Thesis Submitted to Mcgill University in Partial Fulfillment of the Requirements for the Degree of MASTER of SCIENCE

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Submitted to Mcgill University in Partial Fulfillment of the Requirements for the Degree of MASTER of SCIENCE Measurement of Associated Z Boson and Charmp Quark Production in Proton-Proton Collisions at s = 13 TeV Luis Pinto Cabrera Department of Physics McGill University, Montreal August, 2020 A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE c Luis Pinto Cabrera 2020 Abstract This thesis presents the measurements of the differential production cross-sections of a Z boson in association with at least one charm-quark-initiated jet, where the Z boson de- cays leptonically into a muon-antimuon pair. Data recorded in proton-proton collisions by the ATLAS detector at the Large Hadron Collider (LHC) during the years of 2015 to 2018 is utilised, when the LHC was running at a center of mass energy of 13 TeV. The studied data corresponds to a total integrated luminosity of 139 fb−1. The measurements are com- pared to simulated data produced at next-to-leading-order and normalized to theoretical predictions at next-to-next-leading order. The results show that predictions underestimate the total number of events by 50% but display a good modelling of all distribution shapes of the chosen observables in data. The discrepancy can be attributed to a problem in the normalisation but further studies need to be made to settle the issue. iii Résumé Cette thèse présente les mesures de la section efficace de production différentielle d’un boson Z en association avec au moins un jet de saveur charme, ou le boson Z se désin- tègre leptoniquement en une paire muon-antimuon. Les données mesurées des collisions proton-proton par le détecteur ATLAS au grand collisionneur à Hadrons (GCH) pendant les années 2015 à 2018 sont utilisées, lorsque le GCH fonctionnait à un centre d’énergie de masse de 13 TeV. Les données étudiées correspondent à un total de luminosité intégrée de 139 fb−1 . Les mesures sont comparées aux données simulées produites au deuxième ordre et normalisées aux prédictions théoriques du troisième ordre. Les résultats montrent que les prédictions sous-estiment le nombre total d’évènements par 50% mais représentent un bon modèle pour toutes les formes de distribution des observables choisies des données. La contradiction peut être attribuée à un problème dans la normalisation, cependant des études plus poussées sont nécessaires afin de résoudre ce problème. iv Acknowledgements This thesis is dedicated to my parents and my brother for all the love and support I have received from them. I would like to thank my supervisor Prof. François Corriveau for the incredible op- portunity to work on the ATLAS experiment, for helping me choose such an interesting research topic and for all the feedback I have received on the analysis and the thesis during this period. I would also like to thank Dr. Jonathan Bossio for everything that he has taught me, for all the long calls explaining me details about the analysis and for all the support during these past two years. I would like to thank my friends, new ones and old ones, and the ATLAS group at McGill, that made the last two years a great experience and Montreal a place I can call home. v Author’s Contribution The author of this thesis contributed to the development of the analysis framework used to obtain all the results reported in this thesis. This framework will ultimately be used by the Z + HF group to investigate the Z + b(b) and Z + c(c) production. All chapters in this thesis are written by the author and contributions of the author to the analysis start from Chapter 4. vi Contents Introduction2 1 Theoretical introduction4 1.1 The Standard Model................................ 4 1.1.1 Particle content and interactions...................... 5 1.1.2 Quantum Chromodynamics......................... 6 1.2 Monte Carlo simulations.............................. 7 1.3 Z boson production ................................ 8 2 Experimental setup 11 2.1 Accelerator complex at CERN........................... 11 2.2 The Large Hadron Collider ............................ 12 2.2.1 Luminosity.................................. 13 2.3 The ATLAS detector................................ 14 2.3.1 ATLAS Geometry .............................. 14 2.3.2 Inner Detector................................ 15 2.3.3 Calorimeter.................................. 16 2.3.4 Muon Spectrometer ............................. 17 2.3.5 Trigger and Data Acquisition........................ 17 3 ATLAS object reconstruction and identification 19 3.1 Vertex definition and reconstruction ....................... 19 3.2 Muon definition and reconstruction........................ 20 3.2.1 Muon identification ............................. 20 3.2.2 Muon isolation................................ 21 3.3 Jet definition and reconstruction ......................... 22 3.3.1 Tagging.................................... 24 3.4 Missing energy definition and reconstruction................... 25 4 Description of data sets and selections 26 4.1 Data and simulated samples............................ 26 vii 4.1.1 Data set description............................. 26 4.1.2 Simulated data description ......................... 27 4.2 Event and object selections ............................ 29 4.2.1 General selection............................... 29 4.2.2 Muon selection................................ 30 4.2.3 Jet selection ................................. 30 4.2.4 Overlap removal ............................... 31 4.2.5 Z final state selection ............................ 31 4.3 Cutflows....................................... 31 4.4 Detector-level control distributions........................ 37 4.4.1 Run 2 data and Monte Carlo comparison ................. 37 4.4.2 Comparison between data-taking periods ................. 44 5 Flavour fit 50 5.1 Closure test..................................... 67 6 Measurement of Z boson production in association with at least one c-jet 71 6.1 Cross-section definitions.............................. 71 6.2 Fiducial phase space................................ 72 6.3 Unfolding...................................... 72 6.3.1 Closure Test ................................. 76 6.4 Uncertainties in the cross-section measurements................. 78 6.5 Results ....................................... 83 7 Discussion and conclusion 88 Appendices 90 A Light-jets rejection study 91 B Additional plots 93 B.1 Run 2 data MC - data detector-level distributions................ 93 B.2 Comparison between data-taking periods at detector-level ........... 95 B.3 Unfolding migration matrices ........................... 96 B.4 Closure test on unfolding ............................. 101 Abbreviations 108 Bibliography 109 viii 1 Introduction Particle physics is a branch of physics that studies the elementary particles and their interactions at the smallest scale. The Standard Model (SM) is one of the most successful theories within particle physics, validated by many experiments since its formulation. In recent years, scientists have been using experimental data produced by colliders to probe this theory. The Large Hadron Collider (LHC) is the world’s largest and most powerful particle collider and it has produced more data than ever produced before at energy scales only seen in the early universe. Particles produced in proton-proton collisions at the LHC are recorded at four main interaction points along the accelerator rings. The ATLAS (A Toroidal LHC ApparatuS) detector is located at one of them. The goal of this thesis is to use the data collected by the ATLAS detector to measure the production rate of the Z boson in conjunction with a charm quark. The understanding of this process is essential to probe one of the underlying theories of the SM called Quantum Chromodynamics (QCD), particularly to probe perturbative QCD and test the effects of non-perturbative corrections. The thesis is organised as follows: Chapter1 presents the theory of the Standard Model, a description of Monte Carlo simulations and details about the production of Z bosons in colliders. The Large Hadron Collider (LHC) and the ATLAS experiment are described in Chapter2. Chapter3 discusses how particles and events are reconstructed offline from data recorded by the ATLAS detector. Chapter4 describes the experimental data and simulated samples used in this thesis, along with the selection criteria chosen to extract the signal of interest while maintaining a high background rejection. Moreover, this chapter also displays a comparison between data and Monte Carlo simulation (MC) of relevant physical quantities at detector-level to validate the predictions which will be used in the following chapters. Chapter5 describes the methodology to extract only events containing charm- quark-initiated jets in the experimental data. In a nutshell, the contribution of each quark flavour to the total number of jets is estimated through a data-driven likelihood fit for each variable of the analysis. The obtained normalization is then used to disentangle Z+c-jet events from events containing other quarks produced at the same time as the Z. Chapter 2 6 presents the cross-section strategy and displays the results. Lastly, the conclusion and outlook are given in Chapter7. 3 Chapter 1 Theoretical introduction 1.1 The Standard Model The universe and all the matter around us is made of fundamental components of matter called elementary particles. These basic building blocks and the forces that govern them are described by the quantum field theory of the Standard Model (SM). The Standard Model was developed in the early 1970s and it has become the accepted theory
Recommended publications
  • Proton Driven Plasma Wakefield Acceleration in AWAKE
    Proton Driven Plasma Article submitted to journal Wakefield Acceleration in Subject Areas: AWAKE Plasma Wakefield Acceleration, 1 1 Proton Driven, Electron Acceleration E. Gschwendtner , M. Turner , **Author List Continues Next Page** Keywords: AWAKE, Plasma Wakefield Acceleration, Seeded Self Modulation In this article, we briefly summarize the experiments Author for correspondence: performed during the first Run of the Advanced Insert corresponding author name Wakefield Experiment, AWAKE, at CERN (European e-mail: [email protected] Organization for Nuclear Research). The final goal of AWAKE Run 1 (2013 - 2018) was to demonstrate that 10-20 MeV electrons can be accelerated to GeV- energies in a plasma wakefield driven by a highly- relativistic self-modulated proton bunch. We describe the experiment, outline the measurement concept and present first results. Last, we outline our plans for the future. 1 Continued Author List 2 E. Adli2,A. Ahuja1,O. Apsimon3;4,R. Apsimon3;4, A.-M. Bachmann1;5;6,F. Batsch1;5;6 C. Bracco1,F. Braunmüller5,S. Burger1,G. Burt7;4, B. Buttenschön8,A. Caldwell5,J. Chappell9, E. Chevallay1,M. Chung10,D. Cooke9,H. Damerau1, L.H. Deubner11,A. Dexter7;4,S. Doebert1, J. Farmer12, V.N. Fedosseev1,R. Fiorito13;4,R.A. Fonseca14,L. Garolfi1,S. Gessner1, B. Goddard1, I. Gorgisyan1,A.A. Gorn15;16,E. Granados1,O. Grulke8;17, A. Hartin9,A. Helm18, J.R. Henderson7;4,M. Hüther5, M. Ibison13;4,S. Jolly9,F. Keeble9,M.D. Kelisani1, S.-Y. Kim10, F. Kraus11,M. Krupa1, T. Lefevre1,Y. Li3;4,S. Liu19,N. Lopes18,K.V. Lotov15;16, M. Martyanov5, S.
    [Show full text]
  • The Large Hadron Collider Lyndon Evans CERN – European Organization for Nuclear Research, Geneva, Switzerland
    34th SLAC Summer Institute On Particle Physics (SSI 2006), July 17-28, 2006 The Large Hadron Collider Lyndon Evans CERN – European Organization for Nuclear Research, Geneva, Switzerland 1. INTRODUCTION The Large Hadron Collider (LHC) at CERN is now in its final installation and commissioning phase. It is a two-ring superconducting proton-proton collider housed in the 27 km tunnel previously constructed for the Large Electron Positron collider (LEP). It is designed to provide proton-proton collisions with unprecedented luminosity (1034cm-2.s-1) and a centre-of-mass energy of 14 TeV for the study of rare events such as the production of the Higgs particle if it exists. In order to reach the required energy in the existing tunnel, the dipoles must operate at 1.9 K in superfluid helium. In addition to p-p operation, the LHC will be able to collide heavy nuclei (Pb-Pb) with a centre-of-mass energy of 1150 TeV (2.76 TeV/u and 7 TeV per charge). By modifying the existing obsolete antiproton ring (LEAR) into an ion accumulator (LEIR) in which electron cooling is applied, the luminosity can reach 1027cm-2.s-1. The LHC presents many innovative features and a number of challenges which push the art of safely manipulating intense proton beams to extreme limits. The beams are injected into the LHC from the existing Super Proton Synchrotron (SPS) at an energy of 450 GeV. After the two rings are filled, the machine is ramped to its nominal energy of 7 TeV over about 28 minutes. In order to reach this energy, the dipole field must reach the unprecedented level for accelerator magnets of 8.3 T.
    [Show full text]
  • Il Nostro Mondo
    IL NOSTRO MONDO THE DESIGN, CONSTRUCTION AND PERFORMANCE OF THE CERN INTERSECTING STORAGE RINGS (ISR) A RECOLLECTION OF WORLD’S FIRST PROTON-PROTON COLLIDER KURT HÜBNER CERN, Geneva, Switzerland 1 Design which had a beam energy of 160 MeV. The interaction points to increase the collision rate The concept of colliding beams appeared design of these colliders started in 1957. but without special lattice insertions as one first in a German patent by Rolf Widerøe In 1961, the Accelerator Research Group would use these days. registered in 1943 and published in 1952. Division was expanded into the Accelerator Combined-function magnets were chosen However, at that time the intensity of beams Division as experienced manpower had as in the PS, i.e. the main magnets had a was too low for an exploitable collision rate as become available after the running-in of the magnetic dipole field to bend the beam and a beam accumulation had not yet been invented. PS in 1960. At the same time it was decided quadrupole field to focus the beam. This type The first ideas of a realistic design were to construct a small accelerator to test rf of magnet provided space for the elaborate published in 1956 by Gerard O’Neill and by the stacking, a technique to be experimentally pole-face windings foreseen to control the MURA Group lead by Donald Kerst in the USA. proven, as it was essential for the performance magnetic field to a very high precision. It also MURA had come up with beam accumulation and success of the ISR.
    [Show full text]
  • CERN Intersecting Storage Rings (ISR)
    Proc. Nat. Acad. Sci. USA Vol. 70, No. 2, pp. 619-626, February 1973 CERN Intersecting Storage Rings (ISR) K. JOHNSEN CERN It has been realized for many years that it would be possible to beams of protons collide with sufficiently high interaction obtain a glimpse into a much higher energy region for ele- rates for feasible experimentation in an energy range otherwise mentary-particle research if particle beams could be persuaded unattainable by known techniques except at enormous cost. to collide head-on. A group at CERN started investigating this possibility in To explain why this is so, let us consider what happens in a 1957, first studying a special two-way fixed-field alternating conventional accelerator experiment. When accelerated gradient (FFAG) accelerator and then, in 1960, turning to the particles have reached the required energy they are directed idea of two intersecting storage rings that could be fed by the onto a target and collide with the stationary particles of the CERN 28 GeV proton synchrotron (CERN-PS). This change target. Most of the energy given to the accelerated particles in concept for these initial studies was stimulated by the then goes into keeping the particles that result from the promising performance of the CERN-PS from the very start collision moving in the direction of the incident particles (to of its operation in 1959. conserve momentum). Only a quite modest fraction is "useful After an extensive study that included building an electron energy" for the real purpose of the experiment-the trans- storage ring (CESAR) to investigate many of the associated formation of particles, the creation of new particles.
    [Show full text]
  • Femtoscopy of Proton-Proton Collisions in the ALICE Experiment
    Femtoscopy of proton-proton collisions in the ALICE experiment DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Nicolas Bock, B.Sc. B.Eng., M.Sc. Graduate Program in Physics The Ohio State University 2011 Dissertation Committee: Professor Thomas J. Humanic, Advisor Professor Michael Lisa #1 Professor Klaus Honscheid #2 Professor Richard Furnstahl #3 c Copyright by Nicolas Bock 2011 Abstract The Large Ion Collider Experiment (ALICE) at CERN has been designed to study matter at extreme conditions of temperature and pressure, with the long term goal of observing deconfined matter (free quarks and gluons), study its properties and learn more details about the phase diagram of nuclear matter. The ALICE experiment provides excellent particle tracking capabilities in high multiplicity proton-proton and heavy ion collisions, allowing to carry out detailed research of nuclear matter. This dissertation presents the study of the space time structure of the particle emission region, also known as femtoscopy, in proton- proton collisions at 0.9, 2.76 and 7.0 TeV. The emission region can be characterized by taking advantage of the Bose-Einstein effect for identical particles, which causes an enhancement of produced identical pairs at low relative momentum. The geometry of the emission region is related to the relative momentum distribution of all pairs by the Fourier transform of the source function, therefore the measurement of the final relative momentum distribution allows to extract the initial space-time characteristics. Results show that there is a clear dependence of the femtoscopic radii on event multiplicity as well as transverse momentum, a signature of the transition of nuclear matter into its fundamental components and also of strong interaction among these.
    [Show full text]
  • Pos(ICRC2019)446
    New Results from the Cosmic-Ray Program of the NA61/SHINE facility at the CERN SPS PoS(ICRC2019)446 Michael Unger∗ for the NA61/SHINE Collaborationy Karlsruhe Institute of Technology (KIT), Postfach 3640, D-76021 Karlsruhe, Germany E-mail: [email protected] The NA61/SHINE experiment at the SPS accelerator at CERN is a unique facility for the study of hadronic interactions at fixed target energies. The data collected with NA61/SHINE is relevant for a broad range of topics in cosmic-ray physics including ultrahigh-energy air showers and the production of secondary nuclei and anti-particles in the Galaxy. Here we present an update of the measurement of the momentum spectra of anti-protons produced in p−+C interactions at 158 and 350 GeV=c and discuss their relevance for the understanding of muons in air showers initiated by ultrahigh-energy cosmic rays. Furthermore, we report the first results from a three-day pilot run aimed at investigating the ca- pability of our experiment to measure nuclear fragmentation cross sections for the understanding of the propagation of cosmic rays in the Galaxy. We present a preliminary measurement of the production cross section of Boron in C+p interactions at 13.5 AGeV=c and discuss prospects for future data taking to provide the comprehensive and accurate reaction database of nuclear frag- mentation needed in the era of high-precision measurements of Galactic cosmic rays. 36th International Cosmic Ray Conference -ICRC2019- July 24th - August 1st, 2019 Madison, WI, U.S.A. ∗Speaker. yhttp://shine.web.cern.ch/content/author-list c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
    [Show full text]
  • NA61/SHINE Facility at the CERN SPS: Beams and Detector System
    Preprint typeset in JINST style - HYPER VERSION NA61/SHINE facility at the CERN SPS: beams and detector system N. Abgrall11, O. Andreeva16, A. Aduszkiewicz23, Y. Ali6, T. Anticic26, N. Antoniou1, B. Baatar7, F. Bay27, A. Blondel11, J. Blumer13, M. Bogomilov19, M. Bogusz24, A. Bravar11, J. Brzychczyk6, S. A. Bunyatov7, P. Christakoglou1, T. Czopowicz24, N. Davis1, S. Debieux11, H. Dembinski13, F. Diakonos1, S. Di Luise27, W. Dominik23, T. Drozhzhova20 J. Dumarchez18, K. Dynowski24, R. Engel13, I. Efthymiopoulos10, A. Ereditato4, A. Fabich10, G. A. Feofilov20, Z. Fodor5, A. Fulop5, M. Ga´zdzicki9;15, M. Golubeva16, K. Grebieszkow24, A. Grzeszczuk14, F. Guber16, A. Haesler11, T. Hasegawa21, M. Hierholzer4, R. Idczak25, S. Igolkin20, A. Ivashkin16, D. Jokovic2, K. Kadija26, A. Kapoyannis1, E. Kaptur14, D. Kielczewska23, M. Kirejczyk23, J. Kisiel14, T. Kiss5, S. Kleinfelder12, T. Kobayashi21, V. I. Kolesnikov7, D. Kolev19, V. P. Kondratiev20, A. Korzenev11, P. Koversarski25, S. Kowalski14, A. Krasnoperov7, A. Kurepin16, D. Larsen6, A. Laszlo5, V. V. Lyubushkin7, M. Mackowiak-Pawłowska´ 9, Z. Majka6, B. Maksiak24, A. I. Malakhov7, D. Maletic2, D. Manglunki10, D. Manic2, A. Marchionni27, A. Marcinek6, V. Marin16, K. Marton5, H.-J.Mathes13, T. Matulewicz23, V. Matveev7;16, G. L. Melkumov7, M. Messina4, St. Mrówczynski´ 15, S. Murphy11, T. Nakadaira21, M. Nirkko4, K. Nishikawa21, T. Palczewski22, G. Palla5, A. D. Panagiotou1, T. Paul17, W. Peryt24;∗, O. Petukhov16 C.Pistillo4 R. Płaneta6, J. Pluta24, B. A. Popov7;18, M. Posiadala23, S. Puławski14, J. Puzovic2, W. Rauch8, M. Ravonel11, A. Redij4, R. Renfordt9, E. Richter-Wa¸s6, A. Robert18, D. Röhrich3, E. Rondio22, B. Rossi4, M. Roth13, A. Rubbia27, A. Rustamov9, M.
    [Show full text]
  • The Birth and Development of the First Hadron Collider the Cern Intersecting Storage Rings (Isr)
    Subnuclear Physics: Past, Present and Future Pontifical Academy of Sciences, Scripta Varia 119, Vatican City 2014 www.pas.va/content/dam/accademia/pdf/sv119/sv119-hubner.pdf The BirtTh a nd D eve lopment o f the Fir st Had ron C ollider The CERN Intersecting Storage Rings (ISR) K. H ÜBNER , T.M. T AYLOR CERN, 1211 Geneva 23, Switzerland Abstract The CERN Intersecting Storage Rings (ISR) was the first facility providing colliding hadron beams. It operated mainly with protons with a beam energy of 15 to 31 GeV. The ISR were approved in 1965 and were commissioned in 1971. This paper summarizes the context in which the ISR emerged, the design and approval phase, the construction and the commissioning. Key parameters of its performance and examples of how the ISR advanced accelerator technology and physics are given. 1. Design and approval The concept of colliding beams was first published in a German patent by Rolf Widerøe in 1952, but had already been registered in 1943 (Widerøe, 1943). Since beam accumulation had not yet been invented, the collision rate was too low to be useful. This changed only in 1956 when radio-frequency (rf) stacking was proposed (Symon and Sessler, 1956) which allowed accumulation of high-intensity beams. Concurrently, two realistic designs were suggested, one based on two 10 GeV Fixed-Field Alternating Gradient Accelerators (FFAG) (Kerst, 1956) and one suggesting two 3 GeV storage rings with synchrotron type magnet structure (O’Neill, 1956); in both cases the beams collided in one common straight section. The idea of intersecting storage rings to increase the number of interaction points appeared later (O’Neill, 1959).
    [Show full text]
  • Proton Synchrotron
    PROTON SYNCHROTRON 1. Introduction of the machine. The earliest operational runs were carried out without any of the correcting devices The 25 GeV proton synchrotron has now been being employed, except for the self-powered pole put into operation. Towards the end of November face windings needed to correct eddy currents in 1959 protons were accelerated up to 24 GeV kinetic the metal vacuum chamber at injection when the energy and a few weeks later, after adjustments guiding magnetic field is only 140 gauss. The had been made to the shape of the magnetic field proton beam then disappeared at a magnetic field at field values above 12 OOO gauss by means of pole of about 12 kgauss due to the number of free face windings, the maximum energy was increased oscillations of the particles per revolution becoming to 28 GeV. The intensity of the accelerated beam an integer. As the magnet yoke saturates, the focus­ of protons was measured as 1010 protons per pulse ing forces diminish slightly, and instead of the and there was no noticeable loss of particles during machine working in the stable region between the the whole acceleration period up to the maximum unstable resonance bands, the operating point is energy. slowly forced into a resonance and the particles Measurements so far carried out on the PS are are lost to the walls of the vacuum chamber. In necessarily preliminary and incomplete. It will take later runs the pole face windings were energized by at least six months of measurement work before programmed generators designed to keep the sufficient is known about the behaviour of the ma­ focusing forces constant up to magnetic fields of chine to exploit it as a working nuclear physics tool.
    [Show full text]
  • Improving the Slow Extraction Efficiency of the CERN Super
    Improving the slow extraction efficiency of the CERN Super Proton Synchrotron Brunner Kristóf Faculty of Science Eötvös Loránd University Supervisors: Barna Dániel, Wigner RCP Christoph Wiesner, CERN May 2018 Contents 1 Introduction4 2 CERN accelerator complex5 2.1 Accelerators..................................... 5 2.2 Experiments..................................... 6 2.2.1 Colliders .................................. 7 2.2.2 Fixed target experiments.......................... 7 2.3 Current and future demands of fixed target experiments.............. 7 3 Introduction to accelerator physics9 3.1 History of linear and circular accelerators ..................... 9 3.2 Design orbit, focusing................................. 11 3.3 Betatron oscillation, the behaviour of single particles ................ 11 3.4 The Twiss-ellipse, the behaviour of the beam ................... 13 3.5 Normalised phase space............................... 15 3.6 Tune and resonances ................................ 16 4 Extraction from a synchrotron 19 4.1 Fast extraction.................................... 19 4.2 Multi-turn extraction ................................ 20 4.3 Sextupole driven slow extraction........................... 21 4.4 Possible enhancements............................... 24 4.4.1 Diffuser................................... 24 4.4.2 Dynamic bump............................... 26 4.4.3 Phase space folding............................. 26 5 Massless septum 28 5.1 Method of phase space folding using a massless septum.............. 29 6 Simulation
    [Show full text]
  • Beam Monitoring System for the ATLAS Experiment at CERN
    Department of Physics, Chemistry and Biology Master’s Thesis Phase and Intensity Monitoring of the Particle Beams at the ATLAS Experiment Christian Ohm LITH-IFM-EX--07/1808--SE CERN-THESIS-2007-055 24/05/2007 Department of Physics, Chemistry and Biology Linköpings universitet SE-581 83 Linköping, Sweden Master’s Thesis LITH-IFM-EX--07/1808--SE Phase and Intensity Monitoring of the Particle Beams at the ATLAS Experiment Christian Ohm Supervisor: Thilo Pauly CERN Examiner: Patrick Norman ifm, Linköpings universitet Linköping, 24 May, 2007 Avdelning, Institution Datum Division, Department Date Division of Computational Physics Department of Physics, Chemistry and Biology 2007-05-24 Linköpings universitet SE-581 83 Linköping, Sweden Språk Rapporttyp ISBN Language Report category — Svenska/Swedish Licentiatavhandling ISRN Engelska/English Examensarbete LITH-IFM-EX--07/1808--SE C-uppsats Serietitel och serienummer ISSN D-uppsats Title of series, numbering — Övrig rapport URL för elektronisk version http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-9614 Titel Intensitets- och fasövervakningssystem för partikelstrålarna vid ATLAS- Title experimentet Phase and Intensity Monitoring of the Particle Beams at the ATLAS Experiment Författare Christian Ohm Author Sammanfattning Abstract At the ATLAS experiment at CERN’s Large Hadron Collider, bunches of protons will cross paths at a rate of 40 MHz, resulting in 14 TeV head-on collisions. During these interactions, calorimeters, spectrometers and tracking detectors will look for evidence that can confirm or disprove theories about the smallest constituents of matter and the forces that hold them together. In order for these sub-detectors to sample the signals from exotic particles correctly, they rely on a constant phase between a clock signal and the bunch crossings in the experiment.
    [Show full text]
  • Particle Physics Lecture 4: the Large Hadron Collider and Other Accelerators November 13Th 2009
    Subatomic Physics: Particle Physics Lecture 4: The Large Hadron Collider and other accelerators November 13th 2009 • Previous colliders • Accelerating techniques: linacs, cyclotrons and synchrotrons • Synchrotron Radiation • The LHC • LHC energy and luminosity 1 Particle Acceleration Long-lived charged particles can be accelerated to high momenta using electromagnetic fields. • e+, e!, p, p!, µ±(?) and Au, Pb & Cu nuclei have been accelerated so far... Why accelerate particles? • High beam energies ⇒ high ECM ⇒ more energy to create new particles • Higher energies probe shorter physics at shorter distances λ c 197 MeV fm • De-Broglie wavelength: = 2π pc ≈ p [MeV/c] • e.g. 20 GeV/c probes a distance of 0.01 fm. An accelerator complex uses a variety of particle acceleration techniques to reach the final energy. 2 A brief history of colliders • Colliders have driven particle physics forward over the last 40 years. • This required synergy of - hadron - hadron colliders - lepton - hadron colliders & - lepton - lepton colliders • Experiments at colliders discovered W- boson, Z-boson, gluon, tau-lepton, charm, bottom and top-quarks. • Colliders provided full verification of the Standard Model. DESY Fermilab CERN SLAC BNL KEK 3 SppS̅ at CERNNo b&el HERAPrize for atPhy sDESYics 1984 SppS:̅ Proton anti-Proton collider at CERN. • Given to Carlo Rubbia and Simon van der Meer • Ran from 1981 to 1984. Nobel Prize for Physics 1984 • Centre of Mass energy: 400 GeV • “For their decisive • 6.9 km in circumference contributions to large • Two experiments:
    [Show full text]