Final Report

Total Page:16

File Type:pdf, Size:1020Kb

Final Report Final Report for Digital Antiquity: Planning a Digital Information Structure for Archaeology Grant Period: July 1, 2007 to June 30, 2008 Submitted to The Andrew W. Mellon Foundation Scholarly Communications Program by W. Fredrick Limp University of Arkansas Fayetteville AR 72701 Page 1 Executive Summary In July 2007 The Mellon Foundation Scholarly Communications program awarded $152,000 (and an additional $3,861 in interest accrued) to the Archaeoinformatics Consortium with the University of Arkansas serving as prime contractor. The mission of the consortium was to create a cyberinfrastructure to preserve digital archaeological data in all their forms, along with the metadata that make them meaningful and to provide scholars and the public access to archaeological digital data. In addition to the University of Arkansas (Uark), other initial participants were Arizona State University (ASU), the Penn State University (PSU), Statistical Research Incorporated (SRI), and Washington State University (WSU); in February 2008, the University of York was added to the consortium. The consortium steering committee was: Jeff Altschul (SRI), Keith Kintigh (ASU), Tim Kohler (WSU), Fred Limp (Uark), Julian Richards (York) and Dean Snow (PSU). Over the project period (July 2007‐June 2008) the Steering Committee met bi‐weekly utilizing the AccessGRID video conferencing system. They developed an extensive web site (http://archaeoinformatics.org) and hosted an AccessGRID‐based public lecture series with 10 public lectures. Video of each lecture and associated presentation materials are archived at the web site. A disciplinary survey to define the current “state of the art” and to identify needs was conducted; it had 270 respondents. A Technical and Disciplinary Advisory Board was formed with prominent individuals from the fields of computer science, archaeology, libraries and physical anthropology. Board members represented consulting archaeology, university and museum researchers, various professional organizations and federal agencies. A three day meeting was held in Santa Fe NM in February 2008 that lead to a formal set of recommendations and an assessment of work performed to date. A preliminary plan was presented at the Mellon Foundation All‐Projects meeting in March 2008. Steering Committee members under the director of Keith Kintigh worked closely with Mellon staff to prepare a series of increasingly structured documents defining the technical and organizational elements needed to execute the consortium’s defined mission. A final implementation proposal formalizing the results of the planning process was submitted to the Foundation in October 2008. Individual and summary fiscal reports are provided as appendices. As documented in the appendices the funds allocated were expended consistent with the proposed tasks. For the University of Arkansas distribution a positive balance of $398.09 remains after all expenditures were paid. Minor (positive) variances also exist between budgeted and allocated subcontracts for WSU ($992.73), PSU ($173.51) and Arizona State ($679.66). One substantial deviation between the proposed and expended funds is in the SRI budget. Because of staffing changes during the project at SRI, Dr. Clay Mathers was replaced by Dr. Jeff Altschul. Dr Altschul is the founder and Chairman of SRI and the president of the SRI Foundation. Due to the fiscal structure of SRI, Dr. Altschul’s salary cannot be charged and as a result only $8,289.41 of the total $21,801 initially requested by SRI could be expended, leaving $13,511.59 unexpended. The total remaining amount, from all the sources ($15,755.58), is being held by the University of Arkansas to be returned to the Mellon Foundation or otherwise distributed as directed. Page 2 Organizational History and Structure Over the last few years, a number or previous reports and studies had indentified the lack of a cyberinfrastructure as a key constraint on archaeology, particularly in the Americas. One key report on the problem was Kintigh el al. (2006) who stated: Archaeological insights have enormous potential to contribute to the understanding of long term social and socio‐ecological dynamics. However, the complexities of archaeological datasets, the lack of data comparability across projects, and limited access to primary data have crippled our efforts to understand phenomena operating on large spatial and temporal scales. The fundamental challenge is to enable scientifically meaningful integration and use of the expanding corpus of systematically collected archaeological data. Snow and associates, in an article in Science, (2006): Archaeology often depends on archived data acquired by other researchers for other purposes, often long ago. Differences in recording protocols, terms, measurement units, and language are commonplace. Data are often obscurely archived and difficult to access, and policies regarding confidentiality vary considerably. Even when databases are accessible, they often differ in size, format, structure, and semantics and seem to defy fusion. In archaeology, research on the most important issues in today’s society—the evolution of culture, the growth in population, and the long‐term interaction of cultures with their physical and biological environments—will remain impoverished in the absence of a new generation of cybertools. And Waters emphasizes (2007) that the process is complex: ... discovery is only the beginning of the scholarly process. Scholars then must zero in on the subsets they find—the primary and secondary source objects of interest to their work. They need to pull together these selected subsets for deeper analysis. The process of aggregation at this stage is more difficult and complicated because data need to be reviewed for anomalies, normalized, and prepared in a more rigorous fashion than is likely to be necessary or affordable for the commodity search engines. Provenance and authenticity of the information need to be established; rights need to be cleared; databases and database schemas need to be created; textual objects may need to be translated and marked up for grammatical and structural features, as well as semantically according to certain knowledge structures; numeric data may need conversion to common measures; assumptions and guesswork need to be carefully documented; and provision needs to be made to ensure that the data are maintained and can be reliably cited over time. The maintenance and preservation functions compose what is coming to be known as data curation, but the broader set of computationally‐based research practices define the domain of informatics, which transformed the field of biology beginning in the 1980s and which is gradually being applied in other fields of study today. In Europe generally, and Britain specifically, substantial progress has already been made in the development of key aspects of an archaeological cyberinfrastructure (or e‐infrastructure) , as represented primarily by the Archaeology Data Service (ADS) but also by efforts such as the International Committee for Museum Documentation (CIDOC), the Forum on Information Standards in Heritage (FISH) , the Manual and Data Standards for Monument Inventories (MIDAS), and many others. Page 3 A key premise of the entire effort was that, while it is archaeologists who will be the first to benefit from an improved cyber infrastructure, it is critical to recognize that cultural heritage is central to a people’s identity. Nearly all countries mandate its protection, often through archaeological documentation and interpretation. The curation in perpetuity of irreplaceable archaeological artifacts, field notes, photographs, reports, and analytical data underlies the public’s faith that their heritage is safeguarded for the future. Sadly, we are currently failing to fully meet this responsibility. In a digital age, we must not only care for physical objects, but also the digital data— reports, photographs, laser scans, satellite images, databases from laboratory analyses, and much more— that are a growing part of archaeological collections. Moreover, the data are only important if they are used to help us understand our common past. It is incumbent on the discipline to not simply store digital data, but to find ways of making these data accessible and useful to scholars and the public. (Archaeoinformatics 2007). In the US, between $650M and $1B is spent annually on cultural resource management (CRM) (J. Altschul per. comm.) of which a large proportion is devoted to archaeology. Nearly all of this work is performed to comply with laws that require government agencies to take into account the effect of their actions on cultural and historical resources. On the order of 50,000 field projects a year are carried out by federal agencies under these mandates, with another 50,000 federal undertakings requiring record searches or other inquiries that do not result in fieldwork. Nearly all of the 50,000 annual field projects and many of the additional 50,000 undertakings generate reports that together constitute the "grey literature" whose inaccessibility has long been an issue of major concern. Today these reports (ranging from a few pages to thousands of pages) are generated digitally but are generally not archived digitally; most survive only in their paper forms. A large fraction of projects will produce databases or spreadsheets of primary data and photographs and other sorts of images. Many will generate GIS or CAD files and some will have other kinds of digital
Recommended publications
  • Solutions for the Chora of Metaponto Publication Series
    Preserving an Evolving Collection: “On-The-Fly” Solutions for The Chora of Metaponto Publication Series Jessica Trelogan Maria Esteva Lauren M. Jackson Institute of Classical Archaeology Texas Advanced Computing Center Institute of Classical Archaeology University of Texas at Austin University of Texas at Austin University of Texas at Austin 3925 W. Braker Lane J.J. Pickle Research Campus 3925 W. Braker Lane +1 (512) 232-9317 +1 (512) 475-9411 +1 (512) 232-9322 [email protected] [email protected] [email protected] ABSTRACT research in this way, complex technical infrastructures and As digital scholarship continues to transform research, so it services are needed to support and provide fail-safes for data and changes the way we present and publish it. In archaeology, this multiple, simultaneous functions throughout a project’s lifecycle. has meant a transition from the traditional print monograph, Storage, access, analysis, presentation, and preservation must be representing the “definitive” interpretation of a site or landscape, managed in a non-static, non-linear fashion within which data to an online, open, and interactive model in which data collections evolve into a collection as research progresses. In this context, have become central. Online representations of archaeological data curation happens while research is ongoing, rather than at the research must achieve transparency, exposing the connections tail end of the project, as is often the case. Such data curation may between fieldwork and research methods, data objects, metadata, be accomplished within a distributed computational environment, and derived conclusions. Accomplishing this often requires as researchers use storage, networking, database, and web multiple platforms that can be burdensome to integrate and publication services available across one or multiple institutions.
    [Show full text]
  • Database Preservation DPC Training Course
    Database preservation DPC training course Practical session (advanced) Resolution www.keep.pt Activities on DBPTK Desktop www.keep.pt Click here to start the process of create a SIARD file 1. Select the DBMS on the left sidebar 2. Test the connection to panel and fill up ensure that you have the the connection right information form 3. Click Next to continue the process Click sakila to show the tables and views for that schema Select the tables: actor, category, film, film_actor, film_category and language Select the views: film_list and nicer_but_slower_film_list Materialize the nicer_but_slower_film_list 1. Remove the last_update column from each previous selected table 2. Click Next to continue the process 2. Save the query 1. Fill up the query text area and test the query Click Next to continue the process Click Skip to continue the process 1. Select the destination folder 2. Choose compress checkbox (this will reduce the size of the SIARD file) 3. Choose to save LOBs outside the SIARD file 4. Hit Next to continue the process 1. Fill up metadata information about the SIARD file 2. Click Create to start the migration process Wait for the process to finish, this may take a while, depending on the machine specs and total size of the database Click on Cancel Activities on DBPTK Enterprise www.keep.pt Do an advanced search and save it www.keep.pt Click on Login Choose the database Click Browse 2. Click on 1. Choose a advanced and table fill up the search criteria 3. Click on save search Click on save search Hide the table film_text and the store table www.keep.pt Click on Configuration Click on Manage tables 1.
    [Show full text]
  • File Format Guidelines for Management and Long-Term Retention of Electronic Records
    FILE FORMAT GUIDELINES FOR MANAGEMENT AND LONG-TERM RETENTION OF ELECTRONIC RECORDS 9/10/2012 State Archives of North Carolina File Format Guidelines for Management and Long-Term Retention of Electronic records Table of Contents 1. GUIDELINES AND RECOMMENDATIONS .................................................................................. 3 2. DESCRIPTION OF FORMATS RECOMMENDED FOR LONG-TERM RETENTION ......................... 7 2.1 Word Processing Documents ...................................................................................................................... 7 2.1.1 PDF/A-1a (.pdf) (ISO 19005-1 compliant PDF/A) ........................................................................ 7 2.1.2 OpenDocument Text (.odt) ................................................................................................................... 3 2.1.3 Special Note on Google Docs™ .......................................................................................................... 4 2.2 Plain Text Documents ................................................................................................................................... 5 2.2.1 Plain Text (.txt) US-ASCII or UTF-8 encoding ................................................................................... 6 2.2.2 Comma-separated file (.csv) US-ASCII or UTF-8 encoding ........................................................... 7 2.2.3 Tab-delimited file (.txt) US-ASCII or UTF-8 encoding .................................................................... 8 2.3
    [Show full text]
  • Curriculum Vitae KEITH W
    Curriculum Vitae KEITH W. KINTIGH September 29, 2017 PERSONAL INFORMATION School of Human Evolution & Social Change Telephone: (480) 965-6909 (Office) Arizona State University 965-6213 (Department) Box 872402 965-7671 (Fax) Tempe, Arizona 85287-2402 Email: [email protected] Web pages: http://shesc.asu.edu/kintigh (SHESC Web Page) http://tdar.org; http://digitalantiquity.org (tDAR and Digital Antiquity Pages) http://tfqa.com (Tools for Quantitative Archaeology) EDUCATION, DEGREES, & PROFESSIONAL REGISTRATION PhD Anthropology University of Michigan 1982 MS Computer Science Stanford University 1974 AB Sociology (with honors) Stanford University 1974 RPA Registered Professional Archaeologist 1998 Area of Expertise: Archaeology Theoretical and Methodological Interests: Data Integration, Synthesis, and Digital Archiving; Middle- range Societies; Political Organization; Quantitative Analysis of Archaeological Data; Spatial Analysis Areal Focus: Southwestern U.S. ACADEMIC AND RESEARCH APPOINTMENTS AND HONORS 2014- Co-director, Center for Archaeology and Society, Arizona State University 2010- Senior Sustainability Scientist, Global Institute of Sustainability, Arizona State University 2008- Associate Director, School of Human Evolution & Social Change, Arizona State University 2008-10 Affiliated Faculty, School of Computing and Informatics, Arizona State University 2006-10 Affiliated Faculty, School of Sustainability, Arizona State University 2004 Arizona State University Outstanding Graduate Mentor. Graduate College, Arizona State University 1995- Professor, Department of Anthropology/School of Human Evolution & Social Change, Arizona State University 1987-95 Associate Professor, Department of Anthropology, Arizona State University 1986-95 Research Associate, Pueblo of Zuni, New Mexico. 1986-87 Associate Professor, Department of Anthropology, University of California, Santa Barbara. 1985-86 Assistant Professor, Department of Anthropology, University of California, Santa Barbara. 1980-85 Associate Archaeologist, Arizona State Museum, University of Arizona.
    [Show full text]
  • Preserving Geospatial Data
    Technology Watch Report Preserving Geospatial Data Guy McGarva EDINA, University of Edinburgh Steve Morris North Carolina State University (NCSU) Greg Janée University of California, Santa Barbara (UCSB) DPC Technology Watch Series Report 09-01 May 2009 © 2009 1 Executive Summary: Geospatial data are becoming an increasingly important component in decision making processes and planning efforts across a broad range of industries and information sectors. The amount and variety of data is rapidly increasing and, while much of this data is at risk of being lost or becoming unusable, there is a growing recognition of the importance of being able to access historical geospatial data, now and in the future, in order to be able to examine social, environmental and economic processes and changes that occur over time. The geospatial domain is characterized by a broad range of information types, including geographic information systems data, remote sensing imagery, three- dimensional representations and other location-based information. The scope of this report is limited to two-dimensional geospatial data and data that would typically be considered comparable to paper maps or charts including vector data, raster data and spatial databases. There are a number of significant preservation issues that relate specifically to geospatial data, including: the complexity and variety of data formats and structures; the abundance of content that exists in proprietary formats; the need to maintain the technical and social contexts in which the data exists; and the growing importance of web services and dynamic (and ephemeral) data. Standards for geospatial metadata have been defined at both the national and international levels, yet metadata often becomes dissociated from the data, or is incorrect, non-standard in nature, or not created in the first place.
    [Show full text]
  • Preserving Transactional Data and the Accompanying Challenges Facing Companies and Institutions That Aim to Re-Use These Data for Analysis Or Research
    01000100 01010000 Preserving 01000011 Transactional 01000100 Data 01010000 Sara Day Thomson 01000011 01000100 DPC Technology Watch Report 16-02 May 2016 01010000 01000011 01000100 01010000 Series editors on behalf of the DPC Charles Beagrie Ltd. 01000011 Principal Investigator for the Series Neil Beagrie 01000100 01010000 This report was supported by the Economic and Social Research Council [grant number ES/JO23477/1] 01000011 © Digital Preservation Coalition 2016 and Sara Day Thomson 2016 Contributing Authors for Section 9 Technical Solutions: Preserving Databases Bruno Ferreira, Miguel Ferreira, and Luís Faria, KEEP SOLUTIONS and José Carlos Ramalho, University of Minho ISSN: 2048-7916 DOI: http://dx.doi.org/10.7207/twr16-02 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without prior permission in writing from the publisher. The moral rights of the author have been asserted. First published in Great Britain in 2016. Foreword The Digital Preservation Coalition (DPC) is an advocate and catalyst for digital preservation, ensuring our members can deliver resilient long-term access to digital content and services. It is a not-for-profit membership organization whose primary objective is to raise awareness of the importance of the preservation of digital material and the attendant strategic, cultural and technological issues. It supports its members through knowledge exchange, capacity building, assurance, advocacy and partnership. The DPC’s vision is to make our digital memory accessible tomorrow. The DPC Technology Watch Reports identify, delineate, monitor and address topics that have a major bearing on ensuring our collected digital memory will be available tomorrow.
    [Show full text]
  • Table of Contents in Alphabetical Order
    Table of Contents in Alphabetical Order Volume I - pp. 1-797 ∙ Volume II - pp. 798-1599 ∙ Volume III - pp. 1600-2370 ∙ Volume IV - pp. 2371-3135 ∙ Volume V - pp. 3136-3911 Volume VI - pp. 3912-4689 ∙ Volume VII - pp. 4690-5429 ∙ Volume VIII - pp. 5430-6185 ∙ Volume IX - pp. 6186-6955 ∙ Volume X - pp. 6956-7701 Preface........................................................................................................................................... clxxxix Guide to the Encyclopedia of Information Science and Technology, Third Edition.................cxciv Acknowledgment..............................................................................................................................cxcvi About the Editor............................................................................................................................ cxcvii 3D.Media.Architecture.Communication.with.SketchUp.to.Support.Design.for.Learning................ 2410 Michael Vallance, Department of Media Architecture, Future University Hakodate, Japan A.Bayesian.Network.Model.for.Probability.Estimation.................................................................... 1551 Harleen Kaur, Hamdard University, India Ritu Chauhan, Amity University, India Siri Krishan Wasan, Jamia Millia Islamia, India A.Brief.Review.of.the.Kernel.and.the.Various.Distributions.of.Linux............................................. 4018 Jurgen Mone, Business College of Athens, Greece Ioannis Makris, Business College of Athens, Greece Vaios Koumaras, Business College of Athens,
    [Show full text]
  • Database Archiving Review
    Project: IST-2006-033789 Planets Deliverable: PA/6-D13 Database Preservation Case Study: Review Mette van Essen, Maurice de Rooij, Bill Roberts, Maurice van den Dobbelsteen National Archives of the Netherlands 12 July 2011 Introduction As part of the PLANETS project, the National Archives of the Netherlands carried out a case study on approaches for long term preservation of databases, published in May 2010 as PLANETS deliverable PA/6-D13. Roughly one year later, the question of how best to maintain long-term access to information held in databases remains an important one for the National Archives of the Netherlands. As a first step towards further work in this area, we carried out a review of the PLANETS case study, triggered in part by participation in the Preservation of Complex Objects Symposium 1 in London in June 2011. This document is a copy of the original PLANETS case study with added commentary to document new developments in thinking, tools and technology. At the end of this document, we have added two new sections, on the use of emulation for database preservation and the possible applications of data warehousing techniques in digital preservation. We have also added a new conclusion, briefly describing what we plan to do next in this area. 1 http://www.openplanetsfoundation.org/events/2011-06-16-pocos-london-symposium Page 1 of 15 Project: IST-2006-033789 Planets Deliverable: PA/6-D13 Project Number IST-2006-033789 Project Title Planets Title of Deliverable Case Study: Database Preservation at the National Archives of the
    [Show full text]
  • Monumental Computations. Digital Archaeology of Large Urban And
    Short Paper TachyGIS – An Idea to Survey Archaeological Excavations with Total Station and GIS Reiner GOELDNER, Archaeological Heritage Office Saxony, Germany Keywords: Excavation—Survey—Total station—GIS CHNT Reference: Goeldner, Reiner. 2021. TachyGIS – An Idea to survey Archaeological Excava- tions with Total Station and GIS. Börner, Wolfgang; Kral-Börner, Christina, and Rohland, Hendrik (eds.), Monumental Computations: Digital Archaeology of Large Urban and Underground Infrastruc- tures. Proceedings of the 24th International Conference on Cultural Heritage and New Technologies, held in Vienna, Austria, November 2019. Heidelberg: Propylaeum. doi: 10.11588/propylaeum.747. TachyGIS is an idea to survey archaeological excavations with total station and GIS. Former CAD based approach (with field book and 3D visualization) are transferred to GIS. The idea meets current challenges of total station survey like increased license costs, deficient attribute integration and in- sufficient sustainability (suitability to be archived). Fig. 1. TachyGIS Teaser.(© Goeldner) The presented project idea “TachyGIS” is to transfer features of existing CAD based approach (es- pecially coordinate transfer from total station and 3D visualization) into GIS to meet the above-men- tioned challenges. Therefore, cost reduction is possible with cooperative FOSS (Free and Open Source Software) development, attribution is realized by GIS respectively geodata and sustainability can be achieved by using geodatabases with standard data formats. Valuable assistance comes
    [Show full text]
  • Developing Cultural Heritage Preservation Databases Based on Dublin Core Data Elements
    Developing cultural heritage preservation databases based on Dublin Core data elements Fenella G. France Art Preservation Services Tel: +1 212 722 6300 x4 [email protected] Michael B. Toth R.B. Toth Associates Tel: +1 703 938 4499 [email protected] Abstract: Preserving our cultural heritage – from fragile historic textiles such as national flags to heavy and seemingly solid artifacts recovered from 9/11 – requires careful monitoring of the state of the artifact and environmental conditions. The standard for a web-accessible textile fiber database is established with Dublin Core elements to address the needs of textile conservation. Dynamic metadata and classification standards are also incorporated to allow flexibility in recording changing conditions and deterioration over the life of an object. Dublin core serves as the basis for data sets of information about the changing state of artifacts and environmental conditions. With common metadata standards, such as Dublin Core, this critical preservation knowledge can be utilized by a range of scientists and conservators to determine optimum conditions for slowing the rate of deterioration, as well as comparative use in the preservation of other artifacts. Keywords: Preservation, cultural heritage, Dublin Core, conservation, deterioration, environmental parameters, preservation vocabularies, textiles, fiber, metadata standards, digital library. 1. Introduction Preserving our cultural heritage for future generations is a critical aspect of the stewardship of historical objects. This requires careful monitoring of the state of the artifact and environmental conditions, and standardized storage of this information to support a range of professionals who play a role in the preservation, storage and display of the artifact – including conservators, scientists, curators, and other cultural heritage professionals.
    [Show full text]
  • Significant Properties in the Preservation of Relational Databases
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM Significant Properties in the Preservation of Relational Databases Ricardo Andr´ePereira Freitas Advisor: Jos´eCarlos Ramalho Department of Informatics University of Minho, Braga { Portugal [email protected], [email protected] Abstract. Relational Databases are the most frequent type of databases used by organizations worldwide and are the base of several information systems. As in all digital objects, and concerning the digital preservation of them, the significant properties (significant characteristics) must be defined so that adopted strategies are appropriate. In previous work a neutral format (hardware and software independent) | DBML | was adopted to achieve a standard format used in the digital preservation of the relational databases data and structure. In this paper we walk further in the definition of the significant properties by considering the database semantics as an important characteristic that should be also preserved. For the representation of this higher level of abstraction we are going to use an ontology based approach. We will extract the entity- relationship model from the DBML representation and we will represent it as an ontology. Key words: Digital Preservation, Significant Properties, Significant Char- acteristics, Relational Databases, Ontology, OAIS, XML, Digital Objects 1 Introduction In the current paradigm of information society more then one hundred exabytes of data are already used to support our information systems [15]. The evolution of the hardware and software industry causes that progressively more of the intellectual and business information are stored in computer platforms. The main issue lies exactly within these platforms.
    [Show full text]
  • Preserving the Documents of the Past and Making Them Accessible to the Future! Volume 45, Number 1 (176) July 2017
    Preserving the Documents of the Past and Making Them Accessible to the Future! Volume 45, Number 1 (176) www.midwestarchives.org July 2017 In This Issue… OMAMAC 2017 Wrap-Up President’s Page ....................2 MAC News .............................3 News from the Midwest ........ 18 Archival Resources on the Web........................... 23 Electronic Currents .............. 26 Mixed Media ........................ 30 Up-and-Comers ..................... 33 People and Posts ................. 35 MAC Contacts ......................37 Cheri Thies and Mark Greene were presented the Emeritus Membership Award for their years of service to MAC and contributions to the wider archival community. Nebraska weather, noted for its deter- ties to better understand individuals mined and immediate changes, cer- with diverse backgrounds, beliefs, tainly gave us beautiful sunny days for behaviors, cultures, and values. MAC OMAMAC 2017, the Annual Meeting members attended the workshop free, held April 5–8 in Omaha, Nebraska. as an opportunity to both learn and Blue skies covered the downtown to assist in further development of Hilton, just a bit to the north of the this program. “Teaching with Primary Old Market, in an area of the city that Resources” provided information increasingly offers new places to visit. on how best to engage all levels of Some of our MAC members even had students and archival patrons with a chance to be in two states at once if collections and repositories. Text they visited the Bob Kerrey Pedestrian mining and text-mining tools were the Bridge over the Missouri River! focus of “Getting Started with Text Mining Archival Collections,” along And the programs shone too. Through with how archivists and researchers the Society of American Archivists, can use them for collection access.
    [Show full text]