Stratigraphy of the Elk Formation in the Fernie Basin, Southeastern British Columbia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coal Studies ELK VALLEY COALFIELD, NORTH HALF (825102, 07, 10, 11) by R
Coal Studies ELK VALLEY COALFIELD, NORTH HALF (825102, 07, 10, 11) By R. J. Morris and D. A. Grieve KEYWORDS: Coalgeology, Elk Valley coalfield, Mount the area is formed by Hmretta andBritt creeks, and is Veits, Mount Tuxford, HenretlaRidge, Bourgeau thrust, coal immediately north of the Fc'rdingRiver operations of Fording rank, Elk River syncline, Alexander Creek syncline. Coal Ltd.(Figure 4-1-1).The northernboundary is the British Columbia - Alberta border. The map area includes INTRODUCTION the upper Elk Valley and a portion of the upper Fording Detailed geological mapping and sampling of the north Valley. half of theElk Valley coalfieldbegan in 1986 and were Most of the area is Crown land and includes three c:od completed in 1987. The end poduct, a preliminary map at a properties. The most southerly comprises the north end ol'tbe scale of 1: IO OOO, will extend available map coverage in the Fording Coal Ltd. Fording River property. Adjacent to the coalfield north from the areas covered by Preliminary Maps north is theElk River property, in which Fording Coal 51 and 60 (Figure 4-l-l),which in turn expanded previous currently holds aSO-per-cent interest. Coal rights to the most coverage in the adjacent Crowsnest coalfield (Preliminary northerly property, formerly known as tlne Vincent option, Maps 24, 27,31 and 42). are reserved to the Crown Work in 1986 (Grieve, 1987) was mainly concentrated in Exploration history of the Weary Ridge - Bleasdell Creek the Weary Ridge ~ Bleasdell Creek area. Themore extensive area was summarized by Grieve (1987). Of the remailing 1987 field program was completed by R.J. -
Tectonic Setting of the Lower Fernie Formation
Tectonic setting of the lower Fernie Formation: insights from subsidence analysis Tannis McCartney*, Department of Geoscience, University of Calgary, Calgary, Alberta, Canada [email protected] and Andrew Leier, Department of Geoscience, University of Calgary, Calgary, Alberta, Canada Introduction In this study, the Fernie Formation in west-central Alberta is informally divided into upper and lower Fernie. The lower Fernie contains the Nordegg, Gordondale, Red Deer, Poker Chip and Rock Creek Members. These are separated from the Upper Fernie shales by many unconformities, simplified here as a single regional unconformity (Figure 1). Figure 1: Simplified stratigraphic column of the Fernie Formation. In this study, the Fernie Formation is divided into the Upper Fernie (shales) and the lower Fernie (Rock Creek, Poker Chip Shale, and Nordegg). The unconformities separating the Upper Fernie from the lower Fernie are here represented as a single, regional unconformity. The Nordegg and Gordondale Members of the Fernie Formation were deposited during the early stages of tectonic loading in the Cordillera to the west. These members, along with the Poker Chip and Rock Creek Members, were studied to look for evidence of this tectonic activity in the sedimentary record. The results give new insights into current understandings of the lower Fernie Formation. Theory and Method Tectonic subsidence measures the tectonically controlled vertical movement of a basin. Calculating the amount of tectonic subsidence the basin has undergone involves accounting for sediment compaction, paleobathymetry, sea-level changes and post-depositional sediment compaction. GeoConvention 2012: Vision 1 In basin analysis, tectonic subsidence plotted on a depth vs. age chart is used to classify the type of basin the sediments were deposited in. -
Falher and Cadomin Diagenesis and Implications for Reservoir Quality Nicholas B
Falher and Cadomin diagenesis and implications for reservoir quality Nicholas B. Harris Department of Earth and Atmospheric Sciences, University of Alberta Summary The Barremian – Aptian Cadomin Formation and the Lower Albian Falher Member of the Spirit River Formation of northwestern Alberta are both are significant hydrocarbon reservoirs in the deep basin part of the Western Canada Sedimentary Basin. Equivalents of parts of the Lower and Upper Mannville of central and eastern Alberta (Hayes et al., 1994), these units are characterized by intervals of coarse sediments, notably including conglomerates, because of their proximity to the Cordilleran Uplift to the west. A series of regressive Falher tongues extending north and northeast into the basin have been designated A through at least F, with a Falher G identified and described by Zonneveld and Moslow (2004); these are sandwiched between finer grained basinal sediments of the Wilrich Member. The coarse tongues of Falher sediment are interpreted as strandline and shoreface deposits (Caddel and Moslow, 2004). While Cadomin lithogies are similar, depositional environments are interpreted as alluvial fan deposits derived from the Cordillera, locally reworked by a northward-flowing paleo-Spirit River. In both formations, porosity and permeability values are generally low. Falher porosities are rarely greater than 15% at depths of 1700 to 2000 metres and rarely greater than 8% at depths of 2500 to 3000 metres. Porosities in this Cadomin dataset range from 0 to 8%from 2400 to 2900 metres burial depth. Permeabilities are generally less than 10 mD at depths of 2400 to 3000 meters but may are locally as high as 1000 mD at 1700 to 2000 metres in the Falher. -
Paper 1983-1
STRATIGRAPHY AND smInmmmy mms ON THE BULL- I(OUNTAIN-PEACE RIVERCANYON, CARBON CREEK AREA NORTHEASTERN BRITISH COLUMBIA (930/15, 16; 94B/1, 2) INTRODUCTION As the new District Geologist at Charlie lake, 1982 fieldwork was orientedtoward gaining a grasp of theregional and loc,slstratigraphy andsedimentology of thecoal-bearing sequences in the Northeast Coal- field. In thisregard I am indebted to Dave Gibsonand Con Stott of the GeologicalSurvey of Canada, Paul Cowley and NormanDuncan of Utah Mines Ltd.,and Charlie Williams of Gulf Canada ResourcesInc. for informative discussions. Fieldwork was concentrated in the area betweenBullhead Mountain on the east andPardonet Creek on the west (Fig.27). lhis areaincludes coal licences of Utah Mines Ltd.,Gulf Canada Resources Inc.., Shell Canada ResourcesLimited, andCinnabar Peak Mines Ltd.Recently published paperson the area includethose of Gibson(19781, St.ott and(Gibson (1980), andAnderson (1980). There are two coal-bearingformations in the area, theGething Formation of theBullhead Groupand theBickford Formation of thme Minnes ,:roup. The GethingFormation overlies the Bickford Formation and is sepsrated from it by the Cadomin Formation,which is variablypebbly sandstone to conglomerate (see stratigraphic column, Table 1). Regionallythe Cadomin Formation may rest on unitslower in the succession than the Bickford.According toStott (1973) this is due to an unconformitywhich progressivelytruncates underlying strata in a southwest-northeast direction. TABLE 1. SIWLIFIED STRATIGRPPHY OF THEMiNNES ANDBULLHEAD GROUPS (UPPERJWASSIC+CWER CRETACEOUS) IN THE BULLHEADMOUNTAIKPARDONET CREEK AREA BuIGething Formationlhead bal measures &CUD Cadomin Formation Pebblysandstone, quartzitic sandstone,conglomerate Mlnnes BickfordFormation Carbonaceousmeasures Grou p Monach FormtionFeldspathic sandstone, minor mounts of quartzite battle Peaks Formation Interbedded sandstone and shale bnteith Formatlon @per quartzites Lower greysandstones,, teldspathlc sandstones 93 ?he stratigraphy of thearea is notyet satisfactorily resolved (D. -
Fossil Lagerstätte from Ya Ha Tinda, Alberta, Canada
A new Early Jurassic (ca. 183 Ma) fossil Lagerstätte from Ya Ha Tinda, Alberta, Canada Rowan C. Martindale1,2*, Theodore R. Them II3,4, Benjamin C. Gill3, Selva M. Marroquín1,3, and Andrew H. Knoll2 1Department of Geological Sciences, The University of Texas at Austin, 1 University Station C1100, Austin, Texas 78712, USA 2Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138, USA 3Department of Geosciences, Virginia Polytechnic Institute and State University, 4044 Derring Hall (0420), Blacksburg, Virginia 24061, USA 4Department of Earth, Ocean and Atmospheric Science & National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, USA ABSTRACT Figure 1. Global paleoge- Lagerstätten—deposits of exceptionally preserved fossils—offer ography during Toarcian vital insights into evolutionary history. To date, only three Konservat- and location of Ya Ha Tinda Hispanic (Alberta, Canada; yellow Lagerstätten are known from Early Jurassic marine rocks (Osteno, Corridor Tethys star), Strawberry Bank (UK; Posidonia Shale, and Strawberry Bank), all located in Europe. We gray star), and Posidonia report a new assemblage of exceptionally preserved fossils from Panthalassa Shale (Germany; black star) Alberta, Canada, the first marine Konservat-Lagerstätte described Lagerstätten. Green areas are Pangea landmasses, light-blue areas from the Jurassic of North America. The Ya Ha Tinda assemblage are shallow seas, and dark includes articulated vertebrates (fish, -
Structural Geology of the Southern Livingstone Range
Meteoric fluid isotopic signatures of thrust-fault-related veins in the Livingstone Range anticlinorium and their significance for syn-deformational regional fluid migration Michael A. Cooley*, Raymond A. Price, John M. Dixon, and T. Kurtis Kyser Department of Geological Sciences and Geological Engineering Queen’s University, Kingston, Kingston, ON, K7L 3N6 [email protected] ABSTRACT δ13C and δ18O isotope values of calcite in veins and host rocks from thrust fault zones indicate that fluids with meteoric isotopic signatures were present along thrust faults and infiltrating the tip-lines of minor thrusts during the formation of fault-propagation folds in the Livingstone Range Anticlinorium of southwest Alberta. Isotope geochemistry of cross-fault veins indicates that formation fluids predominated within the transverse structures, implying that cross faults were not conduits for local downward infiltration of meteoric water. Meteoric fluids must have been flowing eastward along the major thrust faults from a recharge area in the topographically higher hinterland to the west during formation of the thrust and fold belt. The incursion of meteoric waters coincided with hydrocarbon migration as indicated by hydrocarbon residues within thrust- fault-related calcite veins. Introduction The Livingstone Range of the southern Alberta foothills comprises the easternmost surface exposures of Carboniferous rocks in the southern Canadian Cordillera (Fig. 1). The Livingstone Range is an anticlinorium that developed where the Livingstone thrust cuts up-section in its hanging wall from a regional detachment in the upper Palliser Formation, through the overlying Mississippian Rundle Group and younger strata to an upper detachment within the Jurassic Fernie Formation. The anticlinorium comprises two to three adjacent fault- propagation fold anticlines which contain thrust faults that die out upwards into the cores of the folds. -
Cadomin and Jasper Areas Willem Langenberg and John Waldron
Field Guide to Selected Geological Sections of the Cadomin and Jasper Areas Willem Langenberg and John Waldron Edmonton Geological Society Field Trip Guide September 22-23, 2007 Introduction The Rocky Mountains can be divided into Foothills, Front Ranges, and Main Ranges as shown in the cartoon below (Fig. 1). Outcrops in the foothills are dominated by softer weathering Mesozoic rocks of the foreland basin: mainly sandstone and shale but also including conglomerates and coal. Most of the clastic rocks represent material eroded from earlier-formed parts of the orogen to the west, which was subsequently cannibalized as the thrustbelt advanced westward in late Mesozoic to early Cenozoic time. Locally in the foothills, the more resistant late Paleozoic carbonate rocks come to the surface in elongated ridges. Saturday's traverse will begin in the foothills of the Cadomin area and proceed southwest into the Front Ranges. In the Front Ranges carbonates dominate the landscape. These represent the late Paleozoic continental margin of the Laurentian continent, now sliced into multiple imbricated thrust sheets. Mesozoic clastics are confined to narrow valleys. On Sunday morning we will take the Yellowhead Highway further into the Front Ranges and eventually into the Main Ranges of the Rockies. In the Main Ranges, lower parts of the stratigraphy are preserved, including widespread outcrops of older, Early Paleozoic carbonates, clastics, and the underlying Proterozoic succession of the Windermere Supergroup. The structural style is different, too. Although thrust sheets are present, they are generally much larger in scale, and their dips are gentler. In addition, the rocks were more ductile when deformed, so that cleavage and folds are much more widely developed in the mudrocks. -
Memorial to Alexander Rankin Cameron 1927–2000 RUSSELL R
Memorial to Alexander Rankin Cameron 1927–2000 RUSSELL R. DUTCHER Box 128, Carbondale, Illinois 62903-0128 WILLIAM SPACKMAN 170 Rosin Court, Wilmington, North Carolina 28405 As we move forward in our chosen professions, we become acquainted with many colleagues who become friends, professionally and oftentimes socially. By their very nature, geology and closely allied fields attract a large number of individuals who are in their chosen field because of the great satisfaction that stems from learning about Earth and its evolution. In turn, they enjoy imparting their knowledge to others—sometimes in a formal fashion through teaching and in publications, and sometimes through informal discussions, which may be spontaneous in origin. Every once in a while we meet a colleague who displays all of the traits to which everyone aspires. A human being that we just know makes life a little better for all of us, and by their very presence, makes the world a better place. Such a person was Alex Cameron. Alexander Rankin Cameron was born on January 24, 1927, in Toronto, Canada. At an early age Alex and his family moved to Cape Breton Island in the Canadian province of Nova Scotia. He received his bachelor of science degree from St. Francis Xavier University in Antigonish, Nova Scotia, in 1952. He spent the following summer at the Coal Research Laboratory of the Geological Survey of Canada in Sydney, Nova Scotia, under the guidance of Peter A. Hacque- bard. In the fall of 1952, he joined the staff of the Coal Research Section at Pennsylvania State University as a research assistant and graduate student in the Department of Geology and Geo- physics. -
Conodont Biofacies in a Ramp to Basin Setting (Latest Devonian and Earliest Carboniferous) in the Rocky Mountains of Southernmost Canada and Northern Montana
U. S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY Conodont biofacies in a ramp to basin setting (latest Devonian and earliest Carboniferous) in the Rocky Mountains of southernmost Canada and northern Montana by Lauret E. Savoy1 and Anita G. Harris 2 Open-File Report 93-184 This report is preliminary and has not been reviewed for conformity with Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. \ Department of Geology and Geography, Mount Holyoke College, South Hadley, MA 01075 2 U.S. Geological Survey, Reston, VA 22092 1993 TABLE OF CONTENTS ABSTRACT 1 INTRODUCTION 2 LITHOSTRATIGRAPHY AND DEPOSITIONAL SETTING 2 CONODONT BIOSTRATIGRAPHY AND BIOFACIES 8 Palliser Formation 8 Exshaw Formation 13 Banff Formation 13 Correlative units in the Lussier syncline 15 PALEOGEOGRAPfflC SETTING 17 CONCLUSION 23 ACKNOWLEDGMENTS 23 REFERENCES CITED 24 APPENDIX 1 38 FIGURES 1. Index map of sections examined and major structural features of the thrust and fold belt 3 2. Correlation chart of Upper Devonian and Lower Mississippian stratigraphic units. 4 3. Selected microfacies of the Palliser Formation. 5 4. Type section of Exshaw Formation, Jura Creek. 6 5. Lower part of Banff Formation, North Lost Creek. 7 6. Conodont distribution in Palliser and Exshaw formations, Inverted Ridge. 9 7. Conodont distribution in upper Palliser and lower Banff formations, Crowsnest Pass. 11 8. Conodont distribution in upper Palliser, Exshaw, and lower Banff formations, composite Jura Creek - Mount Buller section. 12 9. -
Durham Research Online
Durham Research Online Deposited in DRO: 26 January 2017 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Hall, R. and McNicoll, V. and Gr¤ocke, D. R. and Craig, J. and Jonhston, K. (2004) 'Integrated stratigraphy of the lower and middle Fernie Formation in Alberta and British Columbia, western Canada.', Rivista italiana di paleontologia e stratigraa., 110 (1). pp. 61-68. Further information on publisher's website: https://doi.org/10.13130/2039-4942/6264 Publisher's copyright statement: This article is available under a Creative Commons Attribution-NonCommercial-NoDerivatives Licence 4.0 International (CC BY-NC-ND 4.0) Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Rivista Italiana di Paleontologia e Stratigrafia volume I l0 no. I pp.61-68 April 2OO4 INTEGRATED STRATIGRAPHY OF THE LO\TER AND MIDDLE FERNIE FORMATION IN ALBERTA AND BRITISH COLUMBIA, \trESTERN CANADA RUSSELL HALL', VICKI MCNICOLL" DARREN GRÒCKE" TAMES CRAIGI& KEVIN TOHNSTON Receiaed Septenber 19, 2002: accepted Septenber 30,2003 Key toords: Jurassic, ammonìtes, biochronology, coccoliths, U-Pb analyses, have recently been obtained from fossilif- U-Pb geochronolory, strontium isotopes, zircons, Fernie Fornration, erous volcano-sedimentary units in the North American Alberta, Bajocian. -
The Letters F and T Refer to Figures Or Tables Respectively
INDEX The letters f and t refer to figures or tables respectively "A" Marker, 312f, 313f Amherstberg Formation, 664f, 728f, 733,736f, Ashville Formation, 368f, 397, 400f, 412, 416, Abitibi River, 680,683, 706 741f, 765, 796 685 Acadian Orogeny, 686, 725, 727, 727f, 728, Amica-Bear Rock Formation, 544 Asiak Thrust Belt, 60, 82f 767, 771, 807 Amisk lowlands, 604 Askin Group, 259f Active Formation, 128f, 132f, 133, 139, 140f, ammolite see aragonite Assiniboia valley system, 393 145 Amsden Group, 244 Assiniboine Member, 412, 418 Adam Creek, Ont., 693,705f Amundsen Basin, 60, 69, 70f Assiniboine River, 44, 609, 637 Adam Till, 690f, 691, 6911,693 Amundsen Gulf, 476, 477, 478 Athabasca, Alta., 17,18,20f, 387,442,551,552 Adanac Mines, 339 ancestral North America miogeocline, 259f Athabasca Basin, 70f, 494 Adel Mountains, 415 Ancient Innuitian Margin, 51 Athabasca mobile zone see Athabasca Adel Mountains Volcanics, 455 Ancient Wall Complex, 184 polymetamorphic terrane Adirondack Dome, 714, 765 Anderdon Formation, 736f Athabasca oil sands see also oil and gas fields, Adirondack Inlier, 711 Anderdon Member, 664f 19, 21, 22, 386, 392, 507, 553, 606, 607 Adirondack Mountains, 719, 729,743 Anderson Basin, 50f, 52f, 359f, 360, 374, 381, Athabasca Plain, 617f Aftonian Interglacial, 773 382, 398, 399, 400, 401, 417, 477f, 478 Athabasca polymetamorphic terrane, 70f, Aguathuna Formation, 735f, 738f, 743 Anderson Member, 765 71-72,73 Aida Formation, 84,104, 614 Anderson Plain, 38, 106, 116, 122, 146, 325, Athabasca River, 15, 20f, 35, 43, 273f, 287f, Aklak -
Bedrock Geology of Alberta
Alberta Geological Survey Map 600 Legend Bedrock Geology of Alberta Southwestern Plains Southeastern Plains Central Plains Northwestern Plains Northeastern Plains NEOGENE (± PALEOGENE) NEOGENE ND DEL BONITA GRAVELS: pebble gravel with some cobbles; minor thin beds and lenses NH HAND HILLS FORMATION: gravel and sand, locally cemented into conglomerate; gravel of sand; pebbles consist primarily of quartzite and argillite with minor amounts of sandstone, composed of mainly quartzite and sandstone with minor amounts of chert, arkose, and coal; fluvial amygdaloidal basalt, and diabase; age poorly constrained; fluvial PALEOGENE PALEOGENE PALEOGENE (± NEOGENE) PALEOGENE (± NEOGENE) UPLAND GRAVEL: gravel composed of mainly white quartzite cobbles and pebbles with lesser amounts of UPLAND GRAVEL: gravel capping the Clear Hills, Halverson Ridge, and Caribou Mountains; predominantly .C CYPRESS HILLS FORMATION: gravel and sand, locally cemented to conglomerate; mainly quartzite .G .G and sandstone clasts with minor chert and quartz component; fluvial black chert pebbles; sand matrix; minor thin beds and lenses of sand; includes gravel in the Swan Hills area; white quartzite cobbles and pebbles with lesser amounts of black chert pebbles; quartzite boulders occur in the age poorly constrained; fluvial Clear Hills and Halverson Ridge gravels; sand matrix; ages poorly constrained; extents poorly defined; fluvial .PH PORCUPINE HILLS FORMATION: olive-brown mudstone interbedded with fine- to coarse-grained, .R RAVENSCRAG FORMATION: grey to buff mudstone