), together with alkali metals, because of its single electron in the valence shell and its common oxidation state of +1. However, it is physically and chemically different from any of the alkali metals. Hydrogen reacts with reactive metals (such as those of Group 1A and 2A) to for metal hydrides, where hydrogen is the anion with a “-1” charge. Because of this hydrogen may also be placed in Group 7A (17) together with the halogens. Like other nonmetals, hydrogen has a relatively high ionization energy (I.E. = 1311 kJ/mol), and its electronegativity is 2.1 (twice as high as those of alkali metals). Reactions of Hydrogen with Reactive Metals to form Salt like Hydrides Hydrogen reacts with reactive metals to form ionic (salt like) hydrides: 2Li(s) + H2(g) 2LiH(s); Ca(s) + H2(g) CaH2(s); The hydrides are very reactive and act as a strong base. It reacts violently with water to produce hydrogen gas: NaH(s) + H2O(l) NaOH(aq) + H2(g); It is also a strong reducing agent and is used to reduce TiCl4 to titanium metal: TiCl4(l) + 4LiH(s) Ti(s) + 4LiCl(s) + 2H2(g) Reactions of Hydrogen with Nonmetals Hydrogen reacts with nonmetals to form covalent compounds such as HF, HCl, HBr, HI, H2O, H2S, NH3, CH4, and other organic and biological compounds. -
Synthesis of Hydrazide-Hydrazone Derivatives and Their Evaluation of Antidepressant, Sedative and Analgesic Agents R
R M Mohareb et al, /J. Pharm. Sci. & Res. Vol.2(4), 2010, 185-196 Synthesis of hydrazide-hydrazone derivatives and their evaluation of antidepressant, sedative and analgesic agents 1,2 1 2 3 R. M. Mohareb , K. A. El-Sharkawy , M. M. Hussein and H. M. El-Sehrawi 1Faculty of Pharmacy, Organic Chemistry Department, October University for Modern Sciences and Arts (MSA) – El-Wahat Road – 6 October City – Egypt. 2Department of Chemistry, Faculty of Science, Cairo University, Giza, A. R. Egypt. 3Faculty of Pharmacy (Girls), Pharmaceutical Chemistry Department, Al-Azhar University, Nasr City, Cairo, A.R. Egypt. Abstract: The reaction of cyanoacetylhydrazine (1) with -bromo(4-methoxyacetophenone) (2) gave the hydrazide- hydrazone derivative 3. Compound 3 reacted with either potassium cyanide or potassium thiocyanide to give the cyanide or thiocyanide derivatives 4a or 4b respectively. The reaction of compound 3 with either hydrazine hydrate or phenylhydrazine gave the hydrazine derivatives 6a or 6b respectively. The latter compounds underwent a series of heterocyclization when react with different reagents to give 1,3,4-triazine and pyridine derivatives. The antidepressant, sedative and analgesic activities of the newly synthesized products were evaluated. Keywords: Antidepressant. hydrazide-hydrazone. pyridine. sedative. 1,3,4-triazine, Introduction: Micro Analytical Data Unit at Cairo We report here the synthesis of a series of University, Giza, Egypt. hydrazide-hydrzones via the reaction of Synthetic pathways are presented in cyanoacetylhydrazine 1 with -bromo(4- Schemes 1-2 and physicochemical, methoxyacetophenone) 2. The hydrazide- spectral data for the newly synthesized hydrazones have been demonstrated to compounds are given in Tables 1 and 2. -
The. Reactions Op Semicarbazones, Thiosbmicarbazonbs
THE. REACTIONS OP SEMICARBAZONES, THIOSBMICARBAZONBS AMD RELATED COMPOUNDS, IMCLTJDIMG THE ACTION OF AMINES ON AMINOCARBOCARBAZONES. A THESIS PRESENTED BY JOHN MCLEAN B.So. IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF GLASGOW. / MAY *936. THE ROYAL TECHNICAL COLLEGE, GLASGOW. ProQuest Number: 13905234 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13905234 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 This research was carried out in the Royal Technical College, Glasgow, under the supervision of Professor F.J. Wilson, whose helpful advice was greatly appreciated by the author. CONTENTS. Page General Introduction, PART 1. The Action of Amines on Amino Carhocarbazones. Introduction... ..... ,..................... 4 Benzylamine......... Theoretical.............. 11 ......... Experimental............. 15 Aniline............. Theoretical............ 21 ............. Experimental............ 22 B-Naphthylamine..... Theoretical............... 27 -
Design and Biological Evaluation of Biphenyl-4-Carboxylic Acid Hydrazide-Hydrazone for Antimicrobial Activity
Acta Poloniae Pharmaceutica ñ Drug Research, Vol. 67 No. 3 pp. 255ñ259, 2010 ISSN 0001-6837 Polish Pharmaceutical Society DESIGN AND BIOLOGICAL EVALUATION OF BIPHENYL-4-CARBOXYLIC ACID HYDRAZIDE-HYDRAZONE FOR ANTIMICROBIAL ACTIVITY AAKASH DEEP1*, SANDEEP JAIN2, PRABODH CHANDER SHARMA3 PRABHAKAR VERMA4, MAHESH KUMAR4, and CHANDER PARKASH DORA1 1Department of Pharmaceutical Sciences, G.V.M. College of Pharmacy, Sonepat-131001, India 2Department of Pharm. Sciences, Guru Jambheshwar University of Science and Technology, Hisar-125001, India 3Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra-136119, India 4Institute of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak-124001, India Abstract: Seven biphenyl-4-carboxylic acid hydrazide-hydrazones have been synthesized. These hydrazone derivatives were characterized by CHN analysis, IR, and 1H NMR spectral data. All the compounds were eval- uated for their in vitro antimicrobial activity against two Gram negative strains (Escherichia coli and Pseudomonas aeruginosa) and two Gram positive strains (Bacillus subtilis and Staphylococcus aureus) and fun- gal strain Candida albicans and Aspergillus niger. All newly synthesized compounds exhibited promising results. Keywords: synthesis, hydrazide-hydrazones, antimicrobial activity Development of novel chemotherapeutic EXPERIMENTAL agents is an important and challenging task for the medicinal chemists and many research programs are Melting points were determined in open capil- directed towards the design and synthesis of new lary tubes and are uncorrected. Infra-red spectra drugs for their chemotherapeutic usage. Hydrazone were recorded on Perkin Elmer Spectrum RXI FTIR compounds constitute an important class for new spectrophotomer in KBr phase. 1H NMR spectra drug development in order to discover an effective were run on BRUKER spectrometer (300 MHz) compound against multidrug resistant microbial using TMS as an internal standard. -
Green Chemistry Accepted Manuscript
Green Chemistry Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/greenchem Page 1 of 21 Green Chemistry Green Chemistry RSCPublishing CRITICAL REVIEW Catalytic Routes towards Acrylic Acid, Adipic Acid and ε-Caprolactam starting from Biorenewables Cite this: DOI: 10.1039/x0xx00000x Rolf Beerthuis, Gadi Rothenberg and N. Raveendran Shiju* Received 00th January 2012, The majority of bulk chemicals are derived from crude oil, but the move to biorenewable resources is Accepted 00th January 2012 gaining both societal and commercial interest. Reviewing this transition, we first summarise the types of today’s biomass sources and their economical relevance. Then, we assess the biobased productions DOI: 10.1039/x0xx00000x of three important bulk chemicals: acrylic acid, adipic acid and ε-caprolactam. -
APPENDIX G Acid Dissociation Constants
harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants § ϭ 0.1 M 0 ؍ (Ionic strength ( † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form. -
Production of Adipic Acid from Mixtures of Cyclohexanol-Cyclohexanone Using Polyoxometalate Catalysts
Makara J. Sci. 19/2 (2015), 85-90 doi: 10.7454/mss.v19i2.4778 Production of Adipic Acid from Mixtures of Cyclohexanol-Cyclohexanone using Polyoxometalate Catalysts Aldes Lesbani 1*, Sumiati 1, Mardiyanto 2, Najma Annuria Fithri 2, and Risfidian Mohadi 1 1. Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Sriwijaya, Indralaya (OI), Sumatera Selatan 30662, Indonesia 2. Department of Pharmacy, Faculty of Mathematic and Natural Sciences, Universitas Sriwijaya, Indralaya (OI), Sumatera Selatan 30662, Indonesia *E-mail: [email protected] Abstract Adipic acid production through catalytic conversion of cyclohexanol-cyclohexanone using polyoxometalate H 5[α-BW 12 O40 ] and H 4[α-SiW 12 O40 ] as catalysts was carried out systematically. Polyoxometalates H 5[α-BW 12 O40 ] and H 4[α-SiW 12 O40 ] were synthesized using an inorganic synthesis method and were characterized using Fourier transform infrared spectroscopy (FTIR). Adipic acid was formed from conversion of cyclohexanol-cyclohexanone and was characterized by using melting point measurement, identification of functional group using FTIR spectrophotometer, analysis of gas chromatography-mass spectrometry (GC-MS), and 1H and 13 C NMR (nuclear magnetic resonance) spectrophotometer. This research investigated the influence of reaction time and temperature on conversion. The results showed that adipic acid was formed successfully with a yield of 68% by using H 5[α-BW 12 O40 ] as catalyst at the melting point of 150-152 °C after optimization. In contrast, using H 4[α-SiW 12 O40 ] as catalyst, formation of adipic acid was only 3.7%. Investigation of time and temperature showed 9 h as the optimum reaction time and 90 °C as the optimum temperature for conversion of up to 68% adipic acid.