Mining Data Streams with Concept Drift

Total Page:16

File Type:pdf, Size:1020Kb

Mining Data Streams with Concept Drift Poznan University of Technology Faculty of Computing Science and Management Institute of Computing Science Master’s thesis MINING DATA STREAMS WITH CONCEPT DRIFT Dariusz Brzeziński Supervisor Jerzy Stefanowski, PhD Dr Habil. Poznań, 2010 Tutaj przychodzi karta pracy dyplomowej; oryginał wstawiamy do wersji dla archiwum PP, w pozostałych kopiach wstawiamy ksero. Contents 1 Introduction 1 1.1 Motivation . .1 1.2 Thesis structure . .2 1.3 Acknowledgments . .2 2 Mining data streams3 2.1 Data streams . .3 2.2 Concept drift . .5 2.3 Data stream mining . .6 2.3.1 Online learning . .7 2.3.2 Forgetting mechanisms . .7 2.3.3 Taxonomy of methods . .8 2.4 Applications . .9 2.4.1 Monitoring systems . .9 2.4.2 Personal assistance . 10 2.4.3 Decision support . 10 2.4.4 Artificial intelligence . 11 3 Single classifier approaches 13 3.1 Traditional learners . 13 3.2 Windowing techniques . 14 3.2.1 Weighted windows . 15 3.2.2 FISH . 15 3.2.3 ADWIN . 17 3.3 Drift detectors . 18 3.3.1 DDM . 18 3.3.2 EDDM . 20 3.4 Hoeffding trees . 20 4 Ensemble approaches 23 4.1 Ensemble strategies for changing environments . 23 4.2 Streaming Ensemble Algorithm . 25 4.3 Accuracy Weighted Ensemble . 26 4.4 Hoeffding option trees and ASHT Bagging . 28 4.5 Accuracy Diversified Ensemble . 29 5 MOA framework 33 5.1 Stream generation and management . 33 I II Contents 5.2 Classification methods . 34 5.3 Evaluation procedures . 35 5.3.1 Holdout . 35 5.3.2 Interleaved Test-Then-Train . 35 5.3.3 Data Chunks . 36 6 Experimental evaluation 37 6.1 Algorithms . 37 6.2 Data sets . 38 6.3 Experimental environment . 39 6.4 Results . 39 6.4.1 Time analysis . 39 6.4.2 Memory usage . 41 6.4.3 Classification accuracy . 42 6.5 Remarks . 45 7 Conclusions 47 A Implementation details 49 A.1 MOA Installation . 49 A.2 Attribute filtering . 50 A.3 Data chunk evaluation . 50 A.4 Accuracy Weighted Ensemble . 51 A.5 Accuracy Diversified Ensemble . 51 B Additional figures 53 Bibliography 71 Streszczenie 77 Chapter 1 Introduction 1.1 Motivation In today’s information society, computer users are used to gathering and sharing data anytime and anywhere. This concerns applications such as social networks, banking, telecommunication, health care, research, and entertainment, among others. As a result, a huge amount of data related to all human activity is gathered for storage and processing purposes. These data sets may contain interesting and useful knowledge represented by hidden patterns, but due to the volume of the gathered data it is impossible to manually extract that knowledge. That is why data mining and knowledge discovery methods have been proposed to automatically acquire interesting, non-trivial, previously unknown and ultimately understandable patterns from very large data sets [26, 14]. Typical data mining tasks include association mining, classification, and clustering, which all have been perfected for over two decades. A recent report [35] estimated that the digital universe in 2007 was 281 billion gigabytes large and it is forecast that it will reach 5 times that size until 2011. The same report states that by 2011 half of the produced data will not have a permanent home. This is partially due to a new class of emerging applications - applications in which data is generated at very high rates in the form of transient data streams. Data streams can be viewed as a sequence of relational tuples (e.g., call records, web page visits, sensor readings) that arrive continuously at time-varying, possibly unbound streams. Due to their speed and size it is impossible to store them permanently [45]. Data stream application domains include network monitoring, security, telecommunication data management, web applications, and sensor networks. The introduction of this new class of applica- tions has opened an interesting line of research problems including novel approaches to knowledge discovery called data stream mining. Current research in data mining is mainly devoted to static environments, where patterns hidden in data are fixed and each data tuple can be accessed more than once. The most popular data mining task is classification, defined as generalizing a known structure to apply it to new data [26]. Traditional classification techniques give great results in static environments however, they fail to successfully process data streams because of two factors: their overwhelming volume and their distinctive feature - concept drift. Concept drift is a term used to describe changes in the learned structure that occur over time. These changes mainly involve substitutions of one classification task with another, but also include steady trends and minor fluctuations of the underlying probability distributions [54]. For most traditional classifiers the occurrence of concept drift leads to a drastic drop in classification accuracy. That is why recently, new classification algorithms dedicated to data streams have been proposed. 1 2 Introduction The recognition of concept drift in data streams has led to sliding-window approaches that model a forgetting process, which allows to limit the number of processed data and to react to changes. Different approaches to mining data streams with concept drift include instance selection methods, drift detection, ensemble classifiers, option trees and using Hoeffding boundaries to estimate classifier performance. Recently, a framework called Massive Online Analysis (MOA) for implementing algorithms and running experiments on evolving data streams has been developed [12, 11]. It includes a collection of offline and online data stream mining methods as well as tools for their evaluation. MOA is a new environment that can facilitate and consequently accelerate the development of new time-evolving stream classifiers. The aim of this thesis is to review and compare single classifier and ensemble approaches to data stream mining. We test time and memory costs, as well as classification accuracy, of representative algorithms from both approaches. The experimental comparison of one of the algorithms, called Accuracy Weighted Ensemble, with other selected classifiers has, to our knowledge, not been pre- viously done. Additionally, we propose and evaluate a new algorithm called Accuracy Diversified Ensemble, which selects, weights, and updates ensemble members according to the current stream distribution. For our experiments we use the Massive Online Analysis environment and extend it by attribute filtering and data chunk evaluation procedures. We also verify the framework’s capability to become the first commonly used software environment for research on learning from evolving data streams. 1.2 Thesis structure The structure of the thesis is as follows. Chapter2 presents the basics of data stream mining. In particular, definitions of data streams, concept drift as well as types of stream learners and their applications are shown. Chapter3 gives a deeper insight into single classifier approaches to data stream mining, presenting windowing techniques and Hoeffding trees. Ensemble approaches to classification in data streams, including the Streaming Ensemble Algorithm, Hoeffding Option Tree, and our Accuracy Diversified Ensemble, are presented in Chapter4. The Massive Online Analysis framework, which was used for evaluation purposes in this thesis, is presented in Chapter5. Chapter6 describes experimental results and compares single classifier and ensemble algorithms for mining concept-drifting data streams. Finally, Chapter7 concludes the thesis with a discussion on the completed work and possible lines of further investigations. 1.3 Acknowledgments The author would like to thank all the people who contributed to this study. He is grateful to his supervisor, prof. Jerzy Stefanowski, for his inspiration, motivation, and the care with which he reviewed this work. The author is also greatly indebted to many other teachers of the Institute of Computing Science of Poznań University of Technology who got him interested in machine learning and data mining. Finally, the author wishes to thank his family: his parents, for their love, unconditional support and encouragement to pursue his interests, and his sister, for sharing her experience of dissertation writing and giving invaluable advice. Chapter 2 Mining data streams Before describing and evaluating different approaches to mining streams with concept drift, we present the basics of data streams. First, in Section 2.1 we focus on the main characteristics of the data stream model and how it differs from traditional data. Next, in Section 2.2, we define and categorize concept drift and its causes. Section 2.3 discusses the differences between data stream mining and classic data mining. It also presents a taxonomy of adaptive classification techniques. Finally, Section 2.4 describes the main applications of data stream mining techniques. As this thesis concentrates on classification techniques, we will use the term data stream learning as a synonym for data stream mining. 2.1 Data streams A data stream is an ordered sequence of instances that arrive at a rate that does not permit to permanently store them in memory. Data streams are potentially unbounded in size making them impossible to process by most data mining approaches. The main characteristics of the data stream model imply the following constraints [5]: 1. It is impossible to store all the data from the data stream. Only small summaries of data streams can be computed and stored, and the rest of the information is thrown away. 2. The arrival speed of data stream tuples forces each particular element to be processed essen- tially in real time, and then discarded. 3. The distribution generating the items can change over time. Thus, data from the past may become irrelevant or even harmful for the current summary. Constraint 1 limits the amount of memory that algorithms operating on data streams can use, while constraint 2 limits the time in which an item can be processed. The first two constraints led to the development of data stream summarization techniques.
Recommended publications
  • Concept Drift Adaptation Techniques in Distributed Environment for Real-World Data Streams
    smart cities Article Concept Drift Adaptation Techniques in Distributed Environment for Real-World Data Streams Hassan Mehmood 1,* , Panos Kostakos 1, Marta Cortes 1, Theodoros Anagnostopoulos 2 , Susanna Pirttikangas 1 and Ekaterina Gilman 1 1 Center for Ubiquitous Computing, University of Oulu, Pentti Kaiteran katu 1, 90570 Oulu, Finland; Panos.Kostakos@oulu.fi (P.K.); Marta.Cortes@oulu.fi (M.C.); Susanna.Pirttikangas@oulu.fi (S.P.); Ekaterina.Gilman@oulu.fi (E.G.) 2 DigiT.DSS.Lab, Department of Business Administration, University of West Attica, P. Ralli & Thivon 250, Aigaleo, 122 44 Athens, Greece; [email protected] * Correspondence: Hassan.Mehmood@oulu.fi Abstract: Real-world data streams pose a unique challenge to the implementation of machine learning (ML) models and data analysis. A notable problem that has been introduced by the growth of Internet of Things (IoT) deployments across the smart city ecosystem is that the statistical properties of data streams can change over time, resulting in poor prediction performance and ineffective decisions. While concept drift detection methods aim to patch this problem, emerging communication and sensing technologies are generating a massive amount of data, requiring distributed environments to perform computation tasks across smart city administrative domains. In this article, we implement and test a number of state-of-the-art active concept drift detection algorithms for time series analysis within a distributed environment. We use real-world data streams and provide critical analysis of results retrieved. The challenges of implementing concept drift adaptation algorithms, along with their applications in smart cities, are also discussed. Citation: Mehmood, H.; Kostakos, P.; Keywords: Cortes, M.; Anagnostopoulos, T.; concept drift; machine learning; smart cities; edge computing; time series analysis; Pirttikangas, S.; Gilman, E.
    [Show full text]
  • Adaptation Strategies for Automated Machine Learning on Evolving Data
    1 Adaptation Strategies for Automated Machine Learning on Evolving Data Bilge Celik and Joaquin Vanschoren Abstract—Automated Machine Learning (AutoML) systems have been shown to efficiently build good models for new datasets. However, it is often not clear how well they can adapt when the data evolves over time. The main goal of this study is to understand the effect of concept drift on the performance of AutoML methods, and which adaptation strategies can be employed to make them more robust to changes in the underlying data. To that end, we propose 6 concept drift adaptation strategies and evaluate their effectiveness on a variety of AutoML approaches for building machine learning pipelines, including Bayesian optimization, genetic programming, and random search with automated stacking. These are evaluated empirically on real-world and synthetic data streams with different types of concept drift. Based on this analysis, we propose ways to develop more sophisticated and robust AutoML techniques. Index Terms—AutoML, data streams, concept drift, adaptation strategies F 1 INTRODUCTION HE field of automated machine learning (AutoML) aims concept drift. We propose six different adaptation strategies T to automatically design and build machine learning to cope with concept drift and implement these in open- systems, replacing manual trial-and-error with systematic, source AutoML libraries. We find that these can indeed be data-driven decision making [43]. This makes robust, state- effectively used, paving the way towards novel AutoML of-the-art machine learning accessible to a much broader techniques that are robust against evolving data. range of practitioners and domain scientists. The online learning setting under consideration is one Although AutoML has been shown to be very effective where data can be buffered in batches using a moving win- and even rival human machine learning experts [13], [24], dow.
    [Show full text]
  • DATA STREAM MINING a Practical Approach
    DATA STREAM MINING A Practical Approach Albert Bifet and Richard Kirkby August 2009 Contents I Introduction and Preliminaries3 1 Preliminaries5 1.1 MOA Stream Mining........................5 1.2 Assumptions.............................7 1.3 Requirements............................8 1.4 Mining Strategies.......................... 10 1.5 Change Detection Strategies.................... 13 2 MOA Experimental Setting 17 2.1 Previous Evaluation Practices................... 19 2.1.1 Batch Setting........................ 19 2.1.2 Data Stream Setting.................... 21 2.2 Evaluation Procedures for Data Streams............. 25 2.2.1 Holdout........................... 26 2.2.2 Interleaved Test-Then-Train or Prequential....... 26 2.2.3 Comparison......................... 27 2.3 Testing Framework......................... 28 2.4 Environments............................ 30 2.4.1 Sensor Network....................... 31 2.4.2 Handheld Computer.................... 31 2.4.3 Server............................ 31 2.5 Data Sources............................. 32 2.5.1 Random Tree Generator.................. 33 2.5.2 Random RBF Generator.................. 34 2.5.3 LED Generator....................... 34 2.5.4 Waveform Generator.................... 34 2.5.5 Function Generator..................... 34 2.6 Generation Speed and Data Size................. 35 2.7 Evolving Stream Experimental Setting.............. 39 2.7.1 Concept Drift Framework................. 40 2.7.2 Datasets for concept drift................. 42 II Stationary Data Stream Learning 45 3 Hoeffding Trees 47 3.1 The Hoeffding Bound for Tree Induction............. 48 3.2 The Basic Algorithm........................ 50 3.2.1 Split Confidence...................... 51 3.2.2 Sufficient Statistics..................... 51 3.2.3 Grace Period........................ 52 3.2.4 Pre-pruning......................... 53 i CONTENTS 3.2.5 Tie-breaking......................... 54 3.2.6 Skewed Split Prevention.................. 55 3.3 Memory Management....................... 55 3.3.1 Poor Attribute Removal.................
    [Show full text]
  • A Review of Meta-Level Learning in the Context of Multi-Component
    AREVIEW OF META-LEVEL LEARNING IN THE CONTEXT OF MULTI-COMPONENT,MULTI-LEVEL EVOLVING PREDICTION SYSTEMS Abbas Raza Ali Marcin Budka Bogdan Gabrys Faculty of Science and Technology Faculty of Science and Technology Advanced Analytics Institute Bournemouth University Bournemouth University University Technology Sydney Poole BH12 5BB Poole BH12 5BB Ultimo NSW 2007 United Kingdom United Kingdom Australia [email protected] [email protected] [email protected] ABSTRACT The exponential growth of volume, variety and velocity of data is raising the need for investigations of automated or semi-automated ways to extract useful patterns from the data. It requires deep expert knowledge and extensive computational resources to find the most appropriate mapping of learning methods for a given problem. It becomes a challenge in the presence of numerous configurations of learning algorithms on massive amounts of data. So there is a need for an intelligent recommendation engine that can advise what is the best learning algorithm for a dataset. The techniques that are commonly used by experts are based on a trial and error approach evaluating and comparing a number of possible solutions against each other, using their prior experience on a specific domain, etc. The trial and error approach combined with the expert’s prior knowledge, though computationally and time expensive, have been often shown to work for stationary problems where the processing is usually performed off-line. However, this approach would not normally be feasible to apply to non-stationary problems where streams of data are continuously arriving. Furthermore, in a non- stationary environment, the manual analysis of data and testing of various methods whenever there is a change in the underlying data distribution would be very difficult or simply infeasible.
    [Show full text]
  • SAMOA: Scalable Advanced Massive Online Analysis
    Journal of Machine Learning Research 16 (2015) 149-153 Submitted 6/14; Revised 9/14; Published 1/15 SAMOA: Scalable Advanced Massive Online Analysis Gianmarco De Francisci Morales [email protected] Albert Bifet [email protected] Yahoo Labs Av. Diagonal 177, 8th floor, 08018, Barcelona, Spain Editor: Geoff Holmes Abstract samoa (Scalable Advanced Massive Online Analysis) is a platform for mining big data streams. It provides a collection of distributed streaming algorithms for the most common data mining and machine learning tasks such as classification, clustering, and regression, as well as programming abstractions to develop new algorithms. It features a pluggable architecture that allows it to run on several distributed stream processing engines such as Storm, S4, and Samza. samoa is written in Java, is open source, and is available at http://samoa-project.net under the Apache Software License version 2.0. Keywords: data streams, distributed systems, classification, clustering, regression, tool- box, machine learning 1. Introduction Big data is “data whose characteristics forces us to look beyond the traditional methods that are prevalent at the time” (Jacobs, 2009). Currently, there are two main ways to deal with big data: streaming algorithms and distributed computing (e.g., MapReduce). samoa aims at satisfying the future needs for big data stream mining by combining the two approaches in a single platform under an open source umbrella. Data mining and machine learning are well established techniques among web companies and startups. Spam detection, personalization, and recommendation are just a few of the applications made possible by mining the huge quantity of data available nowadays.
    [Show full text]
  • Iovfdt for Concept-Drift Problem in Big Data Rajeswari P
    International Journal of Computer Science Trends and Technology (IJCST) – Volume 4 Issue 5, Sep - Oct 2016 RESEARCH ARTICLE OPEN ACCESS iOVFDT for Concept-drift Problem in Big Data Rajeswari P. V. N [1], Radhika P. [2] Assoc. Professor [1], Dept of CSE, Visvodaya Enginnering College, Kavali Asst. Professor [2], Dept of CSE, Geethanjali Institute of Science & Technology, Nellore AP – India. ABSTRACT The problem of How to efficiently uncover the knowledge hidden within massive and big data remains an open problem. It is one of the challenges is the issue of ‘concept drift’ in streaming data flows. Concept drift is a well- known problem in data analytics, in which the statistical properties of the attributes and their target classes shift over time, making the trained model less accurate. Many methods have been proposed for data mining in batch mode. Stream mining represents a new generation of data mining techniques, in which the model is updated in one pass whenever new data arrive. This one-pass mechanism is inherently adaptive and hence potentially more robust than its predecessors in handling concept drift in data streams. In this paper, we evaluate the performance of a family of decision-tree-based data stream mining algorithms. The advantage of incremental decision tree learning is the set of rules that can be extracted from the induced model. The extracted rules, in the form of predicate logics, can be used subsequently in many decision-support applications. However, the induced decision tree must be both accurate and compact, even in the presence of concept drift. We compare the performance of three typical incremental decision tree algorithms (VFDT [2], ADWIN [3], iOVFDT [4]) in dealing with concept-drift data.
    [Show full text]
  • Handling Concept Drift: Importance, Challenges & Solutions
    What CD is About :: Types of Drifts & Approaches :: Techniques in Detail :: Evaluation :: MOA Demo :: Types of Applications :: Outlook Handling Concept Drift: Importance, Challenges & Solutions A. Bifet, J. Gama, M. Pechenizkiy, I. Žliobaitė PAKDD-2011 Tutorial May 27, Shenzhen, China http://www.cs.waikato.ac.nz/~abifet/PAKDD2011/ What CD is About :: Types of Drifts & Approaches :: Techniques in Detail :: Evaluation :: MOA Demo :: Types of Applications :: Outlook Motivation for the Tutorial • in the real world data – more and more data is organized as data streams – data comes from complex environment, and it is evolving over time – concept drift = underlying distribution of data is changing • attention to handling concept drift is increasing, since predictions become less accurate over time • to prevent that, learning models need to adapt to changes quickly and accurately PAKDD-2011 Tutorial, A. Bifet, J.Gama, M. Pechenizkiy, I.Zliobaite 2 May 27, Shenzhen, China Handling Concept Drift: Importance, Challenges and Solutions What CD is About :: Types of Drifts & Approaches :: Techniques in Detail :: Evaluation :: MOA Demo :: Types of Applications :: Outlook Objectives of the Tutorial • many approaches to handle drifts in a wide range of applications have been proposed • the tutorial aims to provide an integrated view of the adaptive learning methods and application needs PAKDD-2011 Tutorial, A. Bifet, J.Gama, M. Pechenizkiy, I.Zliobaite 3 May 27, Shenzhen, China Handling Concept Drift: Importance, Challenges and Solutions What CD is About :: Types of Drifts & Approaches :: Techniques in Detail :: Evaluation :: MOA Demo :: Types of Applications :: Outlook Outline Block 1: PROBLEM Block 2: TECHNIQUES Block 3: EVALUATION Block 4: APPLICATIONS OUTLOOK PAKDD-2011 Tutorial, A.
    [Show full text]
  • Automated Machine Learning Techniques for Data Streams Alexandru-Ionut Imbrea University of Twente P.O
    Automated Machine Learning Techniques for Data Streams Alexandru-Ionut Imbrea University of Twente P.O. Box 217, 7500AE Enschede The Netherlands [email protected] ABSTRACT ative tasks that involve fine-tuning, which is usually per- Automated Machine Learning (AutoML) techniques ben- formed by data scientists in a trial-and-error process until efitted from tremendous research progress recently. These the desired performance is achieved. The ever-growing developments and the continuous-growing demand for ma- number of machine learning algorithms and hyperparam- chine learning experts led to the development of numerous eters leads to an increase in the number of configurations AutoML tools. Industry applications of machine learning which makes data scientists' job more laborious than ever. on streaming data become more popular due to the in- Considering the above reason and due to the lack of ex- creasing adoption of real-time streaming in IoT, microser- perts required in the industry, the field of Automated vices architectures, web analytics, and other fields. How- Machine Learning (AutoML) benefited from considerable ever, the AutoML tools assume that the entire training advances recently [7]. AutoML tools and techniques en- dataset is available upfront and that the underlying data able non-experts to achieve satisfactory results and ex- distribution does not change over time. These assump- perts to automate and optimize their tasks. Although the tions do not hold in a data-stream-mining setting where field of AutoML is relatively new, it consists of multiple an unbounded stream of data cannot be stored and is likely other sub-fields such as Automated Data Cleaning (Auto to manifest concept drift.
    [Show full text]
  • Mitigating Concept Drift in Data Mining Applications for Intrusion Detection Systems
    Mitigating concept drift in data mining applications for intrusion detection systems Koutrouki Evgenia SID: 3307160006 SCHOOL OF SCIENCE & TECHNOLOGY A thesis submitted for the degree of Master of Science (MSc) in Communications and Cybersecurity DECEMBER 2017 THESSALONIKI – GREECE 1 Mitigating concept drift in data mining applications for intrusion detection systems Koutrouki Evgenia SID: 3307160006 Supervisor: Prof. Georgios Ioannou SCHOOL OF SCIENCE & TECHNOLOGY A thesis submitted for the degree of Master of Science (MSc) in Communications and Cybersecurity DECEMBER 2017 THESSALONIKI – GREECE 2 ABSTRACT The phenomenon of concept drift is defined as the unexpected behavior of a data stream under changing environments. It is considered one of the major problems of data mining applications. Intrusion detection systems are correlated with data mining due to the fact that they collect, monitor and analyze data, so as it is expected, they also experience concept drift. By analyzing the different types of data mining, machine learning, intrusion detection systems and concept drift, a new method is developed with the aim to mitigate this phenomenon in data mining applications for intrusion detection systems. Koutrouki Evgenia 31/12/2017 3 Contents ABSTRACT ................................................................................................................................. 3 CHAPTER 1 INTRODUCTION .......................................................................................................................... 6 1.1 Context
    [Show full text]
  • Anomaly Detection for Data Streams Based on Isolation Forest Using
    Anomaly Detection for Data Streams Based on Isolation Forest using Scikit-multiflow Maurras Togbe, Mariam Barry, Aliou Boly, Yousra Chabchoub, Raja Chiky, Jacob Montiel, Vinh-Thuy Tran To cite this version: Maurras Togbe, Mariam Barry, Aliou Boly, Yousra Chabchoub, Raja Chiky, et al.. Anomaly De- tection for Data Streams Based on Isolation Forest using Scikit-multiflow. The 20th International Conference on Computational Science and its Applications (ICCSA 2020), Jul 2020, Caligari, Italy. hal-02874869v2 HAL Id: hal-02874869 https://hal.archives-ouvertes.fr/hal-02874869v2 Submitted on 26 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Anomaly Detection for Data Streams Based on Isolation Forest using Scikit-multiflow Maurras Ulbricht Togbe1, Mariam Barry2;3, Aliou Boly4, Yousra Chabchoub1, Raja Chiky1, Jacob Montiel5, and Vinh-Thuy Tran2 1 ISEP, LISITE, France [email protected] 2 BNP Paribas, IT Group, Division Data [email protected] 3 T´el´ecomParis, LTCI, Institut Polytechnique de Paris, France 4 Universit´eCheikh Anta Diop de Dakar, S´en´egal, [email protected] 5 University of Waikato, Department of Computer Science, New Zealand, [email protected] Abstract.
    [Show full text]
  • Extremely Fast Decision Tree Mining for Evolving Data Streams
    KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada Extremely Fast Decision Tree Mining for Evolving Data Streams Albert Bifet Jiajin Zhang Wei Fan LTCI, Télécom ParisTech HUAWEI Noah’s Ark Lab Baidu Research Big Data Lab Université Paris-Saclay Hong Kong Sunnyvale, CA Paris, France 75013 Cheng He, Jianfeng Zhang Jianfeng Qian Geoff Holmes, HUAWEI Noah’s Ark Lab Columbia University Bernhard Pfahringer Hong Kong New York, NY University of Waikato Hamilton, New Zealand ABSTRACT 1 INTRODUCTION Nowadays real-time industrial applications are generating a huge Streaming data analysis in real time is becoming the fastest and most amount of data continuously every day. To process these large data efficient way to obtain useful knowledge from what is happening streams, we need fast and efficient methodologies and systems. A now, allowing organizations to react quickly when problems appear useful feature desired for data scientists and analysts is to have easy or to detect new trends helping to improve their performance. One to visualize and understand machine learning models. Decision example is the data produced in mobile broadband networks. A trees are preferred in many real-time applications for this reason, metropolitan city in China can have nearly 10 million subscribers and also, because combined in an ensemble, they are one of the who continuously generate massive data streams in both signalling most powerful methods in machine learning. and data planes into the network. Even with summarisation and In this paper, we present a new system called streamDM-C++, compression, the daily volume of the data can reach over 10TB, that implements decision trees for data streams in C++, and that has among which 95% is in the format of sequential data streams.
    [Show full text]
  • Scikit-Multiflow: a Multi-Output Streaming Framework
    Journal of Machine Learning Research 19 (2018) 1-5 Submitted 4/18; Published 10/18 Scikit-Multiflow: A Multi-output Streaming Framework Jacob Montiel [email protected] LTCI, T´el´ecom ParisTech, Universit´eParis-Saclay Paris, FRANCE Jesse Read [email protected] LIX, Ecole´ Polytechnique Palaiseau, FRANCE Albert Bifet [email protected] LTCI, T´el´ecom ParisTech, Universit´eParis-Saclay Paris, FRANCE Talel Abdessalem [email protected] LTCI, T´el´ecom ParisTech, Universit´eParis-Saclay Paris, FRANCE UMI CNRS IPAL, National University of Singapore Editor: Balazs Kegl Abstract scikit-multiflow is a framework for learning from data streams and multi-output learning in Python. Conceived to serve as a platform to encourage the democratization of stream learn- ing research, it provides multiple state-of-the-art learning methods, data generators and evaluators for different stream learning problems, including single-output, multi-output and multi-label. scikit-multiflow builds upon popular open source frameworks including scikit- learn, MOA and MEKA. Development follows the FOSS principles. Quality is enforced by complying with PEP8 guidelines, using continuous integration and functional testing. The source code is available at https://github.com/scikit-multiflow/scikit-multiflow. Keywords: Machine Learning, Stream Data, Multi-output, Drift Detection, Python 1. Introduction Recent years have witnessed the proliferation of Free and Open Source Software (FOSS) in the research community. Specifically, in the field of Machine Learning, researchers have benefited from the availability of different frameworks that provide tools for faster develop- ment, allow replicability and reproducibility of results and foster collaboration. Following the FOSS principles, we introduce scikit-multiflow, a Python framework to implement algo- rithms and perform experiments in the field of Machine Learning on Evolving Data Streams.
    [Show full text]