Nymph As an Intermediate Host of Anoplocephalid Cestodes

Total Page:16

File Type:pdf, Size:1020Kb

Nymph As an Intermediate Host of Anoplocephalid Cestodes J. Acarol. Soc. Jpn., 14(1): 31-34. May 25, 2005 The Acarological Society of Japan 31 [SHORT COMMUNICATION] A Cysticercoid in Mixacarus exilis (Acari: Oribatida) Nymph as an Intermediate Host of Anoplocephalid Cestodes 1,2† 1‡ Satoshi SHIMANO * and Kiyoshi KAMIMURA 1 Department of Biodefence Medicine, Toyama Medical and Pharmaceutical University, Toyama, 930- 0194 Japan 2 Department of Upland Farming, National Agricultural Research Center for Tohoku Region, Fukushima 960-2156 Japan (Received 9 February 2004; Accepted 23 April 2005) Key words: cysticercoid, Enarthronota, intermediate host as nymph, Mixacarus exilis Oribatida, tapeworm INTRODUCTION Oribatid mites have been known to serve as intermediate hosts of some tapeworm species, such as Anoplocephala and Moniezia, parasites of herbivorous mammals. Since Stunkard (1937) discovered that an oribatid mite, Galumna sp., are the vectors of an anoplocephalid tapeworm, Moniezia expansa, many relationships between particular oribatid mite species and various cestode groups have been examined. Kates and Runkel (1948) suggested that efficiency as intermediate host was different according to the species of mites. In subse- quent years, various studies were conducted on the host-parasite relationship between tapeworms and oribatid mites (Haq, 1988; Rajski, 1959; Sengbusch, 1977). Denegri (1993) reported a list of oribatid mites including 127 species in 27 families that can serve as intermediate hosts for 27 species in 14 genera of anoplocephalid tapeworms. In the present study, a primitive oribatid species belonging to family Lohmanniidae (cohort: Enarthronota) was newly found to be an intermediate host species. Additionally, nymphal mites have never been reported as intermediate hosts of these tapeworms previously, but we found a nymphal Mixacarus mite that was carrying a cycticercoid. MATERIALS AND METHODS Samples were collected from small woodland at Yokohama National University, 日本産フトツツハラダニ Mixacarus exilis から見いだされた裸頭条虫科条虫の擬嚢尾虫 1,2† 1‡ 1 2 島野 智之 *・上村 清 ( 富山医科薬科大学・医学部・感染予防医学研究室 東北農業研究セン † ター・畑地利用部 現住所: 宮城教育大学 環境教育実践研究センター,〒 980–0845 仙台市青葉区荒 ‡ 巻字青葉 149; 〒 630–0194 富山市婦負郡婦中友坂 243) *Corresponding author: e-mail: [email protected] † Present address: Environmental Education Center, Miyagi University of Education, Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980–0845, Japan ‡ Present address: 243, Tomosaka, Hutyuu, Nei-gun Toyama 930–0194 Japan 32 Satoshi SHIMANO and Kiyoshi KAMIMURA Kanagawa Prefecture, Japan in August 1995. This woodland mainly consists of chinquapin (Castanopsis cuspidata var. sieboldii Nakai), and is inhabited by various birds, raccoon dog (Nyctereutes procyonoides), dog and cat. A total of 2,500 cm2 soil and litter samples were collected from 0–5 cm depth of the woodland floor. The oribatid mites were extracted from the samples by Berlese funnels. Collected mites were fixed in 80% ethanol and mounted on slides with Hoyer’s medium. Specimens of mites were examined with light microscopy for the identification of mite species and presence of cysticercoids. Identification of oribatid species was mainly based on the descriptions published by Aoki (1970), and cysticercoids of the tapeworms were compared with the descriptions by Kates and Runkel (1948), Kassai and Mahunka (1965) and Prokopic (1962). The identification was unfortunately impossible, because the one specimen of cysticercoid was already fixed and would not be able to use to the infection study. RESULTS AND DISCUSSION From the soil and litter sampled, 683 oribatid mites were collected. Among them, one deutonymphal individual (body length 437 µm: Fig. A) was found to be infected with a cysticercoid (diameter 84–88 µm: Fig. B) that could be easily differentiated from the internal organs of the mite by the presence of 3 disks (Figs. B, C). Generally, these anoplocephalid tapeworms have four disks, but we could not confirm four disks. This mite was identified as Mixacarus exilis Aoki, 1970 in the primitive family Lohman- niidae by S. Shimano, one of the authors. This is the first report of a species of this family and cohort serving as a tapeworm intermediate host. The family, Lohmanniidae, was removed from Mixonomata to the primitive group of oribatid mite, Enarthronota by Norton (2001). Although this species represented almost 10% (66exs.) of the mites recovered, only one nymph was found infected. Previous precise records of oribatid intermediate hosts have been only of adult mites. To our knowledge, this is also the first record of a nymphal mite carrying a cysticercoid. Among the various papers which reported the relationship between cestodes and oribatid mites hosts in Japan, some studies confirmed the cestode infection (Isoda et al., 1966; Misaka and Ichisawa, 1977; Watanabe et al., 1957), and others were fundamental surveys of oribatid community structure and/or abundance of potential intermediate host species of oribatids in grazing land (Aoki, 1962; Nakamura, 1973; Sanada and Aoki, 1999) for the purpose of biodefence of merino sheep, racehorses, and general livestock. Although many investigations were carried out on grazing land throughout Japan, observations of cysticer- coids in oribatid mites were reported only in three instances before our study. Eporibatula sakamorii (Aoki, 1970) is usually distributed in greenlands (Watanabe et al., 1957), moss cushions growing on city constructions and other inferior environments (Aoki, 2000). Another reported mite host was Scheloribates laevigatus (C. L. Koch, 1836) (Isoda et al., 1966). This species is distributed in greenlands also, and sometimes occupies the position of dominant species (e.g. Kates and Runkel, 1948). The remaining one instance was reported as an unidentified species (Misaka and Ichisawa, 1977). In Japan, tapeworm infection seems Cysticercoid in Mixacarus exilis Nymph 33 Fig. A deutonymph of Mixacarus exilis Aoki, 1976, with a cysticercoid in the internal body. A: Whole body: normal compound microscope observation, scale=100 µm, the arrow indicates the cysticercoid. B: Whole body of the cysticercoid: normal compound microscope observation, scale=50 µm. The black and white arrows indicate disk of cysticercoid. C: The disk of cysticercoid observed by with Nomarski differential interference contrast, scale=20 µm, the same specimen squashed. The white arrow, which is same as Fig. B, indicates disk of cysticercoid. to be less serious tapeworm problems than in other countries. Kates and Runkel (1948) suggested that species of oribatid mites varied in their efficiency as intermediate hosts of the tapeworm. Biocontrol and biodefence for cestode disease causing serious problems require exact identification of oribatid mites in order to manage environment of grazing lands. M. exilis is usually found in forest areas and sometimes in grassland. This species had better to keep the monitoring for the grazing lands with medical safeguard, and study the play an important role as a tapeworm intermediate host in forest- lands of Japan. ACKNOWLEDGEMENTS I thank Prof. Soichi Imai, Department of Veterinary Parasitology, Nippon Veterinary and Animal Science University, Prof. Roy A. Norton, State University of New York, College of Environmental Science and Forestry, and Dr. Jun-ichi Aoki, President of Kanagawa Prefec- tural Museum of Natural History, for encouragement and helpful criticisms. 34 Satoshi SHIMANO and Kiyoshi KAMIMURA REFERENCES Aoki, J. (1962) Distribution of oribatid mites in pasture soils of Japan. Japanese Journal of Sanitary Zoology, 13: 11–15. (In Japanese with English summary) Aoki, J. (1970) The oribatid mites of the Island of Tsushima. Bulletin of National Science Museum, Tokyo, 13: 395– 442. Aoki, J. (2000) 11. Oribatula sakamorii. In: Oribatid mites in Moss Cushions Growing on City Constructions (ed., Aoki, J.), pp. 52–53, Tokai Univ. Press, Tokyo. Denegri, G. M. (1993) Review of oribatid mites as intermediate hosts of tapeworms of the Anoplocephalidae. Experimental and Applied Acarolgy, 17: 567–580. Haq, M. A. (1988) An appraisal on oribatid vectors. Bicovas, 1: 93–98. Isoda, M., S. Watanabe and K. Ookubo (1966) Biology and pest control of Anoplocephala perforiata on horse. Bulletin of Livestock Hygiene Parasitological Institute, 1: 1–18. (In Japanese) Kassai, T. and S. Mahunka (1965) Studies on tapeworms in ruminants., II. Oribatids as intermediate hosts Moniezia spp. Acta Veterinaria Hungarica, 15: 227–249. Kates, K. C. and C. E. Runkel (1948) Observations on oribatid mite vector of Moniezia expansa on pastures, with a report of several new vectors from the United States. Proceedings of the Helminthological Society of Washington, 15: 18–33. Misaka, M. and T. Ichisawa (1977) A study on Anoplocephala perfoliata living in horse and intermediate host oribatid mites. Graduation thesis in Nippon Veterinary and Animal Science University. (In Japanese) Nakamura, Y. (1973) Soil animals in natural and artificial grasslands. Bulletin of the National Grassland Research Institute, 4: 16–23. (In Japanese with English summary) Norton, R. A. (2001) Systematic relationships of Nothrolohmanniidae, and the evolutionary plasticity of body form in Enarthronota (Acari: Oribatida). In: Acarology: Proceeding of the 10th International Congress (eds., Halliday, R. B., D. E. Walter, H. C. Proctor, R. A. Norton, and M. J. Colloff), pp. 58–75, CSIRO Publishing, Melbourne. Prokopic, J. (1962) Archipteria celeopterata (L.) (Acarina)—Intermediate host of the tape worm Rodentolepis straminea (Goeze, 1782) (Hymenolepidoidea). Folia Zoologica, 11: 183–187. (In
Recommended publications
  • Epidemiology and Diagnosis of Anoplocephala Perfoliata in Horses from Southern Alberta, Canada
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OPUS: Open Uleth Scholarship - University of Lethbridge Research Repository University of Lethbridge Research Repository OPUS http://opus.uleth.ca Theses Arts and Science, Faculty of 2008 Epidemiology and diagnosis of anoplocephala perfoliata in horses from Southern Alberta, Canada Skotarek, Sara L. Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2008 http://hdl.handle.net/10133/681 Downloaded from University of Lethbridge Research Repository, OPUS EPIDEMIOLOGY AND DIAGNOSIS OF ANOPLOCEPHALA PERFOLIATA IN HORSES FROM SOUTHERN ALBERTA, CANADA SARA L. SKOTAREK BSc., Malaspina University-College, 2005 A Thesis Submitted to the School of Graduate Studies Of the University of Lethbridge In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE Department of Biological Science University of Lethbridge LETHBRIDGE, ALBERTA, CANADA © Sara L. Skotarek May, 2008 ABSTRACT The cestode Anoplocephala perfoliata is known to cause fatal colic in horses. The epidemiology of the cestode has rarely been evaluated in Canada. I detected A. perfoliata eggs in 4-18% of over 1000 faecal samples collected over 2 years. Worm intensity ranged from 1 to >1000 worms. Pastured horses were infected more often than non-pastured horses, especially in western Alberta, likely reflecting their higher rates of exposure to mite intermediate hosts. In a comparison of diagnostic techniques, fecal egg counts were the least accurate. Western blot analysis had the highest sensitivity to detect antibodies to the cestode (100%), but had lower specificity. A serological enzyme-linked immunosorbent assay (ELISA) had a lower sensitivity (70%) for detection of antibodies than described in previous studies.
    [Show full text]
  • Morphological and Molecular Studies of Moniezia Sp
    RESEARCH PAPER Zoology Volume : 5 | Issue : 8 | August 2015 | ISSN - 2249-555X Morphological and Molecular Studies of Moniezia Sp. (Cestoda: Anaplocephalidea) A Parasite of the Domestic Goat Capra Hircus (L.) in Aurangabad District (M.S.), India. KEYWORDS Anaplocephalidea, Aurangabad, Capra hircus, India, Moniezia. Amol Thosar Ganesh Misal Department of Zoology, Dr. Babasaheb Ambedkar Department of Zoology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad - 431004 Marathwada University, Aurangabad - 431004 Arun Gaware Sunita Borde Department of Zoology, Dr. Babasaheb Ambedkar Department of Zoology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004. Marathwada University, Aurangabad-431004. ABSTRACT Moniezia Sp.Nov. (Cestoda: Anaplocephalidea) is collected in the intestine of Capra hircus, Linnaeus, 1758 (Family: Bovidae) from Aurangabad district (M.S.), India. The present Cestode i.e. Moniezia Sp. Nov. differs other all known species is having the scolex almost squarish, mature proglottids nearly five times broader than long, Craspedote in shape, testes small in size, round to oval, 210-220 in numbers, cirrus pouch oval, ovary horse-shoe shaped, vitelline gland post ovarian.In molecular characterization of the parasites, the genomic DNA were amplified and sequenced. Based upon both morphological data and molecular analysis using bioinformatics tools, the Cestode is identified as confirmed to be representing Moniezia Sp. in mammalian host i.e. Goat. INTRODUCTION among individual orders. In addition to morphological The genus Moniezia was established by Blanchard, 1891. characters that are often variable, difficult to homologies, Skrjabin and Schulz (1937) divided this genus in to three molecular data have been widely used in phylogenetic subgenera as follows: studies of Cestodes generally and these Cestodes particu- larly using many genes and developed techniques as at- 1) Inter proglottidal glands grouped in rosettes--------------- tempts in solving many taxonomic problem.
    [Show full text]
  • IV. the Oribatid Mites (Acari: Cryptostigmata)
    This file was created by scanning the printed publication. Text errors identified by the software have been corrected; however, some errors may remain. United States Department of Invertebrates of the H.J. Agriculture Andrews Experimental Forest Service Pacific Northwest Forest, Western Cascade Research Station General Technical Report Mountains, Oregon: IV. PNW-217 August 1988 The Oribatid Mites (Acari: Cryptostigmata) Andrew R. Moldenke and Becky L. Fichter I ANDREW MOLDENKE and BECKY FICHTER are Research Associates, Department of Entomology, Oregon State University, Corvallis, Oregon 97331. TAXONOMIC LISTING OF PACIFIC NORTHWEST GENERA * - indicates definite records from the Pacific Northwest *Maerkelotritia 39-40, figs. 83-84 PALAEOSOMATA (=BIFEMORATINA) (=Oribotritia sensu Walker) Archeonothroidea *Mesotritia 40 *Acaronychus 32, fig. 64 *Microtritia 40-41, fig. 85 *Zachvatkinella 32, fig. 63 *Oribotritia 39, figs. 81-82 Palaeacaroidea Palaeacarus 32, fig. 61 (=Plesiotritia) *Rhysotritia 40 Ctenacaroidea *Aphelacarus 32, fig. 59 *Synichotritia 41 Beklemishevia 32, fig. 62 Perlohmannioidea *Perlohmannia 65, figs. 164-166, 188 *Ctenacarus 32, fig. 60 ENARTHRONOTA (=ARTHRONOTINA) Epilohmannioidea *Epilohmannia 65-66, figs. 167-169, Brachychthonioidea 187 *Brachychthonius 29-30, fig. 53 Eulohmannioidea *Eobrachychthonius 29 *Eulohmannia 35, figs. 67-68 *Liochthonius 29, figs. 54,55,306 DESMONOMATA Mixochthonius 29 Crotonioidea (=Nothroidea) Neobrachychthonius 29 *Camisia 36, 68. figs. 70-71, Neoliochthonius 29 73, 177-178, 308 (=Paraliochthonius) Heminothrus 71 Poecilochthonius 29 *Malaconothrus 36, fig. 74 *Sellnickochthonius 29, figs. 56-57 Mucronothrus 36 (=Brachychochthonius) Neonothrus 71 *Synchthonius 29 *Nothrus 69, fig. 179-182, Verachthonius 29 186, 310 Hypochthonioidea *Platynothrus 71, figs. 183-185 *Eniochthonius 28, figs. 51-52 309 (=Hypochthoniella) *Trhypochthonius 35, fig. 69 *Eohypochthonius 27-28, figs. 44-45 *Hypochthonius 28, figs.
    [Show full text]
  • Hotspots of Mite New Species Discovery: Sarcoptiformes (2013–2015)
    Zootaxa 4208 (2): 101–126 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Editorial ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4208.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:47690FBF-B745-4A65-8887-AADFF1189719 Hotspots of mite new species discovery: Sarcoptiformes (2013–2015) GUANG-YUN LI1 & ZHI-QIANG ZHANG1,2 1 School of Biological Sciences, the University of Auckland, Auckland, New Zealand 2 Landcare Research, 231 Morrin Road, Auckland, New Zealand; corresponding author; email: [email protected] Abstract A list of of type localities and depositories of new species of the mite order Sarciptiformes published in two journals (Zootaxa and Systematic & Applied Acarology) during 2013–2015 is presented in this paper, and trends and patterns of new species are summarised. The 242 new species are distributed unevenly among 50 families, with 62% of the total from the top 10 families. Geographically, these species are distributed unevenly among 39 countries. Most new species (72%) are from the top 10 countries, whereas 61% of the countries have only 1–3 new species each. Four of the top 10 countries are from Asia (Vietnam, China, India and The Philippines). Key words: Acari, Sarcoptiformes, new species, distribution, type locality, type depository Introduction This paper provides a list of the type localities and depositories of new species of the order Sarciptiformes (Acari: Acariformes) published in two journals (Zootaxa and Systematic & Applied Acarology (SAA)) during 2013–2015 and a summary of trends and patterns of these new species. It is a continuation of a previous paper (Liu et al.
    [Show full text]
  • Twenty Years of Passive Disease Surveillance of Roe Deer (Capreolus Capreolus) in Slovenia
    animals Article Twenty Years of Passive Disease Surveillance of Roe Deer (Capreolus capreolus) in Slovenia Diana Žele Vengušt 1, Urška Kuhar 2, Klemen Jerina 3 and Gorazd Vengušt 1,* 1 Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbiˇceva60, 1000 Ljubljana, Slovenia; [email protected] 2 Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbiˇceva60, 1000 Ljubljana, Slovenia; [email protected] 3 Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, Veˇcnapot 83, 1000 Ljubljana, Slovenia; [email protected] * Correspondence: [email protected]; Tel.: +386-(1)-4779-196 Simple Summary: Wildlife can serve as a reservoir for highly contagious and deadly diseases, many of which are infectious to domestic animals and/or humans. Wildlife disease surveillance can be considered an essential tool to provide important information on the health status of the population and for the protection of human health. Between 2000 and 2019, examinations of 510 roe deer carcasses were conducted by comprehensive necropsy and other laboratory tests. In conclusion, the results of this research indicate a broad spectrum of roe deer diseases, but no identified disease can be considered a significant health threat to other wildlife species and/or to humans. Abstract: In this paper, we provide an overview of the causes of death of roe deer (Capreolus capreolus) diagnosed within the national passive health surveillance of roe deer in Slovenia. From 2000 to 2019, postmortem examinations of 510 free-ranging roe deer provided by hunters were conducted at the Veterinary Faculty, Slovenia.
    [Show full text]
  • Parasite Findings in Archeological Remains: a Paleogeographic View 20
    Part III - Parasite Findings in Archeological Remains: a paleogeographic view 20. The Findings in South America Luiz Fernando Ferreira Léa Camillo-Coura Martín H. Fugassa Marcelo Luiz Carvalho Gonçalves Luciana Sianto Adauto Araújo SciELO Books / SciELO Livros / SciELO Libros FERREIRA, L.F., et al. The Findings in South America. In: FERREIRA, L.F., REINHARD, K.J., and ARAÚJO, A., ed. Foundations of Paleoparasitology [online]. Rio de Janeiro: Editora FIOCRUZ, 2014, pp. 307-339. ISBN: 978-85-7541-598-6. Available from: doi: 10.7476/9788575415986.0022. Also available in ePUB from: http://books.scielo.org/id/zngnn/epub/ferreira-9788575415986.epub. All the contents of this work, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 International license. Todo o conteúdo deste trabalho, exceto quando houver ressalva, é publicado sob a licença Creative Commons Atribição 4.0. Todo el contenido de esta obra, excepto donde se indique lo contrario, está bajo licencia de la licencia Creative Commons Reconocimento 4.0. The Findings in South America 305 The Findings in South America 20 The Findings in South America Luiz Fernando Ferreira • Léa Camillo-Coura • Martín H. Fugassa Marcelo Luiz Carvalho Gonçalves • Luciana Sianto • Adauto Araújo n South America, paleoparasitology first developed with studies in Brazil, consolidating this new science that Ireconstructs past events in the parasite-host relationship. Many studies on parasites in South American archaeological material were conducted on human mummies from the Andes (Ferreira, Araújo & Confalonieri, 1988). However, interest also emerged in parasites of animals, with studies of coprolites found in archaeological layers as a key source of ancient climatic data (Araújo, Ferreira & Confalonieri, 1982).
    [Show full text]
  • How to Do the Modified Mcmaster Fecal Egg Counting Procedure
    Improving Small Ruminant Parasite Control in New England USDA Sustainable Agriculture Research and Education Program (LNE10-300) How To Do The Modified McMaster Fecal Egg Counting Procedure The most common and efficient way to obtain fecal egg counts for sheep, goats, young cattle and horses is to use the Modified McMaster Test. This is a flotation test that separates parasite eggs from debris based on density; the eggs float to the surface of the counting chamber. This test uses a special microscope slide with a grid, which makes counting easier (Figure 1). Manure and flotation fluid is measured and mixed and only a small portion of the total mixture is counted. A calculation is performed to determine the number of eggs/gram in the manure. This technique can be used to count strongylid (also called strongyle or trichostrongyle) eggs, including those of the barber pole worm (H. contortus). Figure 1. McMaster microscope slide. www.vetslides.com This information sheet will describe the supplies needed and the procedure for the Modified McMaster Test for fecal egg counting as it relates to small ruminant parasite management. View our demonstration video on fecal egg counting for more information on how to do this procedure. View our information sheet, Why Do Sheep and Goat Fecal Egg Counts for more information on using and interpreting fecal egg counts. These resources can be accessed from our website, http://web.uri.edu/sheepngoat. Reference: Zajac, A.Z., Conboy, G.A., 2012, Veterinary Clinical Parasitology 8th Edition, 8-11. Fecal Egg Counting Supply List: • Scale to weigh fecal sample.
    [Show full text]
  • Acari, Oribatida)
    Zootaxa 4027 (2): 151–204 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.4027.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:B2D0A15A-16BE-4311-B9F1-ADC27341D40C Nanohystricidae n. fam., an unusual, plesiomorphic enarthronote mite family endemic to New Zealand (Acari, Oribatida) ROY A. NORTON1 & MARUT FUANGARWORN2 1State University of New York, College of Environmental Science and Forestry, Syracuse, New York, U.S.A. E-mail: [email protected] 2Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand. E-mail: [email protected] Abstract Nanohystrix hammerae n. gen., n. sp.—proposed on the basis of numerous adults and a few juveniles—is a new oribatid mite of the infraorder Enarthronota that appears to be phylogenetically relictual and endemic to northern New Zealand, in habitats ranging from native shrublands to native and semi-native forests. With an adult body length of 1–1.2 mm, the species is the largest known enarthronote mite outside Lohmanniidae, and it has an unusual combination of plesiomorphic and apomorphic traits. Plesiomorphies include: a well-formed median (naso) eye and pigmented lateral eyes; a bothridial seta with a simple, straight base; a vertically-oriented gnathosoma; a peranal segment; adanal sclerites partially incorpo- rated in notogaster (uncertain polarity); three genu I solenidia and a famulus on tarsus II. Autapomorphies include: five pairs of pale cuticular disks on the notogaster, with unknown function; six pairs of long, erectile notogastral setae, includ- ing pair h2 incorporated in the second transverse scissure along with the f-row, and pair h1 in a third scissure; chelicerae that are unusually broad, creating a flat-faced appearance; legs I that are inferred to have an unusually wide range of mo- tion.
    [Show full text]
  • Parasiticides: Fenbendazole, Ivermectin, Moxidectin Livestock
    Parasiticides: Fenbendazole, Ivermectin, Moxidectin Livestock 1 Identification of Petitioned Substance* 2 3 Chemical Names: 48 Ivermectin: Heart Guard, Sklice, Stomectol, 4 Moxidectin:(1'R,2R,4Z,4'S,5S,6S,8'R,10'E,13'R,14'E 49 Ivomec, Mectizan, Ivexterm, Scabo 6 5 ,16'E,20'R,21'R,24'S)-21',24'-Dihydroxy-4 50 Thiabendazole: Mintezol, Tresaderm, Arbotect 6 (methoxyimino)-5,11',13',22'-tetramethyl-6-[(2E)- 51 Albendazole: Albenza 7 4-methyl-2-penten-2-yl]-3,4,5,6-tetrahydro-2'H- 52 Levamisole: Ergamisol 8 spiro[pyran-2,6'-[3,7,1 9]trioxatetracyclo 53 Morantel tartrate: Rumatel 9 [15.6.1.14,8.020,24] pentacosa[10,14,16,22] tetraen]- 54 Pyrantel: Banminth, Antiminth, Cobantril 10 2'-one; (2aE, 4E,5’R,6R,6’S,8E,11R,13S,- 55 Doramectin: Dectomax 11 15S,17aR,20R,20aR,20bS)-6’-[(E)-1,2-Dimethyl-1- 56 Eprinomectin: Ivomec, Longrange 12 butenyl]-5’,6,6’,7,10,11,14,15,17a,20,20a,20b- 57 Piperazine: Wazine, Pig Wormer 13 dodecahydro-20,20b-dihydroxy-5’6,8,19-tetra- 58 14 methylspiro[11,15-methano-2H,13H,17H- CAS Numbers: 113507-06-5; 15 furo[4,3,2-pq][2,6]benzodioxacylooctadecin-13,2’- Moxidectin: 16 [2H]pyrano]-4’,17(3’H)-dione,4’-(E)-(O- Fenbendazole: 43210-67-9; 70288-86-7 17 methyloxime) Ivermectin: 59 Thiabendazole: 148-79-8 18 Fenbendazole: methyl N-(6-phenylsulfanyl-1H- 60 Albendazole: 54965-21-8 19 benzimidazol-2-yl) carbamate 61 Levamisole: 14769-72-4 20 Ivermectin: 22,23-dihydroavermectin B1a +22,23- 21 dihydroavermectin B1b 62 Morantel tartrate: 26155-31-7 63 Pyrantel: 22204-24-6 22 Thiabendazole: 4-(1H-1,3-benzodiazol-2-yl)-1,3- 23 thiazole
    [Show full text]
  • Morphological and Histopathological Analysis
    Annals of Parasitology 2020, 66(4), 501–507 Copyright© 2020 Polish Parasitological Society doi: 10.17420/ap6604.291 Original paper Uncommon co-infection due to Moniezia expansa and Moniezia benedeni in young goats from Romania: morphological and histopathological analysis Olimpia C. IACOB 1, Wael M. EL-DEEB 2, Sorin-Aurelian PA ŞCA 3, Andreea-Ioana TURTOI 4 1Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine ”Ion Ionescu de la Brad” in Ia și, M. Sadoveanu Alley, 3 no., 799490, Ia și, Romania 2Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Al-Hofuf P.O. 400, Saudi Arabia Department of Veterinary Medicine, Infectious Diseases and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt 3Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine ”Ion Ionescu de la Brad” in Ia și, M. Sadoveanu Alley, 3 no., 799490, Iassy, Romania 4S.C. Farmavet S.A. Ia și Branch, Industriilor Street, no.16 Uricani, Romania Corresponding Author: Olimpia IACOB; e-mail: [email protected] ABSTRACT. Digestive parasitoses negatively affect the goat’s health, the gain weight of the kids, the efficiency of food conversion, fertility, and productivity, causing important economic losses. This investigation was carried out on a group of goats, Carpathian breed, in the hill area of Tg. Frumos-Ia și, to specify the etiology of the acute digestive syndrome, triggered towards the end of the pasturing season, in the young goats. In this context, four sick animals, aged 6–8 months, were slaughtered.
    [Show full text]
  • Transposable Elements in Sexual and Asexual Animals
    Transposable elements in sexual and asexual animals Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades „Doctor rerum naturalium“ der Georg-August-Universität Göttingen im Promotionsprogramm Biologie der Georg-August University School of Science (GAUSS) vorgelegt von Diplom-Biologe J e n s B a s t aus Bad Bergzabern Göttingen, 2014 Betreuungsausschuss Prof. Dr. Stefan Scheu, Tierökologie, J.F. Blumenbach Institut PD Dr. Mark Maraun, Tierökologie, J.F. Blumenbach Institut Dr. Marina Schäfer, Tierökologie, J.F. Blumenbach Institut Mitglieder der Prüfungskommision Referent: Prof. Dr. Stefan Scheu, Tierökologie, J.F. Blumenbach Institut Korreferent: PD Dr. Mark Maraun, Tierökologie, J.F. Blumenbach Institut Weitere Mitglieder der Prüfungskommision: Prof. Dr. Elvira Hörandl, Systematische Botanik, Albrecht von Haller Institut Prof. Dr. Ernst Wimmer, Entwicklungsbiologie, J.F. Blumenbach Institut Prof. Dr. Ulrich Brose, Systemische Naturschutzbiologie, J.F. Blumenbach Institut PD Dr. Marko Rohlfs, Tierökologie, J.F. Blumenbach Institut Tag der mündlichen Prüfung: 30.01.2015 2 Wahrlich es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen, sondern das Erwerben, nicht das Da-Seyn, sondern das Hinkommen, was den grössten Genuss gewährt. – Schreiben Gauss an Wolfgang Bolyai, 1808 3 Curriculum Vitae PERSONAL DETAILS NAME Jens Bast BIRTH January, 31 1983 in Bad Bergzabern NATIONALITY German EDUCATION 2011-2015 PhD thesis (biology) Georg-August University Goettingen Title: 'Transposable elements in sexual and
    [Show full text]
  • Repeated Convergent Evolution of Parthenogenesis in Acariformes (Acari)
    Received: 25 July 2020 | Revised: 19 October 2020 | Accepted: 30 October 2020 DOI: 10.1002/ece3.7047 ORIGINAL RESEARCH Repeated convergent evolution of parthenogenesis in Acariformes (Acari) Patrick Pachl1 | Matti Uusitalo2 | Stefan Scheu1,3 | Ina Schaefer1 | Mark Maraun1 1JFB Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Abstract Germany The existence of old species-rich parthenogenetic taxa is a conundrum in evolution- 2 Zoological Museum, Centre for Biodiversity ary biology. Such taxa point to ancient parthenogenetic radiations resulting in mor- of Turku, Turku, Finland 3Centre of Biodiversity and Sustainable Land phologically distinct species. Ancient parthenogenetic taxa have been proposed to Use, University of Göttingen, Göttingen, exist in bdelloid rotifers, darwinulid ostracods, and in several taxa of acariform mites Germany (Acariformes, Acari), especially in oribatid mites (Oribatida, Acari). Here, we inves- Correspondence tigate the diversification of Acariformes and their ancestral mode of reproduction Mark Maraun, JFB Institute of Zoology and Anthropology, University of Göttingen, using 18S rRNA. Because parthenogenetic taxa tend to be more frequent in phylo- Untere Karspüle 2, 37073 Göttingen, genetically old taxa of Acariformes, we sequenced a wide range of members of this Germany. Email: [email protected] taxon, including early-derivative taxa of Prostigmata, Astigmata, Endeostigmata, and Oribatida. Ancestral character state reconstruction indicated that (a) Acariformes as well as Oribatida evolved
    [Show full text]