An Overview on Hypericum Perforatum Linn

Total Page:16

File Type:pdf, Size:1020Kb

An Overview on Hypericum Perforatum Linn Review Article An overview on Hypericum perforatum Linn. U M Rao Vattikuti and Veeresham Ciddi* Medicinal Plant Biotechnology Laboratory University College of Pharmaceutical Sciences Kakatiya University Warangal-506 009, Andhra Pradesh, India *Correspondent author; E-mail: [email protected] Received 14 September 2004; Revised 2 May 2005 Abstract flowers contain a group of reddish fluorescent dianthrone pigments with 2 Population of the modern world is suffering from dangerous ailments like cancer, AIDS biological activity . It was also reported and depression which have been successfully treated by some herbal medicines. The potentiality of that the biosynthesis of hypericins is Hypericum perforatum Linn. has been proven in treating these diseases. Hypericin, hyperforin connected with morphogenesis and and their analogs are the phytoconstituents of this plant having therapeutic value. The significance formation of dark red coloured oil glands of these constituents is attributed to their botanical safety and therapeutic efficacy. This review on the leaves of the plant3. It has been discusses the pharmacology, extraction and analytical methods of chemical constituents reported on H. perforatum and its plant tissue cultures. known since Greek and Roman times, Dioscorides (1st century A.D) and Galen Keywords: St. John’s Wort, Hypericin, Hyperforin, Biosynthesis, Plant tissue culture, Analysis. described its medicinal properties (2nd IPC code; Int. cl.7 ⎯ A01G 7/00, A61K 35/78, A61P 25/24, A61P 31/12, A61P 31/98, century A.D). It was widely used in the A61P 35/00 folk medicine in European countries as a soothing agent, an antiphlogistic in Introduction approximately one metre high with inflammation of bronchi and urogenital opposite and paired branches. The leaves track, in haemorrhoid treatment, a The genus Hypericum Linn. are opposite and sessile, upto 2cm long, healing agent in the treatment of traumas, consists of nearly 288 species. Of which oblong and contain numerous translucent burns, scabs and ulcers of various kinds H. perforatum Linn., H. maculatum glandular dots, which are visible against and other local and general illness. Today Crantz, H. tomentosum Linn., H. light. The yellow flowers contain 5 petals this drug is little used for these traditional bithynicum Boiss., H. glandulosum with many stamens protruding. These purposes but is largely used in the Gilib. and H. beliaricum Linn. are treatment of depression and reported to contain hypericin1. H. AIDS. perforatum, commonly known as St. John’s Wort (Hindi ⎯ Balsana, Biosynthesis of Bassant, Dendhu) is a potent medicinal Hypericin and plant and is one of the top selling herbs Hyperforin in USA. It is a herbaceous perennial plant of family Hypericaceae widely The biosynthesis of distributed in temperate regions of hypericin (Fig 1&2) involves a Europe, Asia, North Africa and USA. In polyketide derivative through 107 India it grows in Himalayas at higher acetate pathway . The altitudes and in the hills of central parts polyketide (1) with a series of intermediates transforms in to of the country. The plant grows Hypericum perforatum 368 Natural Product Radiance Review Article Chemical composition shown a significant antidepressant activity by inhibiting the enzyme monoamino The plant is reported to contain following categories of chemical constituents: oxidase (MAO)21. The other mechanisms of antidepressant activity are, inhibition Dianthrone derivatives : Hypericin2,4 of dopamine β-hydroxylase22 in vitro, Pseudohypericin5, 6 inhibition of synaptic uptake of serotonin Protohypericin7 and dopamine23, 24, inhibition of catechol- O-methyl transferase25 in vitro, Phloroglucinol derivatives : Hyperforin8 Furohyperforin9 suppression of interlukin-6 in blood Adhyperforin10 samples26 in vivo, modulation of Xanthones11 expression of serotonin receptors27. The antidepressant activity of hyperforin is Essential oil attributed to its inhibition of neuronal Monoterpenes12 : α-Pinene, β-Pinene, Limonene Sesquiterpenes13 : Caryophyllene, Humulene uptake of serotonin, norepinephrine and dopamine like many other antidepressants Flavonols : Catechins14 and also inhibits GABA and α-glutamate uptake28. The antidepressant activity of 15 Flavonoids : Hyperoside hypericum is not only limited to hypericin Quercetin16 Quercetrin17 and hyperforin, xanthones of the plant are Rutin16 also reported to exhibit this property11. Biapigenin18 Antiviral activity ⎯ Kaempferol19 Hypericin is a well-known photosensitizing agent used in the n-Alkanols20 : 0.42% of total herb 1-Tetracosanol (9.7%), 1-Hexacosanol (27.4%), photodynamic therapy of cancer and viral 1-Octacosanol (39.4%), 1-Triacontanol (23.4%) infections. The photodynamic therapy involves the combination of photosensitizing agent and visible light at atrochrysone (2). Atrochrysone on CoA is subsequently lengthened by 3 the absorption wavelength of the dehydration converts into emodine malonyl CoA units and cyclization in to compound. Lavie et al29 demonstrated the anthrone (3). Emodine anthrone readily an intermediate, which would then lead inhibitory effect of hypericin and transforms into hypericin (4) via oxidative to the acylphloroglucinol. Elaboration of pseudohypericin against vesicular free radical chemistry. hyperforin (5) from the unsubstituted stomatitis, influenza virus and herpes The biosynthesis of hyperforin acylphloroglucinol precursor is assumed simplex virus types II and I. Inactivation (Fig 1 & 3) involves isoprenoid moieties, to be with the participation of the geranyl of murine cytomegalo virus, sindbis virus which are derived predominantly via the pyrophosphate and three dimethyl- and HIV-I on exposure to fluorescent light non-mevalonate pathway85. The allylpyrophosphate units. While the with hypericin treatment was reported first acylphloroglucinol (4) moiety is sequence of remaining steps remain to be time by Hudson et al30 and Lopez-Bazzocchi generated via a polyketide type a large extent unidentified. et al31. Both hypericin and pseudohypericin mechanism. This acylphloroglucinol is prevents the viral fusion by the generation formed from isobutyryl-CoA (3) as a starter Pharmacological activities of singlet oxygen up on illumination32. The point, which in turn is formed from two antiviral activity against retroviruses like HIV units of pyruvate via α-acetolactate (1) Antidepressant activity ⎯ involves combination of its photodynamic and α-ketoisovalerate (2). The isobutyryl- Hypericin in a standardized extract has and lipophilic properties. Vol 4(5) September-October 2005 369 Review Article Fig. 1 : Structures of Hypericin and Hyperforin Fig. 2 : Biosynthesis of Hypericin 370 Natural Product Radiance Review Article c Fig. 3 : Biosynthesis of Hyperforin Hypericin binds the cell membranes and significance of hypericin in photodynamic activity. Hyperforin activates a crosslinks the viral proteins leading to its therapy of cancer both in vitro and in mitochondria mediated apoptosis when inability to retrieve the reverse vivo34. Hypericin seems to inhibit EGF added to MT-450 cells. In in vivo, transcriptase activity33. (Epidermal Growth Factor) receptor and hyperforin inhibited the growth of Anticancer activity ⎯ PTK (Protein Tyrosine Kinase) activity. A antologous MT-450 breast carcinoma in Hypericins have been found active against review35 on the mechanism of action of immuno-competent Wistar rats to a similar human leukaemia, squamos cell hypericin and its interaction with cellular extent as that of Paclitaxel without any carcinoma, nasopharyngial carcinoma, components reveals that the signs of acute toxicity36. mouse mammary carcinoma and photogenerated pH drop can achieve the The pharmacology of this plant fibroblasts. Several studies have proven the potentiation of hypericin’s photodynamic also reveals a broad spectrum of activities Vol 4(5) September-October 2005 371 Review Article like analgesic37, anti-anxiety38, anti- permeabilization, immobilization and contrast to this reduced levels of cellular alcoholic39, antispasmodic40, antioxidant41, various other strategies to improve the capacity to produce hypericin in St. John’s calcium channel blocker42, gene production of active constituents Wort seedlings grown in Nickel expression induction43, wound healing44, compared to the intact plant. This supplemented medium was reported by smooth muscle relaxant45, sleep technique has already been Murch et al 63. potentiation46, anti-inflammatory47 and commercialized for the production of In order to eliminate the quality anti-microbial 48, 49. taxol, shikonin and rosmarinic acid55. impairment in St John’s Wort products, Saxena et al 64 have reported six different Production of Hypericin and Callus formation and plant culture systems for in vitro propagation Hyperforin through tissue cultures regeneration of the plant to compare the biomass and secondary metabolite production with Over the last few years, St. John’s Santarean and Pretto56 reported green houseplants. Of the six culture Wort producers have enjoyed a callus formation and plant regeneration systems they found that growth in large tremendous surge in interest and sales due within few months, from leaf explants of vessel with gelled medium under forced to its potential in the treatment of the species. Li et al 57 reported callus and ventilation (LFV system) was optimal for depression and AIDS. Linde50 revealed the suspension cultures from the leaves and the production of biomass and secondary efficacy of St. John’s Wort when compared stems. Rani et al58
Recommended publications
  • Seed Ecology Iii
    SEED ECOLOGY III The Third International Society for Seed Science Meeting on Seeds and the Environment “Seeds and Change” Conference Proceedings June 20 to June 24, 2010 Salt Lake City, Utah, USA Editors: R. Pendleton, S. Meyer, B. Schultz Proceedings of the Seed Ecology III Conference Preface Extended abstracts included in this proceedings will be made available online. Enquiries and requests for hardcopies of this volume should be sent to: Dr. Rosemary Pendleton USFS Rocky Mountain Research Station Albuquerque Forestry Sciences Laboratory 333 Broadway SE Suite 115 Albuquerque, New Mexico, USA 87102-3497 The extended abstracts in this proceedings were edited for clarity. Seed Ecology III logo designed by Bitsy Schultz. i June 2010, Salt Lake City, Utah Proceedings of the Seed Ecology III Conference Table of Contents Germination Ecology of Dry Sandy Grassland Species along a pH-Gradient Simulated by Different Aluminium Concentrations.....................................................................................................................1 M Abedi, M Bartelheimer, Ralph Krall and Peter Poschlod Induction and Release of Secondary Dormancy under Field Conditions in Bromus tectorum.......................2 PS Allen, SE Meyer, and K Foote Seedling Production for Purposes of Biodiversity Restoration in the Brazilian Cerrado Region Can Be Greatly Enhanced by Seed Pretreatments Derived from Seed Technology......................................................4 S Anese, GCM Soares, ACB Matos, DAB Pinto, EAA da Silva, and HWM Hilhorst
    [Show full text]
  • Hypericaceae Key, Charts & Traits
    Hypericaceae (St. Johnswort Family) Traits, Keys, & Comparison Charts © Susan J. Meades, Flora of Newfoundland and Labrador (Aug. 8, 2020) Hypericaceae Traits ........................................................................................................................ 1 Hypericaceae Key ........................................................................................................................... 2 Comparison Charts (3) ................................................................................................................... 4 References ...................................................................................................................................... 7 Hypericaceae Traits • Perennial herbs (in our area). • Stems are erect (lax in plants growing in flooded habitats) and glabrous; terete (round), or square in cross-section; internodes of terete stems with or without 2 low, vertical ridges along their length. • Leaves are cauline, opposite, and usually sessile; blades are simple, linear to ovate, with mostly entire margins; apices are obtuse to rounded; stipules are absent. • Pellucid glands with essential oils appear as translucent dots on the leaves (visible when leaves are held up to the light). • Dark red to blackish glands (with essential oils like hypericin) appear as slender streaks or tiny dots along the leaf, sepal, or petal margins of some species. • Flowers are solitary or 2–40 in terminal and often axillary simple to compound cymes, rarely in panicles. • Flowers are bisexual
    [Show full text]
  • Chemistry, Pharmacoligy and Clinical Properties of Heracleum Persicuam
    African Journal of Pharmacy and Pharmacology Vol. 6(19), pp. 1387-1394, 22 May, 2012 Available online at http://www.academicjournals.org/AJPP DOI: 10.5897/AJPP12.248 ISSN 1996-0816 ©2012 Academic Journals Review Phytochemistry, pharmacology and medicinal properties of Hypericum perforatum L. Jinous Asgarpanah Department of Pharmacognosy, Pharmaceutical Sciences Branch, Islamic Azad University (IAU), Tehran, Iran. E-mail: [email protected]. Tel: 22640051. Fax: 22602059. Accepted 23 April, 2012 Hypericum perforatum is known as St. John's Wort. H. perforatum extracts and essential oil are important in drug development with numerous pharmacological activities around the world, including Iran. For a long time, H. perforatum has been used in traditional medicines for healing skin wounds, eczema, burns, diseases of the alimentary tract, and psychological disorders especially depression. H. perforatum has recently been shown to have antioxidant, anticonvulsant, analgesic, anti-inflammatory, cytotoxic and antidiabetic activities. Hypericin, pseudohypericin, hyperoside, rutin, quercetin and hyperforin are the main compounds which are reported in this plant. α-Pinene, caryophyllene, caryophyllene oxide, germacrene D and 2-methyloctane were identified as the major constituents for H. perforatum essential oil collected from different parts of the world. Due to the easy collection of the plant, its widespread and also remarkable biological activities, this plant has become a medicine worldwide. This review presents comprehensive analyzed information on the botanical, chemical and pharmacological aspects of H. perforatum at preclinical and clinical levels. Key words: Hypericum perforatum, hypericaceae, hypericin, antidepressant. INTRODUCTION Hypericum perforatum, commonly known as St. John's branches, linear-oblong, non-toothed, covered with Wort is a flowering plant and is a native from Europe and translucent glands (Figure 2).
    [Show full text]
  • Biologisk Effekt Og Karakterisering Av Polyfenoler Fra Hypericum Maculatum Hafsa Ali
    Biologisk effekt og karakterisering av polyfenoler fra Hypericum maculatum Hafsa Ali Masteroppgave i farmasi Avdeling for Farmasøytisk Kjemi Farmasøytisk Institutt Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Mai 2021 1 Biologisk effekt og karakterisering av polyfenoler fra Hypericum maculatum Hafsa Ali Masteroppgaven ble utført ved: Avdeling for Farmasøytisk Kjemi Farmasøytisk Institutt Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo Mai 2021 Veiledere: Professor Helle Wangensteen Førsteamanuensis Kari Tvete Inngjerdingen 2 © Hafsa Ali Mai 2021 Biologisk effekt og karakterisering av polyfenoler fra Hypericum maculatum Hafsa Ali http://www.duo.uio.no/ Trykk: Reprosentralen, Universitetet i Oslo 3 Sammendrag Bakgrunn: Hypericum maculatum (firkantperikum) er en flerårig urt med utbredelse over store deler av Europa. Planten har lang tradisjon som medisinplante, og sammenlignes ofte med Hypericum perforatum (prikkperikum) som ligner både i utseende og kjemisk sammensetning. Hensikten med oppgaven var å isolere og karakterisere polyfenoler i H. maculatum, og undersøke antiinflammatorisk aktivitet og effekter på tarmmikrobiota in vitro. Metoder: Tørket overjordisk del av H. maculatum ble pulverisert på en slipemølle og ekstrahert med 70 % etanol (EtOH). EtOH-kstraktet ble suspendert i vann og væske-væske ekstrahert med diklormetan (DCM), etylacetat (EtOAc) og butanol (BuOH). BuOH- og EtOAc-fasene ble videre renset opp og fraksjonert med ulike kolonnekromatografiske metoder for isolering av substanser i planten. Innholdsstoffene ble strukturelt karakterisert og identifisert ved NMR-spektroskopiske metoder som 1H, 13C, 13C APT, COSY, HSQC, HMBC og NOESY. Antiinflammatorisk aktivitet ble bestemt ved å måle reduksjon i konsentrasjon av NO i LPS stimulerte J774A.1 makrofager. For å avkrefte at cytotoksisk effekt var årsaken til en eventuell NO-reduksjon, ble MTT-test utført for å bestemme viabilitet for cellene Effekten av polyfenoler på tarmmikrobiota ble undersøkt ved Institutt for biovitenskap, UiO.
    [Show full text]
  • Antiproliferative Effects of St. John's Wort, Its Derivatives, and Other Hypericum Species in Hematologic Malignancies
    International Journal of Molecular Sciences Review Antiproliferative Effects of St. John’s Wort, Its Derivatives, and Other Hypericum Species in Hematologic Malignancies Alessandro Allegra 1,* , Alessandro Tonacci 2 , Elvira Ventura Spagnolo 3, Caterina Musolino 1 and Sebastiano Gangemi 4 1 Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; [email protected] 2 Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy; [email protected] 3 Section of Legal Medicine, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; [email protected] 4 School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-090-221-2364 Abstract: Hypericum is a widely present plant, and extracts of its leaves, flowers, and aerial elements have been employed for many years as therapeutic cures for depression, skin wounds, and respiratory and inflammatory disorders. Hypericum also displays an ample variety of other biological actions, such as hypotensive, analgesic, anti-infective, anti-oxidant, and spasmolytic abilities. However, recent investigations highlighted that this species could be advantageous for the cure of other pathological situations, such as trigeminal neuralgia, as well as in the treatment of cancer. This review focuses on the in vitro and in vivo antitumor effects of St. John’s Wort (Hypericum perforatum), its derivatives, and other Hypericum species in hematologic malignancies.
    [Show full text]
  • Functional Characterization of Prenyltransferases Involved in the Biosynthesis of Polycyclic Polyprenylated Acylphloroglucinols in the Genus Hypericum
    Functional characterization of prenyltransferases involved in the biosynthesis of polycyclic polyprenylated acylphloroglucinols in the genus Hypericum Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Mohamed Mamdouh Sayed Nagia aus Kalyobiya/ Ägypten 1. Referent: Professor Dr. Ludger Beerhues 2. Referent: Professor Dr. Alain Tissier eingereicht am: 30.07.2018 mündliche Prüfung (Disputation) am: 15.10.2018 Druckjahr 2018 „Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes“ „Und sag: O mein Herr, mehre mein Wissen“ Der Edle Qur’an [20: 114] Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Nagia, M., Gaid, M., Biedermann, E., Fiesel, T., El-Awaad, I., Haensch, R., Wittstock, U., and Beerhues, L. Sequential regiospecific gem-diprenylation of tetrahydroxyxanthone by prenyltransferases from Hypericum sp. (Submitted). Nagia, M., Gaid, M., Beuerle, T., and Beerhues, L. Successive xanthone prenylation in Hypericum sampsonii. Planta Medica International Open 4, Tu-SL-01 (2017). doi: 10.1055/s-0037-1608308 Tagungsbeiträge A. Vorträge Nagia M., Gaid M., Biedermann E., Beuerle T., Beerhues L., Successive xanthone prenylation in Hypericum sampsonii, 65th Annual Meeting of the Society for Medicinal Plant and Natural Product Research, Basel, Switzerland, 3. – 7. September 2017. Nagia M., Gaid M., Behrends S., Beerhues L., Novel PPAP-related prenyltransferases, 4. SynFoBiA -Kolloquium des Pharmaverfahrenstechnik (PVZ), Braunschweig, Germany, 26. February 2016. Nagia M., Gaid M., Beurele T., Biedermann E., Beerhues L., Aromatic Prenyltransferases from Hypericum sampsonii, Postgraduate workshop of the section „Natural Products“ German Society for Plant Sciences (DBG), Meisdorf, Germany , 11.
    [Show full text]
  • Micropropagation of Hypericum Maculatum Cranz an Important Medicinal Plant
    Romanian Biotechnological Letters Vol. 15, No.1, Supplement, 2010 Copyright © 2010 University of Bucharest Printed in Romania. All rights reserved ORIGINAL PAPER Micropropagation of Hypericum maculatum Cranz an important medicinal plant Received for publication, November 21, 2009 Accepted, January 16, 2010 IOAN BĂCILĂ, ANA COSTE, ADELA HALMAGYI, CONSTANTIN DELIU Institute of Biological Research, 48 Republicii Street, RO-400015 Cluj-Napoca, Romania, anacos [email protected] Abstract The purpose of this work was to establish an effective in vitro propagation protocol for Hypericum maculatum Cranz using nodal segments explants taken from the aseptically germinated seedlings. Explant browning, a major problem for regeneration, was overcome by adding ascorbic and citric acid (each 50 mg/L) to all prepared media containing growth regulator combinations The nodal pieces inoculated individually in MS basal medium supplemented with 0.5 mg/L 2iP + 0.2 mg/L BA + 0.1 mg/L K + 0.05 mg/L NAA produced multiple small shoots (30 ± 0.6) with an average height of 3.1 ± 0.2 cm. For shoot elongation and rooting, these shoots were transferred on half-strength MS basal medium containing 0.5 mg/L GA3 and two different auxins, IAA and IBA, at three concentrations (0, 0.5 and 1.0 mg/L). The most effective culture medium for root number, root length, and shoot height was the half-strength MS basal medium with 1.0 mg/L IAA. Rooted plantlets were transferred to pots containing perlite for acclimatization, for a period of three weeks, and further on soil. An average of 97 – 100% acclimatized plantlets survived after two months of transferring into the soil.
    [Show full text]
  • Identification of Anti-Inflammatory Constituents in Hypericum Species and Unveiling the Underlying Mechanism in LPS-Stimulated M
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2011 Identification of anti-inflammatory constituents in Hypericum species and unveiling the underlying mechanism in LPS-stimulated mouse macrophages and H1N1 influenza virus infected BALB/c mouse Nan Huang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Nutrition Commons Recommended Citation Huang, Nan, "Identification of anti-inflammatory constituents in Hypericum species and unveiling the underlying mechanism in LPS- stimulated mouse macrophages and H1N1 influenza virus infected BALB/c mouse" (2011). Graduate Theses and Dissertations. 12234. https://lib.dr.iastate.edu/etd/12234 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Identification of anti-inflammatory constituents in Hypericum species and unveiling the underlying mechanism in LPS-stimulated mouse macrophages and H1N1 influenza virus infected BALB/c mouse by Nan Huang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: NUTRITIONAL SCIENCES Program of Study Committee: Diane Birt, Major Professor Suzanne Hendrich Marian Kohut Peng Liu Matthew Rowling Iowa State University Ames, Iowa 2011 Copyright © Nan Huang, 2011. All rights reserved. ii TABLE OF CONTENTS ACKNOWLEDGEMENT vi ABBREVIATIONS vii ABSTRACT x CHAPTER 1. INTRODUCTION 1 General introduction 1 Dissertation organization 5 List of references 6 CHAPTER 2.
    [Show full text]
  • Flowering Plants and Ferns of Keele University David W
    Flowering Plants and Ferns of Keele University David W. Emley Updated June 2019 Keele is perhaps more interesting for its trees than for its flowering plants, however there are a few unusual species amongst them. The deciduous woodland, consisting mainly of Oak and Sycamore, has a poor ground flora which makes for a fine display of Bluebells in the spring. It also has Yellow Archangel, a plant associated with ancient woodland as well as the lovely Wood Sorrel. The former sewage-works site, just south of Lake 5, was once home to a small colony of Harebell and Betony. The area between that site and the entrance to Lymes Road used to be very good for plants. Indeed, there was a colony of Common Spotted Orchids and a few Northern Marsh Orchids. These appear to have gone - it is too overgrown now. The small gully that leads into Lake 7 is lined with Bluebells but also Ramsons or Wild Garlic; its main site at Keele. Keele has a good bramble flora and is the type locality for Rubus sneydii, named by Eric Edees; a national expert on brambles who lived nearby. One plant, Rhododendron ponticum, is causing problems in the deciduous woodland where it is very invasive and is unfortunately the host of Phytophthora ramorum. This virus can seriously affect oaks, larches and many other trees. Because of this Keele has to remove all its Larch and most of its Rhododendron. This will, of course, open up the woodland to let the native ground flora grow up and extensive replanting with native trees is scheduled to start in autumn 2015.
    [Show full text]
  • Abstract Book Icsb
    International Conference „Smart Bio“ 18-20 May 2017 KAUNAS LITHUANIA ABSTRACT BOOK OUR SPONSORS ISBN 978-609-8104-42-4 Scientific Committee Chairman: Prof. (HP) Dr. Algimantas Paulauskas, Vytautas Magnus University, Lithuania Prof. (HB) Dr. Isaak Rashal University of Latvia, Rīga, Latvia Prof. (HB) Dr. Jonas Rimantas Stonis, Lithuanian University of Educational Sciences, Lithuania Dr. Oleg Ermishev, Vasyl‘stus Donetsk National University, Ukraine Prof. Dr. Jalel Labidi, University of the Basque Country, Spain Prof. Dr. Virginijus Sruoga, Lithuanian University of Educational Sciences, Lithuania Prof. Olav Rosef, Telemark University College, Norway Prof. Dr. Alexander Shendrik Donetsk National University Prof. Michal Stanko, Institute of Parasitology, Slovak Academy of Sciences, Slovakia Prof. Dr. Murat Kaya, Aksaray University, Aksaray, Turkey Dr. Natallia Navumenka, Belarusian State Pedagogical University named after Maxim Tank, Belarus Dr. Artūras Žiemys, The Houston Methodist Research Institute, USA Dr. Skirmantas Kriaučionis, University of Oxford, UK Dr. Ilgaz Akata, Ankara University, Ankara, Turkey Dr. Djan Mihajla, University of Novi Sad, Novi Sad, Province of Vojvodina, Serbia Organizing Committee Chairman: Dean of the Faculty of Natural Sciences, Assoc. Prof. Saulius Mickevičius, Vytautas Magnus University, Lithuania Prof. Mindaugas Saulius Venslauskas, Vytautas Magnus University, Lithuania Doc. Dr. Vaida Tubelytė, Vytautas Magnus University, Lithuania Dr. Irma Ražanskė, Vytautas Magnus University, Lithuania Dr. Indrė Lipatova,
    [Show full text]
  • Paleobiology of the Genus Hypericum (Hypericaceae): a Survey of the Fossil Record and Its Palaeogeographic Implications
    Anales del Jardín Botánico de Madrid Vol. 69(1): 97-106 enero-junio 2012 ISSN: 0211-1322 doi: 10.3989/ajbm.2306 Paleobiology of the genus Hypericum (Hypericaceae): a survey of the fossil record and its palaeogeographic implications Andrea S. Meseguer* & Isabel Sanmartín Real Jardín Botánico, CSIC, Plaza de Murillo 2, E-28014 Madrid, Spain. [email protected]; [email protected] Abstract Resumen Meseguer, A.S. & Sanmartín, I. 2012. Paleobiology of the genus Hyperi - Meseguer, A.S. & Sanmartín, I. 2012. Paleobiología del género Hyperi - cum (Hypericaceae): a survey of the fossil record and its palaeogeo- cum (Hypericaceae): una revisión del registro fósil y sus implicaciones graphic implications. Anales Jard. Bot. Madrid 69(1): 97-106 paleogeográficas. Anales Jard. Bot. Madrid 69(1): 97-106 (en inglés) Genus Hypericum is one of the 100 largest genera in angiosperms with El género Hypericum contiene 500 especies aproximadamente y es uno nearly 500 species. Despite its worldwide, nearly cosmopolitan distribu- de los 100 géneros más grandes dentro de las angiospermas. A pesar de tion and apparently old age – there are fossil remains of relatives from que tiene una distribución cosmopolita y de que es presumiblemente the Mid Cretaceous – the fossil record of Hypericum has been largely muy antiguo –existen restos fósiles de grupos emparentados filogenéti- overlooked in phylogenetic studies. Here, we survey the fossil record of camente del Cretácico medio– el registro fósil de Hypericum no ha sido Hypericum from the literature, with special emphasis on the oldest fos- utilizado en estudios filogenéticos. En este trabajo hacemos una revisión sil remain, Hypericum antiquum, from which we reassess its diagnostic de la literatura sobre el registro fósil de Hypericum con especial énfasis characters.
    [Show full text]
  • Hypericins in Hypericum Montbretii: Variation Among Plant Parts and Phenological Stages Cüneyt ÇRak1* • Jolita Radušien2
    Medicinal and Aromatic Plant Science and Biotechnology ©2007 Global Science Books Hypericins in Hypericum montbretii: Variation among Plant Parts and Phenological Stages Cüneyt Çrak1* • Jolita Radušien2 1 Faculty of Agriculture, Department of Agronomy, University of Ondokuz Mays, Kurupelit, 55139-Samsun, Turkey 2 Institute of Botany, Zaliuju ezeru 49, Vilnius, LT-08406, Lithuania Corresponding author : * [email protected] ABSTRACT In the present study, morphogenetic and phenological variations of hypericin and pseudohypericin were investigated in Hypericum montbreti, a perennial herbaceous plant from Turkish flora for the first time. Wild growing plants were harvested at the vegetative, floral budding, full flowering, fresh fruiting and mature fruiting stages and dissected into stem, leaf and reproductive tissues and assayed for hypericin and pseudohypericin by HPLC. Phenological fluctuation in hypericin and pseudohypericin content of plant material including whole shoots, stems, leaves and reproductive parts was found to be significant (P<0.01). Hypericin and pseudohypericin content in whole shoots, leaves and reproductive parts increased during the course of ontogenesis. The highest level of both compounds was reached at full flowering. In contrast, hypericin and pseudohypericin content in stems decreased with an advancement of plant development and stems from newly emerged shoots at the vegetative stage produced the highest level of both compounds. Among different plant tissues, reproductive parts were found to be superior than leaves
    [Show full text]