Genome-Wide Association Study Using the Ethnicity-Specific Japonica Array

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Journal of Human Genetics (2017) 62, 485–489 OPEN Official journal of the Japan Society of Human Genetics www.nature.com/jhg ORIGINAL ARTICLE Genome-wide association study using the ethnicity- specific Japonica array: identification of new susceptibility loci for cold medicine-related Stevens– Johnson syndrome with severe ocular complications Mayumi Ueta1,2,10,11, Hiromi Sawai2,10, Ryosei Shingaki3, Yusuke Kawai4, Chie Sotozono5, Kaname Kojima4, Kyung-Chul Yoon6, Mee Kum Kim7, Kyoung Yul Seo8, Choun-Ki Joo9, Masao Nagasaki4, Shigeru Kinoshita1 and Katsushi Tokunaga2,11 A genome-wide association study (GWAS) for cold medicine-related Stevens–Johnson syndrome (CM-SJS) with severe ocular complications (SOC) was performed in a Japanese population. A recently developed ethnicity-specific array with genome-wide imputation that was based on the whole-genome sequences of 1070 unrelated Japanese individuals was used. Validation analysis with additional samples from Japanese individuals and replication analysis using samples from Korean individuals identified two new susceptibility loci on chromosomes 15 and 16. This study might suggest the usefulness of GWAS using the ethnicity-specific array and genome-wide imputation based on large-scale whole-genome sequences. Our findings contribute to the understanding of genetic predisposition to CM-SJS with SOC. Journal of Human Genetics (2017) 62, 485–489; doi:10.1038/jhg.2016.160; published online 19 January 2017 INTRODUCTION significantly associated with HLA-B*44:03.9 In our first genome-wide Stevens–Johnson syndrome (SJS) is an acute inflammatory vesiculo- association study (GWAS), we analyzed SJS/TEN with SOC patients using bullous reaction of the skin and mucosa. It tends to involve the ocular the Affymetrix GeneChip Mapping 500 K array set (Affymetrix, Santa surface, oral cavity and genitals. In patients with extensive skin Clara, CA, USA). We found an association between prostaglandin E receptor detachment and a poor prognosis, the condition is called toxic 3 (PTGER3) and SJS/TEN with SOC.6,10 We subsequently documented epidermal necrolysis (TEN). Although these reactions are rare (annual that this association was stronger in CM-SJS/TEN patients with SOC than incidence 1–6 cases per 106 persons),1–3 the mortality rate is 3% for in all SJS/TEN patients with SOC.11 Moreover,weidentified an interaction SJS and 27% for TEN.4 Survivors often suffer severe sequelae such as with additive effects between HLA-A*02:06 and the high-risk genotypes vision loss due to severe ocular complications (SOC).5 PTGER3 rs1327464 GA or AA.11 A second GWAS using the Affymetrix About 40% of SJS/TEN patients diagnosed by dermatologists develop AXIOM Genome-Wide ASI 1 array (Affymetrix) identified the association SOC.2 Among SJS and TEN patients, especially those with SJS/TEN with between IKAROS family zinc-finger 1 (IKZF1) and CM-SJS/TEN with SOC SOC, cold medicines (CM), including multi-ingredient cold medications in the Japanese.7 These findings were indicative of a genetic predisposition and non-steroidal anti-inflammatory drugs, were identified as for CM-SJS/TEN with SOC. causative.2,6–9 We reported that in the Japanese, CM-related SJS/TEN A single-nucleotide polymorphism (SNP) array (Japonica Array, (CM-SJS/TEN) with SOC was strongly associated with HLA-A*02:06 and Toshiba, Japan) specifically designed for the genome-wide study of the 1Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan; 2Department of Human Genetics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; 3Life Science Business Department, Healthcare Medical Business Promotion Division, Toshiba Corporation Healthcare Company, Tokyo, Japan; 4Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; 5Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan; 6Department of Ophthalmology, Chonnam National University, Gwangju, Korea; 7Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea; 8Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea and 9Department of Ophthalmology and Visual Science, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea 10Contributed equally with the first author. 11These authors contributed equally to this work. Correspondence: Dr M Ueta, Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji, Kawaramachi, Kamigyoku, Kyoto 602-0841, Japan. E-mail: [email protected] or Dr K Tokunaga, Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan. E-mail: [email protected] Received 27 June 2016; revised 6 December 2016; accepted 7 December 2016; published online 19 January 2017 GWAS using Japonica array for Stevens–Johnson syndrome MUetaet al 486 Japanese population was developed by Kawai et al.12 Its haplotype GWAS, imputation with 1KJPN and validation analysis collection was constructed from whole-genome sequences of 1070 In the GWAS, we genotyped 808 samples from the same SJS/TEN patients Japanese individuals.13 We posited that whole-genome imputation (n = 117) and the healthy Japanese controls (n = 691) used in our earlier study.7 with the Japonica array would increase the statistical power for We used the Japonica SNP array12 according to the manufacturer’s instructions. detecting associated variants of CM-SJS/TEN with SOC than was All genotyped samples passed the recommended sample quality control metric 4 possible with the AXIOM Genome-wide ASI 1 array we reported for the AXIOM arrays (dish QC 0.82); we excluded three control samples with an overall call rate o97%. We recalled the remaining 805 samples with previously.7 Genotyping Console 4.2.0.26 software (Affymetrix). In the current study, we performed GWAS using the Japonica array Because we had already performed identity-by-descent estimation and and imputation with the 1KJPN panel (Tohoku Medical Megabank principal component analysis for all 808 samples genotyped with the AXIOM Organization constructed the reference panel) to look for additional Genome-Wide ASI 1 array;7 all samples used in the current study were known genetic predispositions for CM-SJS/TEN with SOC in the Japanese to be from unrelated individuals and the effect of population stratification was population. negligible. A quantile–quantile plot of the distribution of test statistics for the comparison of genotype frequencies in our patients and controls showed MATERIALS AND METHODS that the inflation factor λ was 1.024 for all tested SNPs and decreased to Patients 1.021 when SNPs in the human leukocyte antigen (HLA) region (chr 6: This study was approved by the institutional review board of Kyoto Prefectural 29 645 038–33 360 787) were excluded (Supplementary Figure 1). University of Medicine (KPUM), the University of Tokyo and other collabor- For imputation, the clustering plots were classified by the Ps classification ating research institutes (Seoul National University College of Medicine, Yonsei function in the SNPolisher package (version 1.5.2; Affymetrix). SNPs that were University College of Medicine, Chonnam National University Medical School assigned 'recommended' by the Ps classification were retained. Excluded were and College of Medicine, The Catholic University of Korea in Korea). SNPs with a call rate o99.0%, a Hardy–Weinberg equilibrium (HWE) test We used the same samples from 117 Japanese individuals with CM-SJS/TEN result of Po0.0001 or a minor allele frequency (MAF) o0.5%. Prephasing was with SOC and 691 healthy Japanese volunteers as were used in our earlier conducted first with these SNPs using SHAPEIT (v.2.r644);15 the options were GWAS with the Affymetrix AXIOM Genome-Wide ASI 1 array.7 –burn 10, –prune 10 and –main 25. Genotype imputation was performed on SOC patients were defined as those with ocular sequelae such as severe dry the phased genotypes with IMPUTE2 (ver. 2.3.1)16 using a phased reference eye, trichiasis, symblepharon and conjunctival invasion into the cornea in the panel of 1070 healthy Japanese individuals (1KJPN panel).13 For IMPUTE2, the chronic stage,5 and as patients who manifested severe conjunctivitis with applied options were -Ne 2000, -k hap 1000, -k 120, -burnin 15, and -iter 50. pseudomembranes and epithelial defects on the ocular surface (cornea and/or After genome-wide imputation genotyped with the Japonica array, conjunctiva) in the acute stage.14 We have classified the patients who had taken we applied a SNP call rate ⩾ 95%, MAF ⩾ 1%, and HWE P ⩾ 0.001 for SNP CMs such as non-steroidal anti-inflammatory drugs and multi-ingredient cold quality control for data cleaning of the samples. The 6,714,496 SNPs and medications for a few–several days before the disease onset for common-cold insertions and deletions (indels) on autosomal chromosomes that passed the symptoms as CM-SJS/TEN. The specific drugs they used were not named by all quality control filters were used for GWAS. − patients (Supplementary Table 1). In Japan, doctors in hospital usually Confirmation of the genotypes at 6 candidate SNPs with Po10 7 in the prescribed CM such as non-steroidal anti-inflammatory drugs and acetamino- GWAS and the replication study using Korean samples was with the TaqMan phen with some antibiotics. However, we previously reported that the use of CM SNP genotyping assay (Applied Biosystems, Foster City, CA). We genotyped such as non-steroidal anti-inflammatory drugs and cold-remedies was signifi- extended sample sets of Japanese SJS patients (n = 138) and controls (n = 883) cantly associated with SJS/TEN with SOC, whereas the use of antibiotics was not to validate the GWAS results. Samples from Korean patients (n = 31) and associated.2 Detailed information on the SJS/TEN patients and the controls we controls (n = 110) were genotyped to replicate the GWAS results analyzed are shown in Supplementary Methods in the Online Repository.
Recommended publications
  • RBP-J Signaling − Cells Through Notch Novel IRF8-Controlled

    RBP-J Signaling − Cells Through Notch Novel IRF8-Controlled

    Sca-1+Lin−CD117− Mesenchymal Stem/Stromal Cells Induce the Generation of Novel IRF8-Controlled Regulatory Dendritic Cells through Notch −RBP-J Signaling This information is current as of September 25, 2021. Xingxia Liu, Shaoda Ren, Chaozhuo Ge, Kai Cheng, Martin Zenke, Armand Keating and Robert C. H. Zhao J Immunol 2015; 194:4298-4308; Prepublished online 30 March 2015; doi: 10.4049/jimmunol.1402641 Downloaded from http://www.jimmunol.org/content/194/9/4298 Supplementary http://www.jimmunol.org/content/suppl/2015/03/28/jimmunol.140264 http://www.jimmunol.org/ Material 1.DCSupplemental References This article cites 59 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/194/9/4298.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 25, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Sca-1+Lin2CD1172 Mesenchymal Stem/Stromal Cells Induce the Generation of Novel IRF8-Controlled Regulatory Dendritic Cells through Notch–RBP-J Signaling Xingxia Liu,*,1 Shaoda Ren,*,1 Chaozhuo Ge,* Kai Cheng,* Martin Zenke,† Armand Keating,‡,x and Robert C.
  • Microglia Emerge from Erythromyeloid Precursors Via Pu.1- and Irf8-Dependent Pathways

    Microglia Emerge from Erythromyeloid Precursors Via Pu.1- and Irf8-Dependent Pathways

    ART ic LE S Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways Katrin Kierdorf1,2, Daniel Erny1, Tobias Goldmann1, Victor Sander1, Christian Schulz3,4, Elisa Gomez Perdiguero3,4, Peter Wieghofer1,2, Annette Heinrich5, Pia Riemke6, Christoph Hölscher7,8, Dominik N Müller9, Bruno Luckow10, Thomas Brocker11, Katharina Debowski12, Günter Fritz1, Ghislain Opdenakker13, Andreas Diefenbach14, Knut Biber5,15, Mathias Heikenwalder16, Frederic Geissmann3,4, Frank Rosenbauer6 & Marco Prinz1,17 Microglia are crucial for immune responses in the brain. Although their origin from the yolk sac has been recognized for some time, their precise precursors and the transcription program that is used are not known. We found that mouse microglia were derived from primitive c-kit+ erythromyeloid precursors that were detected in the yolk sac as early as 8 d post conception. + lo − + − + These precursors developed into CD45 c-kit CX3CR1 immature (A1) cells and matured into CD45 c-kit CX3CR1 (A2) cells, as evidenced by the downregulation of CD31 and concomitant upregulation of F4/80 and macrophage colony stimulating factor receptor (MCSF-R). Proliferating A2 cells became microglia and invaded the developing brain using specific matrix metalloproteinases. Notably, microgliogenesis was not only dependent on the transcription factor Pu.1 (also known as Sfpi), but also required Irf8, which was vital for the development of the A2 population, whereas Myb, Id2, Batf3 and Klf4 were not required. Our data provide cellular and molecular insights into the origin and development of microglia. Microglia are the tissue macrophages of the brain and scavenge dying have the ability to give rise to microglia and macrophages in vitro cells, pathogens and molecules using pattern recognition receptors and in vivo under defined conditions.
  • Roles and Regulation of Transcription Factor Mafa in Islet Β-Cells

    Roles and Regulation of Transcription Factor Mafa in Islet Β-Cells

    Endocr. J./ S. ARAMATA et al.: INSULIN TRANSCRIPTION AND MafA doi: 10.1507/endocrj.KR-101 REVIEW Roles and Regulation of Transcription Factor MafA in Islet β-cells * SHINSAKU ARAMATA, SONG-IEE HAN AND KOHSUKE KATAOKA Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan *Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8572, Japan. Released online August 30, 2007 Correspondence to: Kohsuke KATAOKA, Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan Abstract. Insulin is a critical hormone in the regulation of blood glucose levels. It is produced exclusively by pancreatic islet β-cells. β-cell-enriched transcription factors, such as Pdx1 and Beta2, have dual roles in the activation of the insulin gene promoter establishing β-cell-specific insulin expression, and in the regulation of β-cell differentiation. It was shown that MafA, a β-cell-specific member of the Maf family of transcription factors, binds to the conserved C1/RIPE3b element of the insulin promoter. The Maf family proteins regulate tissue-specific gene expression and cell differentiation in a wide variety of tissues. MafA acts synergistically with Pdx1 and Beta2 to activate the insulin gene promoter, and mice with a targeted deletion of mafA develop age-dependent diabetes. MafA also regulates genes involved in β-cell function such as Glucose transporter 2, Glucagons-like peptide 1 receptor, and Prohormone convertase 1/3. The abundance of MafA in β-cells is regulated at both the transcriptional and post-translational levels by glucose and oxidative stress.
  • Differential Expression of Vitamin D Binding Protein in Thyroid Cancer Health Disparities

    Differential Expression of Vitamin D Binding Protein in Thyroid Cancer Health Disparities

    www.oncotarget.com Oncotarget, 2021, Vol. 12, (No. 7), pp: 596-607 Research Paper Differential expression of Vitamin D binding protein in thyroid cancer health disparities Brittany Mull1, Ryan Davis2,3, Iqbal Munir4, Mia C. Perez5, Alfred A. Simental6 and Salma Khan2,3,6,7 1Harbor UCLA Medical Center, Torrance, CA 90502, USA 2Division of Biochemistry, Loma Linda, CA 92350, USA 3Center for Health Disparities & Molecular Medicine, Loma Linda, CA 92350, USA 4Riverside University Health System, Moreno Valley, CA 92555, USA 5Department of Pathology & Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA 6Department of Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA 7Department of Internal Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA Correspondence to: Salma Khan, email: [email protected] Keywords: DBP; thyroid cancer; health disparities Received: November 16, 2020 Accepted: March 05, 2021 Published: March 30, 2021 Copyright: © 2021 Mull et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Thyroid cancer incidence, recurrence, and death rates are higher among Filipino Americans than European Americans. We propose that vitamin D binding protein (DBP) with multifunctionality with ethnic variability plays a key role within different ethnicities. In this study, we determined the correlation between differential DBP expression in tumor tissues and cancer staging in Filipino Americans versus European Americans. We assayed DBP expression by immunohistochemistry and analyzed the data with confocal microscopy on 200 thyroid cancer archival tissue samples obtained from both ethnicities.
  • Prox1regulates the Subtype-Specific Development of Caudal Ganglionic

    Prox1regulates the Subtype-Specific Development of Caudal Ganglionic

    The Journal of Neuroscience, September 16, 2015 • 35(37):12869–12889 • 12869 Development/Plasticity/Repair Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons X Goichi Miyoshi,1 Allison Young,1 Timothy Petros,1 Theofanis Karayannis,1 Melissa McKenzie Chang,1 Alfonso Lavado,2 Tomohiko Iwano,3 Miho Nakajima,4 Hiroki Taniguchi,5 Z. Josh Huang,5 XNathaniel Heintz,4 Guillermo Oliver,2 Fumio Matsuzaki,3 Robert P. Machold,1 and Gord Fishell1 1Department of Neuroscience and Physiology, NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, New York 10016, 2Department of Genetics & Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, 3Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan, 4Laboratory of Molecular Biology, Howard Hughes Medical Institute, GENSAT Project, The Rockefeller University, New York, New York 10065, and 5Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Neurogliaform (RELNϩ) and bipolar (VIPϩ) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been eluci- dated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP).
  • Temporal Mapping of CEBPA and CEBPB Binding

    Temporal Mapping of CEBPA and CEBPB Binding

    Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Temporal mapping of CEBPA and CEBPB binding during liver regeneration reveals dynamic occupancy and specific regulatory codes for homeostatic and cell cycle gene batteries Janus Schou Jakobsen1,2,3,*, Johannes Waage1,2,3,4, Nicolas Rapin1,2,3,4, Hanne Cathrine Bisgaard5, Fin Stolze Larsen6, Bo Torben Porse1,2,3,* 1 The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK2200 Copenhagen, Denmark; 2 Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen, Denmark; 3 The Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, DK2200 Copenhagen Denmark; 4 The Bioinformatics Centre, University of Copenhagen, DK2200, Copenhagen, Denmark; 5 Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK- 2100 Copenhagen, Denmark; 6 Department of Hepatology, Rigshospitalet, DK2200 Copenhagen, Denmark. JW: [email protected]; NR: [email protected]; HCB: [email protected]; FSL: [email protected] * Corresponding authors: BTP: [email protected]; JSJ: [email protected], The Finsen Laboratory, Ole Maaløesvej 5, Copenhagen Biocenter, University of Copenhagen, DK2200 Copenhagen, Denmark. Telephone: +45 3545 6023 Running title: Regulation of liver regeneration Keywords: Temporal ChIP-seq, dynamic binding, liver regeneration, C/EBPalpha, C/EBPbeta, transcriptional networks 1 Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Dynamic shifts in transcription factor binding are central to the regulation of biological processes by allowing rapid changes in gene transcription.
  • Transcriptional Control of Microglia Phenotypes in Health and Disease

    Transcriptional Control of Microglia Phenotypes in Health and Disease

    REVIEW SERIES: GLIA AND NEURODEGENERATION The Journal of Clinical Investigation Series Editors: Marco Colonna and David Holtzmann Transcriptional control of microglia phenotypes in health and disease Inge R. Holtman,1,2 Dylan Skola,1 and Christopher K. Glass1,3 1Department of Cellular and Molecular Medicine, UCSD, San Diego, California, USA. 2Department of Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands. 3Department of Medicine, UCSD, San Diego, California, USA. Microglia are the main resident macrophage population of the CNS and perform numerous functions required for CNS development, homeostasis, immunity, and repair. Many lines of evidence also indicate that dysregulation of microglia contributes to the pathogenesis of neurodegenerative and behavioral diseases. These observations provide a compelling argument to more clearly define the mechanisms that control microglia identity and function in health and disease. In this Review, we present a conceptual framework for how different classes of transcription factors interact to select and activate regulatory elements that control microglia development and their responses to internal and external signals. We then describe functions of specific transcription factors in normal and pathological contexts and conclude with a consideration of open questions to be addressed in the future. Introduction regulatory control necessary to generate cell type–specific programs Microglia are tissue-resident macrophages that perform CNS- of gene expression. This additional information is provided by distal specific functions (1). They derive from a unique lineage of eryth- regulatory elements called enhancers (12). Enhancers represent the romyeloid precursors (EMPs) in the yolk sac and fetal liver (2). most numerous binding sites for LDTFs and signal-dependent tran- EMPs infiltrate the brain during early development, differentiate scription factors (SDTFs), and are major sites for the integration of into microglia, and maintain their population by self-renewal (3).
  • Calculating the Statistical Significance of Rare Variants Causal for Mendelian and Complex Disorders

    Calculating the Statistical Significance of Rare Variants Causal for Mendelian and Complex Disorders

    bioRxiv preprint doi: https://doi.org/10.1101/103218; this version posted January 25, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Calculating the statistical significance of rare variants causal for Mendelian and complex disorders Aliz R Rao1*, Stanley F Nelson1,2,3† *Correspondence: [email protected] †Email: [email protected] 1Department of Human Genetics, University of California, Los Angeles, Los Angeles, California, USA. 2Department of Psychiatry and Biobehavioral Sciences at the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA. 3Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA. 1 bioRxiv preprint doi: https://doi.org/10.1101/103218; this version posted January 25, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract With the expanding use of next-gen sequencing (NGS) to diagnose the thousands of rare Mendelian genetic diseases, it is critical to be able to interpret individual DNA variation. We developed a general method to better interpret the likelihood that a rare variant is disease causing if observed in a given gene or genic region mapping to a described protein domain, using genome-wide information from a large control sample.
  • LPS Induces the Degradation of Programmed Cell Death Protein 4

    LPS Induces the Degradation of Programmed Cell Death Protein 4

    THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 289, NO. 33, pp. 22980–22990, August 15, 2014 © 2014 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. LPS Induces the Degradation of Programmed Cell Death Protein 4 (PDCD4) to Release Twist2, Activating c-Maf Transcription to Promote Interleukin-10 Production* Received for publication, April 10, 2014, and in revised form, June 27, 2014 Published, JBC Papers in Press, June 30, 2014, DOI 10.1074/jbc.M114.573089 Mirjam W. M. van den Bosch‡1, Eva Palsson-Mcdermott‡, Derek S. Johnson§, and Luke A. J. O’Neill‡ From the ‡School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland and the §Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Background: LPS-induced PDCD4 degradation leads to IL-10 induction. Results: LPS-induced PDCD4 degradation results in release of Twist2, resulting in c-Maf induction and IL-10 production. Conclusion: The PDCD4/Twist2 interaction has an important anti-inflammatory role in LPS signaling. Significance: This study reports the mechanism of PDCD4/Twist2 interaction and provides a new insight of IL-10 production Downloaded from via suppression of PDCD4/Twist2 interaction. Programmed cell death protein 4 (PDCD4) is a tumor sup- ent complexes, mTOR complex 1 (mTORC1) and mTORC2. pressor and has also been shown to suppress production of the mTORC1 comprises mTOR in a complex with mLST8 http://www.jbc.org/ immunomodulatory cytokine IL-10. The precise role of PDCD4 (mammalian lethal with SEC13 protein 8), PRAS40 (proline- in IL-10 induction in macrophages is still not fully understood.
  • The Basic Motif-Leucine Zipper Transcription Factor Nrl Can

    The Basic Motif-Leucine Zipper Transcription Factor Nrl Can

    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 191-195, January 1996 Genetics The basic motif-leucine zipper transcription factor Nrl can positively regulate rhodopsin gene expression (retinal genes/retinal diseases/maf oncogene family/DNA-binding protein) ALNAWAZ REHEMTULLA*t, RON WARWARt, RAJAN KUMAR§, XIAODONG Jlt, DONALD J. ZACK§P, AND ANAND SWAROOPt,* *,tt *Howard Hughes Medical Institute and Departments of tOphthalmology and **Human Genetics, W. K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105; and Departments of §Ophthalmology, 1Molecular Biology and Genetics, and liNeurosciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287 Communicated by James V. Neel, University of .Michigan Medical School, Ann Arbor, MI, August 31, 1995 ABSTRACT The retinal protein Nrl belongs to a distinct the bZIP family of DNA-binding proteins (14). It is highly subfamily of basic motif-leucine zipper DNA-binding proteins conserved between mouse and man and demonstrates a retina- and has been shown to bind extended AP-1-like sequence specific pattern of expression on Northern analysis (11, 13). elements as a homo- or heterodimer. Here, we demonstrate The Nrl protein shows strong sequence homology to the v-maf that Nrl can positively regulate the expression of the photo- oncogene product (15). Maf and Nrl define a distinct subfamily receptor cell-specific gene rhodopsin. Electrophoretic mobil- of bZIP proteins that includes the c-mafprotooncogene prod- ity-shift analysis reveals that a protein(s) in nuclear extracts uct (16), several other Maf proteins (17, 18), the small subunit from bovine retina and the Y79 human retinoblastoma cell p18 of the erythroid transcription factor NF-E2 (19), and the line binds to a conserved Nrl response element (NRE) in the product of the segmentation gene kriesler (kr) (20).
  • Mafa Enables Pdx1 to Effectively Convert Pancreatic Islet Progenitors and Committed Islet A-Cells Into B-Cells in Vivo

    Mafa Enables Pdx1 to Effectively Convert Pancreatic Islet Progenitors and Committed Islet A-Cells Into B-Cells in Vivo

    Diabetes Volume 66, May 2017 1293 Mafa Enables Pdx1 to Effectively Convert Pancreatic Islet Progenitors and Committed Islet a-Cells Into b-Cells In Vivo Taka-aki Matsuoka,1 Satoshi Kawashima,1 Takeshi Miyatsuka,1,2 Shugo Sasaki,1 Naoki Shimo,1 Naoto Katakami,1 Dan Kawamori,1 Satomi Takebe,1 Pedro L. Herrera,3 Hideaki Kaneto,4 Roland Stein,5 and Iichiro Shimomura1 Diabetes 2017;66:1293–1300 | DOI: 10.2337/db16-0887 Among the therapeutic avenues being explored for re- including coronary and renal disease. A variety of innova- placement of the functional islet b-cell mass lost in tive approaches are being explored to produce b-cells from type 1 diabetes (T1D), reprogramming of adult cell types embryonic stem cells (1,2) and adult cell types (3–5). A into new b-cells has been actively pursued. Notably, supposition in these efforts involves producing conditions mouse islet a-cells will transdifferentiate into b-cells un- that correctly regulate the transcription factor networks der conditions of near b-cell loss, a condition similar to required in programming pancreatic progenitor cells into ISLET STUDIES a T1D. Moreover, human islet -cells also appear to poised b-cells and subsequently controlling mature islet cell func- for reprogramming into insulin-positive cells. Here we tion. These include transcription factors like Pdx1 (6–10), have generated transgenic mice conditionally expressing which is essential in the formation of early pancreatic ep- the islet b-cell–enriched Mafa and/or Pdx1 transcription ithelium, developing b-cells and adult islet b-cells, as well factors to examine their potential to transdifferentiate as neurogenin 3 (Ngn3) (11–13), which is required during embryonic pan–islet cell Ngn3-positive progenitors and embryogenesis for specification of all islet cell types (i.e., the later glucagon-positive a-cell population into b-cells.
  • University of Cincinnati

    University of Cincinnati

    UNIVERSITY OF CINCINNATI Date: 5/8/06 I, Emily E. Bosco Hereby submit this work as part of the requirements for the degree of: Doctor of Philosophy in: Cell and Molecular Biology It is entitled: RB Modifies the Therapeutic Response of Breast Cancer This work and its defense approved by: Chair: Erik Knudsen Sue Heffelfinger Kathy Hepner-Goss Sohaib Khan Yolanda Sanchez The Retinoblastoma Tumor Suppressor Modifies the Therapeutic Response of Breast Cancer A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctorate of Philosophy (Ph.D.) in the Department of Cell Biology, Neurobiology, and Anatomy of the College of Medicine 5/8/06 by Emily Elizabeth Bosco B.S. University of Notre Dame, 2001 Committee Chairman: Erik S. Knudsen Ph.D. Abstract: The retinoblastoma tumor suppressor (RB) is functionally inactivated in the majority of human cancers, and nearly half of all breast cancers. Here, we investigate the consequence of RB loss on the response to DNA damage and anti-estrogenic therapies used in the treatment of breast cancer. Initially, we demonstrate that downstream RB targets are severely mis-regulated following acute deletion in adult primary cells causing abrogation of the DNA damage checkpoint and consequently, accumulation of secondary DNA lesions upon treatment with chemotherapeutics. Additionally, we found that RB modifies the DNA repair response in adult primary fibroblasts, such that RB-deficient cells are able to repair UV-induced lesions at an accelerated rate. These initial studies reveal that RB loss in primary cells modifies the response to DNA damage by promoting aberrant replication and inappropriately accelerating repair, both of which may ultimately sensitize cells to DNA damaging therapies.