RESEARCH ARTICLE Network Analyses of Gene Expression
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
99978 Fascin (55K-2) Mouse Mab (IHC Formulated)
Revision 1 C 0 2 - t Fascin (55K-2) Mouse mAb (IHC a e r o t Formulated) S Orders: 877-616-CELL (2355) [email protected] 8 Support: 877-678-TECH (8324) 7 9 Web: [email protected] 9 www.cellsignal.com 9 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source/Isotype: UniProt ID: Entrez-Gene Id: IHC-P H M Endogenous 55 Mouse IgG1 Q16658 6624 Product Usage Information Application Dilution Immunohistochemistry (Paraffin) 1:100 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity Fascin (55K-2) Mouse mAb (IHC Formulated) recognizes endogenous levels of total fascin protein. Species Reactivity: Human, Mouse Source / Purification Monoclonal antibody is produced by immunizing animals with fascin protein purified from HeLa cells. Background Fascin is a monomeric, globular protein that plays a central role in regulating the structure and function of the cortical actin cytoskeleton (1). Fascin promotes cross-linkage of parallel actin filaments during the formation of cell protrusions (lamellipodia and filopodia), and therefore plays an important role in regulating cell migration (2). It has been reported that fascin may also regulate filopodia formation by a mechanism independent of its actin- bundling functions (3), though less is known about this mechanism of action. Research studies have shown that increased fascin expression is associated with increased motility and invasiveness of neoplastic cells, including breast, colon, prostate, and esophageal squamous cell carcinomas (4-6). -
Fascin Is Regulated by Slug, Promotes Progression of Pancreatic Cancer in Mice, and Is Associated with Patient Outcomes Ang Li,1 Jennifer P
Gastroenterology 2014;146:1386–1396 BASIC AND TRANSLATIONAL—PANCREAS Fascin Is Regulated by Slug, Promotes Progression of Pancreatic Cancer in Mice, and Is Associated With Patient Outcomes Ang Li,1 Jennifer P. Morton,1 YaFeng Ma,1 Saadia A. Karim,1 Yan Zhou,1 William J. Faller,1 Emma F. Woodham,1 Hayley T. Morris,1 Richard P. Stevenson,1 Amelie Juin,1 Nigel B. Jamieson,2 Colin J. MacKay,2 C. Ross Carter,2 Hing Y. Leung,1 Shigeko Yamashiro,3 Karen Blyth,1 Owen J. Sansom,1 and Laura M. Machesky1 1CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; 2Department of Surgery, West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK; and 3Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma who undergo resection for localized lesions develop recur- (PDAC) is often lethal because it is highly invasive and metas- rent or metastatic disease.2 Consequently, the development tasizes rapidly. The actin-bundling protein fascin has been of more effective strategies to combat metastasis is of identified as a biomarker of invasive and advanced PDAC and paramount importance. regulates cell migration and invasion in vitro. We investigated Human PDAC arises from pancreatic intraepithelial fascin expression and its role in PDAC progression in mice. neoplasias (PanINs) frequently driven by activating muta- METHODS: G12D R172H We used KRas p53 Pdx1-Cre (KPC) mice tions in KRas,3 followed by loss or mutation of tumor sup- fi to investigate the effects of fascin de ciency on development of pressors, such as p53. -
Null Mutation of the Fascin2 Gene by TALEN Leading to Progressive Hearing Loss and Retinal Degeneration in C57BL/6J Mice
G3: Genes|Genomes|Genetics Early Online, published on August 6, 2018 as doi:10.1534/g3.118.200405 Null mutation of the Fascin2 gene by TALEN leading to progressive hearing loss and retinal degeneration in C57BL/6J mice Xiang Liu1,3,§, Mengmeng Zhao1,2,§, Yi Xie1,2, §, Ping Li1, Oumei Wang1 , Bingxin Zhou1,2, Linlin Yang1,4, Yao Nie1, Lin Cheng1, Xicheng Song1,5, Changzhu Jin1,3,**, Fengchan Han1,2,* 1Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai264003, Shandong, P. R. China 2Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai264003, Shandong, P. R. China 3Department of Human Anatomy and Histology and Embryology, Binzhou Medical University, 346 Guanhai Road, Yantai264003, Shandong, P. R. China 4Department of Otorhinolaryngology-Head and Neck Surgery, Yuhuangding Hospital, 20 East Yuhuangding Road, Yantai 264000, Shandong, P.R .China § These authors contribute equally *The First Corresponding Author: [email protected] **The Second Corresponding Author: [email protected] Key Laboratory for Genetic Hearing Disorders in Shandong, Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai264003, Shandong, P. R. China © The Author(s) 2013. Published by the Genetics Society of America. Abstract Fascin2 (FSCN2) is an actin cross-linking protein that is mainly localized in retinas and in the stereocilia of hair cells. Earlier studies showed that a deletion mutation in human FASCIN2 (FSCN2) gene could cause autosomal dominant retinitis pigmentosa. Recent studies have indicated that a missense mutation in mouse Fscn2 gene (R109H) can contribute to the early onset of hearing loss in DBA/2J mice. -
Fascin, a Novel Target of B-Catenin-TCF Signaling, Is Expressed at the Invasive Front of Human Colon Cancer
Research Article Fascin, a Novel Target of B-Catenin-TCF Signaling, Is Expressed at the Invasive Front of Human Colon Cancer Danijela Vignjevic,1 Marie Schoumacher,1 Nancy Gavert,3 Klaus-Peter Janssen,4 Gloria Jih,3 MarickLae´,2 Daniel Louvard,1 Avri Ben-Ze’ev,3 and Sylvie Robine1 1UMR 144 Centre National de la Recherche Scientifique and 2Department of Pathology, Institut Curie, Paris, France; 3Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; and 4Department of Surgery, Technical University of Munich, Munich, Germany Abstract carcinogenesis leading to activation of the Wnt/h-catenin signaling Cancer cells become metastatic by acquiring a motile and pathway (1). Later in tumorigenesis, there is an accumulation of ras, p53, Rb invasive phenotype. This step requires remodeling of the actin additional mutations, in K- , and genesencoding h cytoskeleton and the expression of exploratory, sensory componentsof the transforminggrowth factor signaling pathway organelles known as filopodia. Aberrant B-catenin-TCF target (2). Although the effect of such mutations on cell cycle control and gene activation plays a major role in colorectal cancer cell proliferation was extensively studied, much less is known about development. We identified fascin1, a key component of mutations that contribute to the formation of metastases. h filopodia, as a target of B-catenin-TCF signaling in colorectal -Catenin isa central player in the Wnt pathway having a dual cancer cells. Fascin1 mRNA and protein expression were function in epithelial cells. First, it is a component of adherens increased in primary cancers in a stage-dependent manner. junctions that is essential to link the cytoplasmic tail of cadherins Fascin1 was exclusively localized at the invasive front of to the cytoskeleton (3). -
Sphingosine Kinase 1 Signaling Promotes Metastasis of Triple-Negative Breast Cancer Sunil Acharya1,2, Jun Yao1, Ping Li1, Chenyu Zhang1, Frank J
Published OnlineFirst June 25, 2019; DOI: 10.1158/0008-5472.CAN-18-3803 Cancer Tumor Biology and Immunology Research Sphingosine Kinase 1 Signaling Promotes Metastasis of Triple-Negative Breast Cancer Sunil Acharya1,2, Jun Yao1, Ping Li1, Chenyu Zhang1, Frank J. Lowery1,2, Qingling Zhang1, Hua Guo3, Jingkun Qu1, Fei Yang4, Ignacio I. Wistuba4, Helen Piwnica-Worms5, Aysegul A. Sahin3, and Dihua Yu1,2 Abstract Triple-negative breast cancer (TNBC) is the most aggres- with distance metastasis and poor clinical outcome in sive breast cancer subtype. To identify TNBC therapeutic patients with TNBC. Targeting SPHK1 and NFkBusing targets, we performed integrative bioinformatics analysis clinically applicable inhibitors (safingol and bortezomib, of multiple breast cancer patient-derived gene expression respectively) significantly inhibited aggressive mammary datasets and focused on kinases with FDA-approved or in- tumor growth and spontaneouslungmetastasisinortho- pipeline inhibitors. Sphingosine kinase 1 (SPHK1) was topic syngeneic TNBC mouse models. These findings high- identified as a top candidate. SPHK1 overexpression or light SPHK1 and its downstream target, NFkB, as promising downregulation in human TNBC cell lines increased or therapeutic targets in TNBC. decreased spontaneous metastasis to lungs in nude mice, respectively. SPHK1 promoted metastasis by transcription- Significance: SPHK1 is overexpressed in TNBC and pro- ally upregulating the expression of the metastasis- motes metastasis, targeting SPHK1 or its downstream target promoting gene FSCN1 via NFkB activation. Activation of NFkB with clinically available inhibitors could be effective the SPHK1/NFkB/FSCN1 signaling pathway was associated for inhibiting TNBC metastasis. Introduction metastasis (4). It has been reported that TNBC tumors are about 2.5 times more likely to metastasize within 5 years than are Breast cancer, which arises mainly from mammary ducts or breast tumors of other subtypes (5). -
Fascin, an Actin-Bundling Protein Associated with Cell Motility, Is Upregulated in Hormone Receptor Negative Breast Cancer
British Journal of Cancer (2000) 83(7), 870–873 © 2000 Cancer Research Campaign doi: 10.1054/ bjoc.2000.1395, available online at http://www.idealibrary.com on Short Communication Fascin, an actin-bundling protein associated with cell motility, is upregulated in hormone receptor negative breast cancer A Grothey1, R Hashizume1, AA Sahin2 and PD McCrea1 1Program in Genes & Development, Department of Biochemistry and Molecular Biology, 2Department of Pathology; University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA Summary Loss of hormone receptor (HR) status in breast carcinomas is associated with increased tumour cell motility and invasiveness. In an immunohistological study of 58 primary breast cancers, oestrogen (ER) and progesterone (PR) receptor levels were inversely correlated with the expression of fascin, an actin-bundling protein associated with cell motility (P < 0.0001 and P = 0.0019, respectively). In addition, fascin was preferentially expressed in non-diploid tumours (P = 0.03). In summary, the upregulation of fascin in HR-negative breast cancers may contribute to their more aggressive behaviour. © 2000 Cancer Research Campaign Keywords: fascin; breast cancer; motility; hormone receptor oestrogen; progesterone The presence of oestrogen and progesterone receptors (ER and MATERIAL AND METHODS PR) is an important prognostic and predictive factor in human breast cancer. Patients with tumours that express ER and PR Tissue specimens were obtained from 58 female patients (14 pre-, display a less aggressive phenotype with longer disease-free and 44 postmenopausal, median age 61 yrs, range 33–85 yrs) with overall survival than patients with tumours with no or minimal primary invasive breast cancer. -
Fascin, an Echinoid Actin-Bundling Protein, Is a Homolog of The
Proc. Nati. Acad. Sci. USA Vol. 90, pp. 9115-9119, October 1993 Cell Biology Fascin, an echinoid actin-bundling protein, is a homolog of the Drosophila singed gene product (cytskeleton/microvilli/sea urchin) JOSEPH BRYAN*t, ROBERT EDWARDS*, PAUL MATSUDAIRA*, JOANN OTTO§, AND JULIA WULFKUHLE§ *Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030-3498; tWhitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142; and §Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 Communicated by Daniel Branton, July 9, 1993 (receivedfor review April 26, 1993) ABSTRACT A cDNA for fascin, an actin-bundling protein homogenize the eggs contained 1 mM dithiothreitol, 10 ug of in echinoderms, has been cloned, sequenced, and expressed. leupeptin per ml, 10 ,g ofaprotinin per ml, 10 ,ug ofpepstatin The predicted mass of the protein is -55 kDa, similar to that A per ml, 1 mM Na-p-tosyl-L-arginine methyl ester, 1 mM observed for fascin purified from sea urchin eggs. Bacteriafly phenylmethylsulfonyl fluoride, 40 ug of soybean trypsin expressed fascin reacts with antibodies prepared against sea inhibitor per ml, 10 pg of L-1-tosylamido-2-phenylethyl chlo- urchin egg fascin. Fascin has a strong sequence similarity to the romethyl ketone per ml, and 10 mM benzamidine. The singed gene (sn) product in Drosophila and has similarities with extract was centrifuged at 30,000 x g for 45 min to remove a 55-kDa human actin-bundling protein. No extensive similar- large particulates. The supernatant was removed and recen- ities were found with other known actin-binding/bundling trifuged at 100,000 x g for 75 min. -
Identification of the Fatty Acid Synthase Interaction Network Via Itraq-Based Proteomics Indicates the Potential Molecular Mecha
Huang et al. Cancer Cell Int (2020) 20:332 https://doi.org/10.1186/s12935-020-01409-2 Cancer Cell International PRIMARY RESEARCH Open Access Identifcation of the fatty acid synthase interaction network via iTRAQ-based proteomics indicates the potential molecular mechanisms of liver cancer metastasis Juan Huang1, Yao Tang1, Xiaoqin Zou1, Yi Lu1, Sha She1, Wenyue Zhang1, Hong Ren1, Yixuan Yang1,2* and Huaidong Hu1,2* Abstract Background: Fatty acid synthase (FASN) is highly expressed in various types of cancer and has an important role in carcinogenesis and metastasis. To clarify the mechanisms of FASN in liver cancer invasion and metastasis, the FASN protein interaction network in liver cancer was identifed by targeted proteomic analysis. Methods: Wound healing and Transwell assays was performed to observe the efect of FASN during migration and invasion in liver cancer. Isobaric tags for relative and absolute quantitation (iTRAQ)-based mass spectrometry were used to identify proteins interacting with FASN in HepG2 cells. Diferential expressed proteins were validated by co-immunoprecipitation, western blot analyses and confocal microscopy. Western blot and reverse transcription- quantitative polymerase chain reaction (RT-qPCR) were performed to demonstrate the mechanism of FASN regulating metastasis. Results: FASN knockdown inhibited migration and invasion of HepG2 and SMMC7721 cells. A total of, 79 proteins interacting with FASN were identifed. Additionally, gene ontology term enrichment analysis indicated that the majority of biological regulation and cellular processes that the FASN-interacting proteins were associated with. Co- precipitation and co-localization of FASN with fascin actin-bundling protein 1 (FSCN1), signal-induced proliferation- associated 1 (SIPA1), spectrin β, non-erythrocytic 1 (SPTBN1) and CD59 were evaluated. -
Reed-Sternberg Cell Marker)(Clone : FSCN1/417
9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 36-1691: Monoclonal Antibody to Fascin-1 (Reed-Sternberg Cell Marker)(Clone : FSCN1/417) Clonality : Monoclonal Clone Name : FSCN1/417 Application : FACS,IF,WB,IHC Reactivity : Human Gene : FSCN1 Gene ID : 6624 Uniprot ID : Q16658 Format : Purified Alternative Name : FSCN1,FAN1,HSN,SNL Isotype : Mouse IgG2a Immunogen Information : Full length recombinant human FSCN1 protein Description Recognizes a protein of 55kDa, which is identified as fascin-1. Its actin binding ability is regulated by phosphorylation. Antibody to fascin-1 is a very sensitive marker for Reed-Sternberg cells and variants in nodular sclerosis, mixed cellularity, and lymphocyte depletion Hodgkin's disease. It is uniformly negative in lymphoid cells, plasma cells, and myeloid cells. Fascin-1 is also expressed in dendritic cells. This marker may be helpful to distinguish between Hodgkin lymphoma and non-Hodgkin lymphoma in difficult cases. Also, the lack of expression of fascin-1 in the neoplastic follicles in follicular lymphoma may be helpful in distinguishing these lymphomas from reactive follicular hyperplasia in which the number of follicular dendritic cells is normal or increased. Antibody to fascin-1 has been suggested as a prognostic marker in neuroendocrine neoplasms of the lung as well as in ovarian cancer. Fascin-1 expression may be induced by Epstein-Barr virus (EBV) infection of B cells with the possibility that viral induction of fascin in lymphoid or other cell types must also be considered in EBV-positive cases. Product Info Amount : 100 µg Purification : Affinity Chromatography 100 µg in 500 µl PBS containing 0.05% BSA and 0.05% sodium azide. -
Microfilament-Binding Properties of N-Terminal Extension of the Isoform of Smooth Muscle Long Myosin Light Chain Kinase
Chun Xiang Yang et al. npg Cell Research (2006)16: 367-376 npg367 © 2006 IBCB, SIBS, CAS All rights reserved 1001-0602/06 $ 30.00 ORIGINAL ARTICLE www.nature.com/cr Microfilament-binding properties of N-terminal extension of the isoform of smooth muscle long myosin light chain kinase Chun Xiang Yang1,3,*, Hua Qun Chen2,*, Chen Chen1, Wei Ping Yu3, Wen Cheng Zhang1, Ya Jin Peng1, Wei Qi He1, Dong Mei Wei1, Xiang Gao1, Min Sheng Zhu1,4 1Model Animal Research Center and National Key Lab of Medicine, Nanjing University, Nanjing 210061, China ; 2College of Life Science, Nanjing Normal University, Nanjing 210097, China; 3Medical College, Southeast University, Nanjing 210096, China; 4Huadong Research Institute for Medical Biotechnics, Nanjing 210002, China Myosin light chain kinases (MLCK) phosphorylate the regulatory light chain of myosin II in thick filaments and bind to F-actin-containing thin filaments with high affinity. The ability of short myosin light chain kinase (S-MLCK) to bind F-actin is structurally attributed to the DFRXXL regions in its N-terminus. The long myosin light chain kinase (L-MLCK) has two additional DFRXXL motifs and six Ig-like modules in its N-terminal extension. The six Ig-like modules are capable of binding to stress fibers independently. Our results from the imaging analysis demonstrated that the first two intact Ig-like modules (2Ig) in N-terminal extension of L-MLCK is the minimal binding module required for microfilament binding. Binding assay confirmed that F-actin was able to bind 2Ig. Stoichiometries of 2Ig peptide were similar for myofilament or pure F-actin. -
Roles of Fascin Mrna Expression in Colorectal Cancer: Meta‑Analysis and Bioinformatics Analysis
MOLECULAR AND CLINICAL ONCOLOGY 13: 119-128, 2020 Roles of Fascin mRNA expression in colorectal cancer: Meta‑analysis and bioinformatics analysis SHUAI SHI, HUA-CHUAN ZHENG and ZHI-GANG ZHANG Department of Pathology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China Received July 4, 2019; Accepted April 22, 2020 DOI: 10.3892/mco.2020.2069 Abstract. Fascin (encoded by FSCN1) is a globular actin depth of invasion, microsatellite instability and low serum cross-linking protein that is required for the formation of carcinoembryonic antigen levels in colorectal cancer. Taken actin-based cell surface processes, which are critical for cell together, the results of the present study suggested that Fascin migration and cell-matrix adhesion. In the present study, a expression is a potential marker of tumorigenesis, aggressive- systematic meta-analysis and bioinformatics analysis was ness and poor prognosis in patients with colorectal cancer. used to identify clinicopathological or prognostic parameters in patients with colorectal cancer. A total of 17 articles were Introduction included in the present study obtained from PubMed, Web of Science, Wanfang data, SinoMed and CNKI databases. Fascin is a cytoskeletal protein, is one of the important Odd ratios (ORs) and the corresponding 95% confidence members of the Fascin family of proteins and is located on intervals (CIs) were used to estimate the prognostic signifi- chromosome 7q22 (1). An N-terminal serine participates cance of Fascin expression in patients with colorectal cancer, in actin binding, which is also the phosphorylation site of and the association between Fascin expression and clini- protein kinase C. The phosphorylation of this site regulates copathological factors. -
Emerging Role and Therapeutic Potential of Lncrnas in Colorectal Cancer
cancers Review Emerging Role and Therapeutic Potential of lncRNAs in Colorectal Cancer 1,2, 1,2, 1,2 1,2, Laura Schwarzmueller y, Oscar Bril y, Louis Vermeulen and Nicolas Léveillé * 1 Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; [email protected] (L.S.); [email protected] (O.B.); [email protected] (L.V.) 2 Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands * Correspondence: [email protected] These authors contributed equally. y Received: 29 November 2020; Accepted: 16 December 2020; Published: 19 December 2020 Simple Summary: Homeostasis of the intestine is maintained by a delicate balance of signaling networks that regulate self-renewal and differentiation. In the past years, increasing evidence suggests that long non-coding RNAs (lncRNAs) are involved in the control of intestinal crypt turnover. Indeed, their deregulation can enable and drive malignant cell growth. Notably, lncRNAs have high tissue specificity, and therefore hold great potential for therapeutic intervention. Here, we address the function of lncRNAs in the intestine in physiological and pathological conditions and discuss promising interference systems to target oncogenic lncRNAs. Abstract: Maintenance of the intestinal epithelium is dependent on the control of stem cell (SC) proliferation and differentiation. The fine regulation of these cellular processes requires a complex dynamic interplay between several signaling pathways, including Wnt, Notch, Hippo, EGF, Ephrin, and BMP/TGF-β. During the initiation and progression of colorectal cancer (CRC), key events, such as oncogenic mutations, influence these signaling pathways, and tilt the homeostatic balance towards proliferation and dedifferentiation.