Type Ia Supernova Cosmology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supernovae Sparked by Dark Matter in White Dwarfs
Supernovae Sparked By Dark Matter in White Dwarfs Javier F. Acevedog and Joseph Bramanteg;y gThe Arthur B. McDonald Canadian Astroparticle Physics Research Institute, Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario, K7L 2S8, Canada yPerimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada November 27, 2019 Abstract It was recently demonstrated that asymmetric dark matter can ignite supernovae by collecting and collapsing inside lone sub-Chandrasekhar mass white dwarfs, and that this may be the cause of Type Ia supernovae. A ball of asymmetric dark matter accumulated inside a white dwarf and collapsing under its own weight, sheds enough gravitational potential energy through scattering with nuclei, to spark the fusion reactions that precede a Type Ia supernova explosion. In this article we elaborate on this mechanism and use it to place new bounds on interactions between nucleons 6 16 and asymmetric dark matter for masses mX = 10 − 10 GeV. Interestingly, we find that for dark matter more massive than 1011 GeV, Type Ia supernova ignition can proceed through the Hawking evaporation of a small black hole formed by the collapsed dark matter. We also identify how a cold white dwarf's Coulomb crystal structure substantially suppresses dark matter-nuclear scattering at low momentum transfers, which is crucial for calculating the time it takes dark matter to form a black hole. Higgs and vector portal dark matter models that ignite Type Ia supernovae are explored. arXiv:1904.11993v3 [hep-ph] 26 Nov 2019 Contents 1 Introduction 2 2 Dark matter capture, thermalization and collapse in white dwarfs 4 2.1 Dark matter capture . -
LIKE SN 1991T OR SN 2007If? Ju-Jia Zhang1,2,3, Xiao-Feng Wang3, Michele Sasdelli4,5, Tian-Meng Zhang6, Zheng-Wei Liu7, Paolo A
The Astrophysical Journal, 817:114 (13pp), 2016 February 1 doi:10.3847/0004-637X/817/2/114 © 2016. The American Astronomical Society. All rights reserved. A LUMINOUS PECULIAR TYPE IA SUPERNOVA SN 2011HR: MORE LIKE SN 1991T OR SN 2007if? Ju-Jia Zhang1,2,3, Xiao-Feng Wang3, Michele Sasdelli4,5, Tian-Meng Zhang6, Zheng-Wei Liu7, Paolo A. Mazzali4,5, Xiang-Cun Meng1,2, Keiichi Maeda8,9, Jun-Cheng Chen3, Fang Huang3, Xu-Lin Zhao3, Kai-Cheng Zhang3, Qian Zhai1,2,10, Elena Pian11,12, Bo Wang1,2, Liang Chang1,2, Wei-Min Yi1,2, Chuan-Jun Wang1,2,10, Xue-Li Wang1,2, Yu-Xin Xin1,2, Jian-Guo Wang1,2, Bao-Li Lun1,2, Xiang-Ming Zheng1,2, Xi-Liang Zhang1,2, Yu-Feng Fan1,2, and Jin-Ming Bai1,2 1 Yunnan Observatories (YNAO), Chinese Academy of Sciences, Kunming 650011, China; [email protected] 2 Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011, China 3 Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 100084, China; [email protected] 4 Astrophysics Research Institute, Liverpool John Moores University, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK 5 Max-Planck Institute fur Astrophysics, D-85748 Garching, Germany 6 National Astronomical Observatories of China (NAOC), Chinese Academy of Sciences, Beijing 100012, China 7 Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121, Bonn, Germany 8 Department of Astronomy, Kyoto University, Kyoto, 606-8502, Japan 9 Kavli Institute for the Physics and Mathematics of the Universe -
How Supernovae Became the Basis of Observational Cosmology
Journal of Astronomical History and Heritage, 19(2), 203–215 (2016). HOW SUPERNOVAE BECAME THE BASIS OF OBSERVATIONAL COSMOLOGY Maria Victorovna Pruzhinskaya Laboratoire de Physique Corpusculaire, Université Clermont Auvergne, Université Blaise Pascal, CNRS/IN2P3, Clermont-Ferrand, France; and Sternberg Astronomical Institute of Lomonosov Moscow State University, 119991, Moscow, Universitetsky prospect 13, Russia. Email: [email protected] and Sergey Mikhailovich Lisakov Laboratoire Lagrange, UMR7293, Université Nice Sophia-Antipolis, Observatoire de la Côte d’Azur, Boulevard de l'Observatoire, CS 34229, Nice, France. Email: [email protected] Abstract: This paper is dedicated to the discovery of one of the most important relationships in supernova cosmology—the relation between the peak luminosity of Type Ia supernovae and their luminosity decline rate after maximum light. The history of this relationship is quite long and interesting. The relationship was independently discovered by the American statistician and astronomer Bert Woodard Rust and the Soviet astronomer Yury Pavlovich Pskovskii in the 1970s. Using a limited sample of Type I supernovae they were able to show that the brighter the supernova is, the slower its luminosity declines after maximum. Only with the appearance of CCD cameras could Mark Phillips re-inspect this relationship on a new level of accuracy using a better sample of supernovae. His investigations confirmed the idea proposed earlier by Rust and Pskovskii. Keywords: supernovae, Pskovskii, Rust 1 INTRODUCTION However, from the moment that Albert Einstein (1879–1955; Whittaker, 1955) introduced into the In 1998–1999 astronomers discovered the accel- equations of the General Theory of Relativity a erating expansion of the Universe through the cosmological constant until the discovery of the observations of very far standard candles (for accelerating expansion of the Universe, nearly a review see Lipunov and Chernin, 2012). -
Highly Magnetized Super-Chandrasekhar White Dwarfs and Their Consequences
Highly magnetized super-Chandrasekhar white dwarfs and their consequences Banibrata Mukhopadhyay Department of Physics Indian Institute of Science Collaborators: Upasana Das (JILA, Colorado), Mukul Bhattacharya (Texas, Austin), Sathyawageeswar Subramanian (Cambridge), Tanayveer Singh Bhatia (IISc/ANU), Subroto Mukerjee (IISc), A. R. Rao (TIFR) Stars with a stable magnetic field: from pre-main sequence to compact remnants August 28 to September 1, 2017, Brno, Czech Republic The talk is based on the following papers MUKHOPADHYAY, A. R. Rao, T. S. Bhatia, MNRAS (press), 2017 MUKHOPADHYAY, A. R. Rao, JCAP, 05, 007, 2016 S. Subramanian, MUKHOPADHYAY, MNRAS, 454, 752, 2015 U. Das, MUKHOPADHYAY, IJMPD, 24, 1544026, 2015 U. Das, MUKHOPADHYAY, JCAP, 05, 045, 2015b U. Das, MUKHOPADHYAY, JCAP, 05, 015, 2015a U. Das, MUKHOPADHYAY, Phys. Rev. D, 91, 028302, 2015c U. Das, MUKHOPADHYAY, JCAP, 06, 050, 2014a U. Das, MUKHOPADHYAY, MPLA, 29, 1450035, 2014b M. V. Vishal, MUKHOPADHYAY, Phys. Rev. C, 89, 065804, 2014 U. Das, MUKHOPADHYAY, Phys. Rev. Lett., 110, 071102, 2013a U. Das, MUKHOPADHYAY, A. R. Rao, ApJLett., 767, 14, 2013 U. Das, MUKHOPADHYAY, IJMPD, 22, 1342004, 2013b U. Das, MUKHOPADHYAY, Phys. Rev. D, 86, 041001, 2012a U. Das, MUKHOPADHYAY, IJMPD, 21, 1242001, 2012b A. Kundu, MUKHOPADHYAY, MPLA, 27, 1250084, 2012 Flow-Chart of Evolution of our Idea Since last 5 years or so, we have initiated exploring highly magnetized super-Chandrasekhar white dwarfs (B-WDs), explaining peculiar type Ia supernovae: Over-luminous Many groups joined -
The Ejected Mass Distribution of Type Ia Supernovae: a Significant Rate of Non-Chandrasekhar-Mass Progenitors
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The Australian National University MNRAS 445, 2535–2544 (2014) doi:10.1093/mnras/stu1808 The ejected mass distribution of Type Ia supernovae: a significant rate of non-Chandrasekhar-mass progenitors R. A. Scalzo,1,2‹ A. J. Ruiter1,2,3 andS.A.Sim2,4 1Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia 2ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO), The Australian National University, Cotter Road, Weston Creek ACT 2611 Australia 3Max-Planck-Institut fur¨ Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching bei Munchen,¨ Germany 4Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN, UK Accepted 2014 September 1. Received 2014 August 21; in original form 2014 June 30 Downloaded from ABSTRACT The ejected mass distribution of Type Ia supernovae (SNe Ia) directly probes progenitor evolutionary history and explosion mechanisms, with implications for their use as cosmological probes. Although the Chandrasekhar mass is a natural mass scale for the explosion of white http://mnras.oxfordjournals.org/ dwarfs as SNe Ia, models allowing SNe Ia to explode at other masses have attracted much recent attention. Using an empirical relation between the ejected mass and the light-curve 56 width, we derive ejected masses Mej and Ni masses MNi for a sample of 337 SNe Ia with redshifts z<0.7 used in recent cosmological analyses. We use hierarchical Bayesian inference to reconstruct the joint Mej–MNi distribution, accounting for measurement errors. -
Asymmetric Type-Ia Supernova Origin of W49B As Revealed from Spatially Resolved X-Ray Spectroscopic Study Ping Zhou1,2 and Jacco Vink1,3
A&A 615, A150 (2018) Astronomy https://doi.org/10.1051/0004-6361/201731583 & © ESO 2018 Astrophysics Asymmetric Type-Ia supernova origin of W49B as revealed from spatially resolved X-ray spectroscopic study Ping Zhou1,2 and Jacco Vink1,3 1 Anton Pannekoek Institute, University of Amsterdam, PO Box 94249, 1090 GE Amsterdam, The Netherlands e-mail: p.zhou,[email protected] 2 School of Astronomy and Space Science, Nanjing University, Nanjing 210023, PR China 3 GRAPPA, University of Amsterdam, PO Box 94249, 1090 GE Amsterdam, The Netherlands Received 17 July 2017 / Accepted 23 March 2018 ABSTRACT The origin of the asymmetric supernova remnant (SNR) W49B has been a matter of debate: is it produced by a rare jet-driven core- collapse (CC) supernova, or by a normal supernova that is strongly shaped by its dense environment? Aiming to uncover the explosion mechanism and origin of the asymmetric, centrally filled X-ray morphology of W49B, we have performed spatially resolved X-ray spectroscopy and a search for potential point sources. We report new candidate point sources inside W49B. The Chandra X-ray spectra from W49B are well-characterized by two-temperature gas components ( 0:27 keV + 0.6–2.2 keV). The hot component gas shows a large temperature gradient from the northeast to the southwest and is over-ionized∼ in most regions with recombination timescales 11 3 of 1–10 10 cm− s. The Fe element shows strong lateral distribution in the SNR east, while the distribution of Si, S, Ar, Ca is relatively× smooth and nearly axially symmetric. -
Type Ia Supernovae As Stellar Endpoints and Cosmological Tools
Type Ia Supernovae as Stellar Endpoints and Cosmological Tools D. Andrew Howell1;2 1Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117 2Department of Physics, University of California, Santa Barbara, Broida Hall, Mail Code 9530, Santa Barbara, CA 93106-9530 Empirically, Type Ia supernovae are the most useful, precise, and mature tools for determin- ing astronomical distances. Acting as calibrated candles they revealed the presence of dark energy and are being used to measure its properties. However, the nature of the Type Ia explosion, and the progenitors involved, have remained elusive, even after seven decades of research. But now new large surveys are bringing about a paradigm shift — we can finally compare samples of hundreds of supernovae to isolate critical variables. As a result of this, and advances in modeling, breakthroughs in understanding all aspects of these supernovae are finally starting to happen. “Guest stars” (who could have imagined they were distant stellar explosions) have been sur- prising humans for at least 950 years, but probably far longer. They amazed and confounded the likes of Tycho, Kepler, and Galileo, to name a few. But it was not until the separation of these events into novae and supernovae by Baade and Zwicky that progress understanding them began in earnest1. This process of splitting a diverse group into related subsamples to yield insights into their origin would be repeated again and again over the years, first by Minkowski when he sepa- rated supernovae of Type I (no hydrogen in their spectra) from Type II (have hydrogen)2, and then by Elias et al. -
Timescales for Detecting Magnetized White Dwarfs in Gravitational Wave Astronomy
Article Timescales for detecting magnetized white dwarfs in gravitational wave astronomy Surajit Kalita 1* 1 Department of Physics, Indian Institute of Science, Bangalore 560012, India; [email protected] * Correspondence: [email protected] Version February 20, 2021 submitted to Universe 1 Abstract: Over the past couple of decades, researchers have predicted more than a dozen 2 super-Chandrasekhar white dwarfs from the detections of over-luminous type Ia supernovae. 3 It turns out that magnetic fields and rotation can explain such massive white dwarfs. If these 4 rotating magnetized white dwarfs follow specific conditions, they can efficiently emit continuous 5 gravitational waves and various futuristic detectors, viz. LISA, BBO, DECIGO, and ALIA can detect 6 such gravitational waves with a significant signal-to-noise ratio. Moreover, we discuss various 7 timescales over which these white dwarfs can emit dipole and quadrupole radiations and show that 8 in the future, the gravitational wave detectors can directly detect the super-Chandrasekhar white 9 dwarfs depending on the magnetic field geometry and its strength. 10 Keywords: White dwarfs; gravitational waves; magnetic fields; rotation; luminosity 11 1. Introduction 12 Over the years, the luminosities of type Ia supernovae (SNeIa) are used as one of the standard 13 candles in cosmology to measure distances of various astronomical objects. This is due to the reason that 14 the peak luminosities of all the SNeIa are similar, as they are originated from the white dwarfs (WDs) 15 burst around the Chandrasekhar mass-limit (∼ 1.4M for carbon-oxygen non-rotating non-magnetized 16 WDs [1]). However, the detection of various over-luminous SNeIa, such as SN 2003fg [2], SN 2007if 17 [3], etc., for about a couple of decades, questions the complete validity of the standard candle using 18 SNeIa. -
The Ejected Mass Distribution of Type Ia Supernovae: a Significant Rate of Non-Chandrasekhar-Mass Progenitors
MNRAS 445, 2535–2544 (2014) doi:10.1093/mnras/stu1808 The ejected mass distribution of Type Ia supernovae: a significant rate of non-Chandrasekhar-mass progenitors R. A. Scalzo,1,2‹ A. J. Ruiter1,2,3 andS.A.Sim2,4 1Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia 2ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO), The Australian National University, Cotter Road, Weston Creek ACT 2611 Australia 3Max-Planck-Institut fur¨ Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching bei Munchen,¨ Germany 4Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN, UK Accepted 2014 September 1. Received 2014 August 21; in original form 2014 June 30 Downloaded from ABSTRACT The ejected mass distribution of Type Ia supernovae (SNe Ia) directly probes progenitor evolutionary history and explosion mechanisms, with implications for their use as cosmological probes. Although the Chandrasekhar mass is a natural mass scale for the explosion of white http://mnras.oxfordjournals.org/ dwarfs as SNe Ia, models allowing SNe Ia to explode at other masses have attracted much recent attention. Using an empirical relation between the ejected mass and the light-curve 56 width, we derive ejected masses Mej and Ni masses MNi for a sample of 337 SNe Ia with redshifts z<0.7 used in recent cosmological analyses. We use hierarchical Bayesian inference to reconstruct the joint Mej–MNi distribution, accounting for measurement errors. The inferred marginal distribution of Mej has a long tail towards sub-Chandrasekhar masses, but cuts off sharply above 1.4 M. -
1. Basic Properties of Supernovae During the Past Two Decades, There Has Occurred a Technological Break-Through in Astronomy
PHYSICS of SUPERNOVAE: THEORY, OBSERVATIONS, UNRESOLVED PROBLEMS * D. K. Nadyozhin Institute for Theoretical and Experimental Physics, Moscow. [email protected] The main observational properties and resulting classification of supernovae (SNe) are briefly reviewed. Then we discuss the progress in modeling of two basic types of SNe – the thermonuclear and core-collapse ones, with special emphasis being placed on difficulties relating to a consistent description of thermonuclear flame propagation and the detachment of supernova envelope from the collapsing core (a nascent neutron star). The properties of the neutrino flux expected from the core- collapse SNe, and the lessons of SN1987A, exploded in the Large Magellanic Cloud, are considered as well. 1. Basic Properties of Supernovae During the past two decades, there has occurred a technological break-through in astronomy. The sensitivity, spectral and angular resolution of detectors in the whole electromagnetic diapason from gamma-rays through radio wavelengths has been considerably increased. Hence, it became possible to derive from the observed supernova spectra precise data on dynamics of supernova expansion and on composition and light curves of SNe as well. Moreover, neutrino astronomy overstepped the bounds of our Galaxy to discover the neutrino signal from SN1987A. This epoch- making event had a strong impact on the theory of supernovae. The main indicator for supernova astronomical classification is the amount of hydrogen observed in the SN envelopes. The Type I SNe (subtypes Ia, Ib, Ic) contain no hydrogen in their envelopes. The SN Ia are distinguished by strong Si lines in their spectra and form quite a homogeneous group of objects. On the contrary, Type II SNe (subtypes IIP, IIn, IIL, IIb) have clear lines of hydrogen in their spectra (Fig. -
Pos(GOLDEN2019)046 Model 6 Model May Be Inconsistent 6 Model Can Be Also Progenitors of Peculiar Sne Ia
Progenitor and explosion models of type Ia supernovae PoS(GOLDEN2019)046 Ataru Tanikawa∗ Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan E-mail: [email protected] Type Ia supernovae (SNe Ia) are important objects in astronomy and astrophysics. They are one of the brightest and common transients in the universe, a standard candle for a cosmic distance, and a dominant origin of iron group elements. It is widely accepted that SNe Ia are thermodynamical explosions of carbon-oxygen (CO) white dwarfs (WDs) in binary systems. Nevertheless, it is yet unclear what the companion stars are, and what the masses of the exploding CO WDs are. Recently, many sub-Chandrasekhar mass explosions in the double-degenerate scenario have been suggested. We have assessed the violent merger and Dynamically-Driven Double-Degenerate Double-Detonation (D6) models by numerical simulations. We have concluded that the violent merger model may not explain normal SNe Ia, since their circum-binary matter is much larger than the size of SN 2011fe, and their event rate is much smaller than the SN Ia rate in our Galaxy by an order of magnitude. However, it can be progenitors of peculiar SNe Ia. The D6 model has roughly consistent features with normal SNe Ia. However, the model has supernova ejecta with an asymmetric shape and low-velocity carbon-oxygen component due to the presence of the surviving companion CO. If these features can be observed, the D6 model may be inconsistent with normal SNe Ia. -
The Type Ia Supernova SNLS-03D3bb from a Super-Chandrasekhar-Mass
The type Ia supernova SNLS-03D3bb from a super- Chandrasekhar-mass white dwarf star D. Andrew Howell1, Mark Sullivan1, Peter E. Nugent2, Richard S. Ellis3, Alexander J. Conley1, Damien Le Borgne4, Raymond G. Carlberg1, Julien Guy5, David Balam6, Stephane Basa7, Dominique Fouchez8, Isobel M. Hook9, Eric Y. Hsiao6, James D. Neill6, Reynald Pain5, Kathryn M. Perrett1, Christopher J. Pritchet6 1Department of Astronomy and Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8, Canada 2Lawrence Berkeley National Laboratory, Mail Stop 50-232, 1 Cyclotron Road, Berkeley CA 94720 USA 3California Institute of Technology, E. California Blvd., Pasadena, CA 91125, USA 4DAPNIA/Service d’Astrophysique, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France 5LPNHE, CNRS-IN2P3 and University of Paris VI & VII, 75005 Paris, France 6Department of Physics and Astronomy, University of Victoria, PO Box 3055, Victoria, BC V8W 3P6, Canada 7LAM CNRS, BP8, Traverse du Siphon, 13376 Marseille Cedex 12, France 8CPPM, CNRS-IN2P3 and University Aix Marseille II, Case 907, 13288 Marseille Cedex 9, France 9University of Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK The acceleration of the expansion of the universe, and the need for Dark Energy, were in- ferred from the observations of Type Ia supernovae (SNe Ia)1;2. There is consensus that SNe Ia are thermonuclear explosions that destroy carbon-oxygen white dwarf stars that accrete matter from a companion star3, although the nature of this companion remains uncertain. SNe Ia are thought to be reliable distance indicators because they have a standard amount of fuel and a uniform trigger — they are predicted to explode when the mass of the white dwarf nears the Chandrasekhar mass4 — 1.4 solar masses.