Protein Structure Prediction

Total Page:16

File Type:pdf, Size:1020Kb

Protein Structure Prediction Protein structure prediction Comparative/homology modeling What is the reason for protein structure prediction? 1. Solving protein structures experimentally is hard (sometimes impossible) 2. Many predicted structures can be close to solved structures in accuracy 3. Protein structure can provide important clues to protein function – Functional sites (e.g., enzyme active sites and specificity determinants) – Protein-protein interaction – Docking studies (e.g., for drug interaction/design studies) – See Baker and Sali paper for other uses 2 Assigned Reading for this section From Pevsner text: • Chapter 6 Multiple Sequence Alignment 205-227, 234 (Read-by: 9/27) • Chapter 13 Protein Structure 589-625 (Read-by: 9/29) “Protein Structure Prediction and Structural Genomics”, David Baker and Andrej Sali, Science 2001. (Read-by: 9/29) 3 Sources for this lecture Park et al, “Sequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods.” JMB 1998 David Baker and Andrej Sali, “Protein Structure Prediction and Structural Genomics” Science 2001 Chothia and Lesk, “The relation between the divergence of sequence and structure in proteins”, EMBO Journal 1986 Andrej Sali and Andras Fiser – selected slides from their seminars Bioinformatics (Baxevanis and Ouellette, previous course text) Chapter 8: Predictive methods using protein sequences (Ofran and Rost) 198-219 Chapter 9: Protein structure prediction and analysis (Wishart) 224-247 Chapter 12: Creation and analysis of protein multiple sequence alignments (Barton) Topics Covered • Folding pathways • Primary, secondary, tertiary and quaternary protein structure • Secondary (2D) structure prediction • 3D fold prediction – Ab initio protein structure prediction (briefly) – Fold recognition (classification of an unknown protein to a fold potentially without constructing a comparative model) – Comparative model construction (aka homology model construction) • Community evaluation of protein structure prediction – Critical Assessment of protein Fold Prediction (CASP) http:// predictioncenter.org/ – EVA (real-time continuous evaluation of protein fold prediction methods) http://cubic.bioc.columbia.edu/eva/ – Astral datasets 5 • Structural Genomics Initiative The telescope: Protein structure prediction and comparison 15% identity between VirB4 & TrwB Protein structure prediction and VirB4 model TrwB PDB structure comparison provides a kind of Hubble telescope enabling distant homologies to be revealed 6 Biological background And major protein structure resources 7 Primary, Secondary, Tertiary and Quaternary Structure 8 Hierarchical descriptions of proteins (follows the folding process) • Primary structure: the amino acid sequence • Secondary structure: “regular local structure of linear segments of polypeptide chains” (Creighton) – Helix (~35% of residues): subtypes: α, π and 310 – Beta sheet (~25% of residues) – Both types predicted by Linus Pauling (Corey and Pauling, 1953; α helix first described by Pauling in 1951) – Other less common structures: • Beta turns • 3/10 helices • Ω loops – Remaining unclassifiable regions sometimes termed “random coil” or “unstructured regions” • Tertiary structure: “Overall topology of the folded polypeptide chain” (Creighton) – Mediated by hydrophobic interactions between distant parts of protein • Quaternary structure: “Aggregation of the separate polypeptide chains of a protein” (Creighton) 9 Baxevanis & Ouellette (Ch. 9, p.224, Wishart) Information required for folding is (mostly) contained in the primary sequence • Early on, proteins were shown to fold into their native structures in isolation • This led to the belief that structure is determined by sequence alone (Anfinsen, 1973) • Over the last decade, a significant number of proteins have been shown to not fold properly in the test tube (e.g., requiring the assistance of chaperonins) • Nevertheless, the native 3D structure is assumed to be in some energetic minimum • This led to the development of ab initio folding methods 10 Baxevanis & Ouellette (Ch. 9, Wishart) Folding pathways • Evidence that local structure segments form first, and then pack against each other to form 3D fold – Exploited in protein fold prediction, Rosetta method • Simons, Bonneau, Ruczinski & Baker (1999). Ab initio Protein Structure Prediction of CASP III Targets Using ROSETTA. Proteins • Semi-stable structural intermediates on folding pathway to lowest-energy conformation – Prof. Susan Marqusee, Berkeley 11 Baxevanis & Ouellette (Ch. 9, Wishart) Proteins can diverge structurally and functionally from a common ancestor 1AGT 1MYN Agitoxin 2 Egyptian Scorpion (K+ channel inhibitor) Drosomycin, Antifungal protein Fruit Fly SCOP Scorpion-toxin- related superfamily 1CN2 Toxin 2 Mexican scorpion (Na+ channel inhibitor) 1BK8 1AYJ Antimicrobial Protein 1 (Ah-Amp1) Antifungal protein 1 (RS-AFP1) Common horse chestnut Radish 12 Sequence and structural divergence are related “The relation between the divergence of sequence and structure in proteins”, Chothia and Lesk. EMBO Journal 1986 Structural alignment example ID EC Function 1E9Y 3.5.1.5 Urease 1J79 3.5.2.3 Dihydroorotase Identity 9.8% Equivalent Residues 40% 14 SCOP comparison of 1e9y and 1j79** 1j79 (c.1.9.4) and one domain of 1e9y (d1e9yb2: c.1.9.2) are placed in the same SCOP superfamily (c.1.9.*) 15 Sequence and structural divergence are correlated** Accuracy of sequence alignment relative to structural alignment Pairwise alignment MSA-pw Sequence-profile methods %ID #pair %Superpos BLAST ClustalW Tcoffee ClustalW MAFFT MUSCLE HMM TreeHMM TreeHMM-Opt >70 107 90.6 0.954 0.955 0.955 0.955 0.954 0.954 0.951 0.954 0.96 50-70 63 87.2 0.862 0.903 0.894 0.901 0.919 0.911 0.903 0.904 0.929 40-50 46 83.4 0.824 0.872 0.855 0.856 0.862 0.846 0.855 0.855 0.934 30-40 65 85.4 0.811 0.874 0.867 0.87 0.892 0.925 0.899 0.892 0.953 25-30 41 82.1 0.779 0.782 0.788 0.795 0.837 0.836 0.868 0.866 0.91 20-25 53 77.9 0.612 0.599 0.627 0.633 0.678 0.661 0.727 0.728 0.813 15-20 84 73 0.381 0.451 0.457 0.49 0.496 0.554 0.578 0.572 0.72 10-15 151 64.4 0.16 0.186 0.234 0.302 0.35 0.351 0.387 0.363 0.551 5-10 204 50.4 -0.007 -0.014 0 -0.047 0.098 0.075 0.096 0.085 0.29 0-5 122 39.5 -0.033 -0.049 -0.051 -0.034 -0.024 -0.022 -0.026 -0.025 0.127 Left three columns show results of structural alignment %ID: Structure pairs have been placed into bins based on sequence identity given the structural alignment #pair: number of pairs in each bin %Superpos: percent positions that are within ~3Angstroms RMSD (between backbone C-alpha carbons) Right three columns give Cline Shift scores for pairwise sequence alignments relative to the structural alignment. The best CS score possible is 1; negative scores indicate incorrect over-alignment with very16 few (or no) correctly aligned residue pairs. Assessing sequence alignment with respect to structural alignment** Xia Jiang Duncan Brown Nandini Krishnamurthy Kimmen Sjolander Alignment accuracy as a function of % ID (including homologs, full-length sequences) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Average CSscore 0.2 0.1 0 10-15% 15-20% 20-25% 25-30% 30-35% 35-40% Percent ID 17 CLUSTALW MUSCLE MAFFT SATCHMO Protein “domains” can be defined in many ways (structural, evolutionary, functional) Pfam “domains” sometimes (but not always) correspond to structural domains 18 Proteins are composed of modular structural domains which are found in different domain architectures produced by gene fusion and fission events Leucine-Rich Repeat (LRR) Toll-Interleukin Receptor (TIR) domain Kinase domain Promiscuous domains complicate homolog detection and function prediction 19 How many unique folds are there? SCOP: 1196 unique folds https://scop.berkeley.edu/statistics/ver=2.06 CATH: 1373 unique folds http://www.cathdb.info This only counts the number of folds found in current solved structures – it does not count the folds that exist in nature (which may be hard to solve or 20 which crystallographers haven’t yet tried to solve)! Major protein structure resources 21 SCOP and CATH structure hierarchies** • SCOP: class, fold, superfamily, family • Classification of individual structural domains (independently folding globular building blocks) • Placement in the same SCOP fold: – implies similar topology and overall “shape”; – may or may not have a common ancestor • Same superfamily: – more restrictive; implies a common ancestor – Inferred based on various analyses (including evidence from PSI-BLAST, HMMs, functional similarity) • Same family – Even more restrictive; generally implies a similar function 22 3D protein structure superposition** • Example tools: J-FATCAT, CE, VAST. • Used to evaluate protein 3D structure prediction – Compare homology models against solved structure (e.g., CASP) • To evaluate assertions of (distant) homology – Can be used to rule out homology (if structurally dissimilar) – Structural similarity does not automatically support homology • see convergent evolution • Used to organize protein structures into hierarchies – E.g., SCOP and CATH • Used to evaluate sequence alignment accuracy – Some (not all) MSA benchmarks use pairwise structural alignments (multiple structural alignment is more complicated) – but some benchmarks include proteins that do not have solved structures – Even among homologous proteins, some regions may superpose poorly. Structural aligners can disagree on how to align these regions. Benchmarking approaches may use consensus approaches across multiple structural aligners – See discussion of these benchmarking
Recommended publications
  • Structural Analysis of 3′Utrs in Insect Flaviviruses
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.23.449515; this version posted June 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Structural analysis of 3’UTRs in insect flaviviruses reveals novel determinant of sfRNA biogenesis and provides new insights into flavivirus evolution Andrii Slonchak1,#, Rhys Parry1, Brody Pullinger1, Julian D.J. Sng1, Xiaohui Wang1, Teresa F Buck1,2, Francisco J Torres1, Jessica J Harrison1, Agathe M G Colmant1, Jody Hobson- Peters1,3, Roy A Hall1,3, Andrew Tuplin4, Alexander A Khromykh1,3,# 1 School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia 2Current affiliation: Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany 3Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia 4 School of Molecular and Cellular Biology, University of Leeds, Leeds, U.K. # corresponding authors: [email protected]; [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.23.449515; this version posted June 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Insect-specific flaviviruses (ISFs) circulate in nature due to vertical transmission in mosquitoes and do not infect vertebrates. ISFs include two distinct lineages – classical ISFs (cISFs) that evolved independently and dual host associated ISFs (dISFs) that are proposed to diverge from mosquito-borne flaviviruses (MBFs). Compared to pathogenic flaviviruses, ISFs are relatively poorly studied, and their molecular biology remains largely unexplored.
    [Show full text]
  • Giri Narasimhan ECS 254A; Phone: X3748 [email protected] July 2011
    BSC 4934: QʼBIC Capstone Workshop" Giri Narasimhan ECS 254A; Phone: x3748 [email protected] http://www.cs.fiu.edu/~giri/teach/BSC4934_Su11.html July 2011 7/19/11 Q'BIC Bioinformatics 1 Modular Nature of Proteins" Proteins# are collections of “modular” domains. For example, Coagulation Factor XII F2 E F2 E K Catalytic Domain F2 E K K Catalytic Domain PLAT 7/21/10 Modular Nature of Protein Structures" Example: Diphtheria Toxin 7/21/10 Domain Architecture Tools" CDART# " #Protein AAH24495; Domain Architecture; " #It’s domain relatives; " #Multiple alignment for 2nd domain SMART# 7/21/10 Active Sites" Active sites in proteins are usually hydrophobic pockets/ crevices/troughs that involve sidechain atoms. 7/21/10 Active Sites" Left PDB 3RTD (streptavidin) and the first site located by the MOE Site Finder. Middle 3RTD with complexed ligand (biotin). Right Biotin ligand overlaid with calculated alpha spheres of the first site. 7/21/10 Secondary Structure Prediction Software" 7/21/10 PDB: Protein Data Bank" #Database of protein tertiary and quaternary structures and protein complexes. http:// www.rcsb.org/pdb/ #Over 29,000 structures as of Feb 1, 2005. #Structures determined by " # NMR Spectroscopy " # X-ray crystallography " # Computational prediction methods #Sample PDB file: Click here [▪] 7/21/10 Protein Folding" Unfolded Rapid (< 1s) Molten Globule State Slow (1 – 1000 s) Folded Native State #How to find minimum energy configuration? 7/21/10 Protein Structures" #Most proteins have a hydrophobic core. #Within the core, specific interactions take place between amino acid side chains. #Can an amino acid be replaced by some other amino acid? " # Limited by space and available contacts with nearby amino acids #Outside the core, proteins are composed of loops and structural elements in contact with water, solvent, other proteins and other structures.
    [Show full text]
  • CASP)-Round V
    PROTEINS: Structure, Function, and Genetics 53:334–339 (2003) Critical Assessment of Methods of Protein Structure Prediction (CASP)-Round V John Moult,1 Krzysztof Fidelis,2 Adam Zemla,2 and Tim Hubbard3 1Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 2Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 3Sanger Institute, Wellcome Trust Genome Campus, Cambridgeshire, United Kingdom ABSTRACT This article provides an introduc- The role and importance of automated servers in the tion to the special issue of the journal Proteins structure prediction field continue to grow. Another main dedicated to the fifth CASP experiment to assess the section of the issue deals with this topic. The first of these state of the art in protein structure prediction. The articles describes the CAFASP3 experiment. The goal of article describes the conduct, the categories of pre- CAFASP is to assess the state of the art in automatic diction, and the evaluation and assessment proce- methods of structure prediction.16 Whereas CASP allows dures of the experiment. A brief summary of progress any combination of computational and human methods, over the five CASP experiments is provided. Related CAFASP captures predictions directly from fully auto- developments in the field are also described. Proteins matic servers. CAFASP makes use of the CASP target 2003;53:334–339. © 2003 Wiley-Liss, Inc. distribution and prediction collection infrastructure, but is otherwise independent. The results of the CAFASP3 experi- Key words: protein structure prediction; communi- ment were also evaluated by the CASP assessors, provid- tywide experiment; CASP ing a comparison of fully automatic and hybrid methods.
    [Show full text]
  • EVA: Continuous Automatic Evaluation of Protein Structure Prediction Servers Volker A
    EVA: continuous automatic evaluation of protein structure prediction servers Volker A. Eyrich 1, Marc A. Martí-Renom 2, Dariusz Przybylski 3, Mallur S. Madhusudhan2, András Fiser 2, Florencio Pazos 4, Alfonso Valencia 4, Andrej Sali 2 & Burkhard Rost 3 1 Columbia Univ., Dept. of Chemistry, 3000 Broadway MC 3136, New York, NY 10027, USA 2 The Rockefeller Univ., Lab. of Molecular Biophysics, Pels Family Center for Biochemistry and Structural Biology, 1230 York Avenue, New York, NY 10021-6399, USA 3 CUBIC Columbia Univ, Dept. of Biochemistry and Molecular Biophysics, 650 West 168th Street, New York, N.Y. 10032, USA 4 Protein Design Group, CNB-CSIC, Cantoblanco, Madrid 28049, Spain Corresponding author: B Rost, [email protected], Tel +1-212-305-3773, Fax +1-212-305-7932 Running title: EVA: evaluation of prediction servers Document type: Application note Statistics: Abstract 153 words; Text 1129 words; 5 References Abstract Summary: Evaluation of protein structure prediction methods is difficult and time- consuming. Here, we describe EVA, a web server for assessing protein structure prediction methods, in an automated, continuous and large-scale fashion. Currently, EVA evaluates the performance of a variety of prediction methods available through the internet. Every week, the sequences of the latest experimentally determined protein structures are sent to prediction servers, results are collected, performance is evaluated, and a summary is published on the web. EVA has so far collected data for more than 3000 protein chains. These results may provide valuable insight to both developers and users of prediction methods. Availability: All EVA web pages are accessible at {http://cubic.bioc.columbia.edu/eva}.
    [Show full text]
  • Advances and Pitfalls of Protein Structural Alignment Hitomi Hasegawa1 and Liisa Holm1,2
    Available online at www.sciencedirect.com Advances and pitfalls of protein structural alignment Hitomi Hasegawa1 and Liisa Holm1,2 Structure comparison opens a window into the distant past of illustrated in a review [1]. Visual recognition of recurrent protein evolution, which has been unreachable by sequence folding patterns between unrelated proteins suggested comparison alone. With 55 000 entries in the Protein Data Bank that there might exist a finite number of admissible folds. and about 500 new structures added each week, automated Hierarchical taxonomies of protein structures were pro- processing, comparison, and classification are necessary. A posed wherein clusters of homologous proteins are nested variety of methods use different representations, scoring within folds, and every fold is slotted into one of four functions, and optimization algorithms, and they generate classes. Automated clusterings were generated, which contradictory results even for moderately distant structures. were in broad general agreement with manual and semi- Sequence mutations, insertions, and deletions are automated classifications. Lately, the hierarchical view accommodated by plastic deformations of the common core, with discrete folds has given way to a view where related retaining the precise geometry of the active site, and peripheral structures form elongated clusters in fold space and folds regions may refold completely. Therefore structure comparison can be morphed continuously one into another [2,3]. methods that allow for flexibility and plasticity generate the most biologically meaningful alignments. Active research There is no universally acknowledged definition of what directions include both the search for fold invariant features and constitutes structural similarity but we all know it when the modeling of structural transitions in evolution.
    [Show full text]
  • Design and Applications of a Clamp for Green Fluorescent Protein with Picomolar Afnity Received: 22 August 2017 Simon Hansen1,2, Jakob C
    www.nature.com/scientificreports OPEN Design and applications of a clamp for Green Fluorescent Protein with picomolar afnity Received: 22 August 2017 Simon Hansen1,2, Jakob C. Stüber 1, Patrick Ernst1, Alexander Koch1, Daniel Bojar1,3, Accepted: 31 October 2017 Alexander Batyuk 1,4 & Andreas Plückthun 1 Published: xx xx xxxx Green fuorescent protein (GFP) fusions are pervasively used to study structures and processes. Specifc GFP-binders are thus of great utility for detection, immobilization or manipulation of GFP-fused molecules. We determined structures of two designed ankyrin repeat proteins (DARPins), complexed with GFP, which revealed diferent but overlapping epitopes. Here we show a structure-guided design strategy that, by truncation and computational reengineering, led to a stable construct where both can bind simultaneously: by linkage of the two binders, fusion constructs were obtained that “wrap around” GFP, have very high afnities of about 10–30 pM, and extremely slow of-rates. They can be natively produced in E. coli in very large amounts, and show excellent biophysical properties. Their very high stability and afnity, facile site-directed functionalization at introduced unique lysines or cysteines facilitate many applications. As examples, we present them as tight yet reversible immobilization reagents for surface plasmon resonance, as fuorescently labelled monomeric detection reagents in fow cytometry, as pull-down ligands to selectively enrich GFP fusion proteins from cell extracts, and as afnity column ligands for inexpensive large-scale protein purifcation. We have thus described a general design strategy to create a “clamp” from two diferent high-afnity repeat proteins, even if their epitopes overlap.
    [Show full text]
  • E2921.Full.Pdf
    Noncatalytic aspartate at the exonuclease domain of PNAS PLUS proofreading DNA polymerases regulates both degradative and synthetic activities Alicia del Pradoa, Elsa Franco-Echevarríab, Beatriz Gonzálezb, Luis Blancoa, Margarita Salasa,1,2, and Miguel de Vegaa,1,2 aInstituto de Biología Molecular “Eladio Viñuela,” Consejo Superior de Investigaciones Cientificas (CSIC), Centro de Biología Molecular “Severo Ochoa,” (CSIC-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain; and bDepartment of Crystallography and Structural Biology, Instituto de Química Física “Rocasolano,” (CSIC) 28006 Madrid, Spain Contributed by Margarita Salas, February 14, 2018 (sent for review October 30, 2017; reviewed by Charles C. Richardson and Eckard Wimmer) Most replicative DNA polymerases (DNAPs) are endowed with a 3′-5′ the 3′-end of the growing strand must be preferentially stabilized exonuclease activity to proofread the polymerization errors, gov- at the polymerization active site to allow multiple elongation cy- erned by four universally conserved aspartate residues belonging cles. Eventually, misinsertion of a 2′-deoxynucleoside-5′-mono- to the Exo I, Exo II, and Exo III motifs. These residues coordinate phosphate (dNMP) provokes a drastic drop of the elongation the two metal ions responsible for the hydrolysis of the last phos- catalytic rate, mainly due to the defective nucleolytic attack of the phodiester bond of the primer strand. Structural alignment of the mismatched 3′-end on the next incoming nucleotide. In addition, conserved exonuclease domain of DNAPs from families A, B, and C the terminal mispair provokes a disruption of contacts with minor has allowed us to identify an additional and invariant aspartate, groove hydrogen acceptors at the polymerization site, favoring the located between motifs Exo II and Exo III.
    [Show full text]
  • Some Studies on Protein Structure Alignment Algorithms
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2017 Some studies on protein structure alignment algorithms Shalini Bhattacharjee University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Bhattacharjee, Shalini, "Some studies on protein structure alignment algorithms" (2017). Electronic Theses and Dissertations. 7348. https://scholar.uwindsor.ca/etd/7348 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Some studies on protein structure alignment algorithms By Shalini Bhattacharjee A Thesis Submitted to the Faculty of Graduate Studies through the School of Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor Windsor, Ontario, Canada 2017 c 2017 Shalini Bhattacharjee Some studies on protein structure alignment algorithms by Shalini Bhattacharjee APPROVED BY: M. Hlynka Department of Mathematics and Statistics D. Wu School of Computer Science A.
    [Show full text]
  • EVA: Continuous Automatic Evaluation of Protein Structure Prediction Servers Volker A
    Vol. 17 no. 12 2001 BIOINFORMATICS APPLICATIONS NOTE Pages 1242–1243 EVA: continuous automatic evaluation of protein structure prediction servers Volker A. Eyrich 1, Marc A. Mart´ı-Renom 2, Dariusz Przybylski 3, Mallur S. Madhusudhan 2, Andras´ Fiser 2, Florencio Pazos 4, Alfonso Valencia 4, Andrej Sali 2 and Burkhard Rost 3,∗ 1Columbia University, Department of Chemistry, 3000 Broadway MC 3136, New York, NY 10027, USA, 2The Rockefeller University, Laboratory of Molecular Biophysics, Pels Family Center for Biochemistry and Structural Biology, 1230 York Avenue, New York, NY 10021-6399, USA, 3CUBIC Columbia University, Department of Biochemistry and Molecular Biophysics, 650 West 168th Street, New York, NY 10032, USA and 4Protein Design Group, CNB-CSIC, Cantoblanco, Madrid 28049, Spain Received on February 20, 2001; revised on May 28, 2001; accepted on July 4, 2001 ABSTRACT How well do experts predict protein structure? The Summary: Evaluation of protein structure prediction CASP experiments attempt to address the problem of over- methods is difficult and time-consuming. Here, we de- estimated performance (Zemla et al., 2001). Although scribe EVA, a web server for assessing protein structure CASP resolves the bias resulting from using known pro- prediction methods, in an automated, continuous and tein structures as targets, it has limitations. (1) The meth- large-scale fashion. Currently, EVA evaluates the perfor- ods are ranked by human assessors who have to evaluate mance of a variety of prediction methods available through thousands of predictions in 1–2 months (∼ 10 000 from the internet. Every week, the sequences of the latest 160 groups for CASP4; Zemla et al., 2001).
    [Show full text]
  • PROTEIN STRUCTURE PREDICTION Bioinformatic Approach Edited by IGOR F
    www.fivephoton.com PROTEIN STRUCTURE PREDICTION Bioinformatic Approach edited by IGOR F. TSIGELNY Preface: Prediction of protein structure is very important today. Whereas more than 17,000 protein structures are stored in PDB, more than 110,000 proteins are stored only in SWISSPROT. The ratio of solved crystal structures to a number of discovered proteins to about 0.15, and I do not see any improvement of this value in the future. At the same time development of genomics has brought an overwhelming amount of DNA sequencing information, which can be and already is used for constructing the hypothetical proteins. This situation shows the great importance of protein structure prediction. The field is growing very rapidly. A simple analysis of publications shows that the number of articles having the words „protein structure prediction‟ has almost doubled since 1995. So many really great ideas are used as a basis for the current prediction systems. Some of them will evolve into the next generation of the prediction software but some of them, even very promising, will be lost and rediscovered in the future. Here we tried to include the variety of methods representing the most interesting concepts of current protein structure prediction. This compendium of ideas makes this book an invaluable source for scientists developing prediction methods. In many cases authors describe successful prediction methods and programs that make this book an invaluable source of information for numerous users of prediction software. The first chapter describes the protein structure prediction program PROSPECT that produces a globally optimal threading alignment for a typical threading energy function, and allows users to easily incorporate experimental data as constraints into the threading process.
    [Show full text]
  • Structural Alignment Based Kernels for Protein Structure Classification
    Structural Alignment based Kernels for Protein Structure Classification Sourangshu Bhattacharya [email protected] Chiranjib Bhattacharyya [email protected] Dept. of Computer Science and Automation, Indian Institute of Science, Bangalore - 560 012, India. Nagasuma Chandra [email protected] Bioinformatics Center, Indian Institute of Science, Bangalore - 560012, India. Abstract acid types. This view is taken by most structure align- Structural alignments are the most widely ment algorithms (Eidhammer et al., 2000), which are used tools for comparing proteins with low the most widely accepted methods for protein struc- sequence similarity. The main contribution ture comparison. of this paper is to derive various kernels on In this paper, we explore the idea of designing clas- proteins from structural alignments, which sifiers based on Support vector machines(SVMs) for do not use sequence information. Central proteins having low sequence similarity. More explic- to the kernels is a novel alignment algorithm itly our goal is to derive positive semi-definite ker- which matches substructures of fixed size us- nels motivated from structural alignments without us- ing spectral graph matching techniques. We ing sequence information. The hypothesis is that any derive positive semi-definite kernels which structure classification technique should capture the capture the notion of similarity between sub- notion of similarity defined by structural alignment structures. Using these as base more sophis- algorithms. Though there is lot of work on design- ticated kernels on protein structures are pro- ing kernels on protein sequences (Jaakkola et al., 1999; posed. To empirically evaluate the kernels we J.-P. Vert, 2004; Leslie & Kwang, 2004), to the best used a 40% sequence non-redundant struc- of our knowledge, there is relatively less work on ker- tures from 15 different SCOP superfamilies.
    [Show full text]
  • Uncovering a Superfamily of Nickel-Dependent Hydroxyacid
    www.nature.com/scientificreports OPEN Uncovering a superfamily of nickel‑dependent hydroxyacid racemases and epimerases Benoît Desguin 1*, Julian Urdiain‑Arraiza1, Matthieu Da Costa2, Matthias Fellner 3,4, Jian Hu4,5, Robert P. Hausinger 4,6, Tom Desmet 2, Pascal Hols 1 & Patrice Soumillion 1 Isomerization reactions are fundamental in biology. Lactate racemase, which isomerizes L‑ and D‑lactate, is composed of the LarA protein and a nickel‑containing cofactor, the nickel‑pincer nucleotide (NPN). In this study, we show that LarA is part of a superfamily containing many diferent enzymes. We overexpressed and purifed 13 lactate racemase homologs, incorporated the NPN cofactor, and assayed the isomerization of diferent substrates guided by gene context analysis. We discovered two malate racemases, one phenyllactate racemase, one α‑hydroxyglutarate racemase, two D‑gluconate 2‑epimerases, and one short‑chain aliphatic α‑hydroxyacid racemase among the tested enzymes. We solved the structure of a malate racemase apoprotein and used it, along with the previously described structures of lactate racemase holoprotein and D‑gluconate epimerase apoprotein, to identify key residues involved in substrate binding. This study demonstrates that the NPN cofactor is used by a diverse superfamily of α‑hydroxyacid racemases and epimerases, widely expanding the scope of NPN‑dependent enzymes. Chemical isomers exhibit subtle changes in their structures, yet can show dramatic diferences in biological properties1. Interconversions of isomers by isomerases are important in the metabolism of living organisms and have many applications in biocatalysis, biotechnology, and drug discovery2. Tese enzymes are divided into 6 classes, depending on the type of reaction catalyzed: racemases and epimerases, cis–trans isomerases, intramo- lecular oxidoreductases, intramolecular transferases, intramolecular lyases, and other isomerases3.
    [Show full text]