Quarks with Color and Flavor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 12: Hadron Decays
Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 12: Hadron Decays !Resonances !Heavy Meson and Baryons !Decays and Quantum numbers !CKM matrix 1 Announcements •No lecture on Friday. •Remaining lectures: •Tuesday 13 March •Friday 16 March •Tuesday 20 March •Friday 23 March •Tuesday 27 March •Friday 30 March •Tuesday 3 April •Remaining Tutorials: •Monday 26 March •Monday 2 April 2 From Friday: Mesons and Baryons Summary • Quarks are confined to colourless bound states, collectively known as hadrons: " mesons: quark and anti-quark. Bosons (s=0, 1) with a symmetric colour wavefunction. " baryons: three quarks. Fermions (s=1/2, 3/2) with antisymmetric colour wavefunction. " anti-baryons: three anti-quarks. • Lightest mesons & baryons described by isospin (I, I3), strangeness (S) and hypercharge Y " isospin I=! for u and d quarks; (isospin combined as for spin) " I3=+! (isospin up) for up quarks; I3="! (isospin down) for down quarks " S=+1 for strange quarks (additive quantum number) " hypercharge Y = S + B • Hadrons display SU(3) flavour symmetry between u d and s quarks. Used to predict the allowed meson and baryon states. • As baryons are fermions, the overall wavefunction must be anti-symmetric. The wavefunction is product of colour, flavour, spin and spatial parts: ! = "c "f "S "L an odd number of these must be anti-symmetric. • consequences: no uuu, ddd or sss baryons with total spin J=# (S=#, L=0) • Residual strong force interactions between colourless hadrons propagated by mesons. 3 Resonances • Hadrons which decay due to the strong force have very short lifetime # ~ 10"24 s • Evidence for the existence of these states are resonances in the experimental data Γ2/4 σ = σ • Shape is Breit-Wigner distribution: max (E M)2 + Γ2/4 14 41. -
Arxiv:1502.07763V2 [Hep-Ph] 1 Apr 2015
Constraints on Dark Photon from Neutrino-Electron Scattering Experiments S. Bilmi¸s,1 I. Turan,1 T.M. Aliev,1 M. Deniz,2, 3 L. Singh,2, 4 and H.T. Wong2 1Department of Physics, Middle East Technical University, Ankara 06531, Turkey. 2Institute of Physics, Academia Sinica, Taipei 11529, Taiwan. 3Department of Physics, Dokuz Eyl¨ulUniversity, Izmir,_ Turkey. 4Department of Physics, Banaras Hindu University, Varanasi, 221005, India. (Dated: April 2, 2015) Abstract A possible manifestation of an additional light gauge boson A0, named as Dark Photon, associated with a group U(1)B−L is studied in neutrino electron scattering experiments. The exclusion plot on the coupling constant gB−L and the dark photon mass MA0 is obtained. It is shown that contributions of interference term between the dark photon and the Standard Model are important. The interference effects are studied and compared with for data sets from TEXONO, GEMMA, BOREXINO, LSND as well as CHARM II experiments. Our results provide more stringent bounds to some regions of parameter space. PACS numbers: 13.15.+g,12.60.+i,14.70.Pw arXiv:1502.07763v2 [hep-ph] 1 Apr 2015 1 CONTENTS I. Introduction 2 II. Hidden Sector as a beyond the Standard Model Scenario 3 III. Neutrino-Electron Scattering 6 A. Standard Model Expressions 6 B. Very Light Vector Boson Contributions 7 IV. Experimental Constraints 9 A. Neutrino-Electron Scattering Experiments 9 B. Roles of Interference 13 C. Results 14 V. Conclusions 17 Acknowledgments 19 References 20 I. INTRODUCTION The recent discovery of the Standard Model (SM) long-sought Higgs at the Large Hadron Collider is the last missing piece of the SM which is strengthened its success even further. -
SL Paper 3 Markscheme
theonlinephysicstutor.com SL Paper 3 This question is about leptons and mesons. Leptons are a class of elementary particles and each lepton has its own antiparticle. State what is meant by an Unlike leptons, the meson is not an elementary particle. State the a. (i) elementary particle. [2] (ii) antiparticle of a lepton. b. The electron is a lepton and its antiparticle is the positron. The following reaction can take place between an electron and positron. [3] Sketch the Feynman diagram for this reaction and identify on your diagram any virtual particles. c. (i) quark structure of the meson. [2] (ii) reason why the following reaction does not occur. Markscheme a. (i) a particle that cannot be made from any smaller constituents/particles; (ii) has the same rest mass (and spin) as the lepton but opposite charge (and opposite lepton number); b. Award [1] for each correct section of the diagram. correct direction ; correct direction and ; virtual electron/positron; Accept all three time orderings. @TOPhysicsTutor facebook.com/TheOnlinePhysicsTutor c. (i) / up and anti-down; theonlinephysicstutor.com (ii) baryon number is not conserved / quarks are not conserved; Examiners report a. Part (a) was often correct. b. The Feynman diagrams rarely showed the virtual particle. c. A significant number of candidates had a good understanding of quark structure. This question is about fundamental interactions. The kaon decays into an antimuon and a neutrino as shown by the Feynman diagram. b.i.Explain why the virtual particle in this Feynman diagram must be a weak interaction exchange particle. [2] c. A student claims that the is produced in neutron decays according to the reaction . -
Charmed Baryon Spectroscopy in a Quark Model
Charmed baryon spectroscopy in a quark model Tokyo tech, RCNP A,RIKEN B, Tetsuya Yoshida,Makoto Oka , Atsushi HosakaA , Emiko HiyamaB, Ktsunori SadatoA Contents Ø Motivation Ø Formalism Ø Result ü Spectrum of single charmed baryon ü λ-mode and ρ-mode Ø Summary Motivation Many unknown states in heavy baryons ü We know the baryon spectra in light sector but still do not know heavy baryon spectra well. ü Constituent quark model is successful in describing Many unknown state baryon spectra and we can predict unknown states of heavy baryons by using the model. Σ Difference from light sector ΛC C ü λ-mode state and ρ-mode state split in heavy quark sector ü Because of HQS, we expect that there is spin-partner Motivation light quark sector vs heavy quark sector What is the role of diquark? How is it in How do spectrum and the heavy quark limit? wave function change? heavy quark limit m m q Q ∞ λ , ρ mode ü we can see how the spectrum and wave-funcon change ü Is charm sector near from heavy quark limit (or far) ? Hamiltonian ij ij ij Confinement H = ∑Ki +∑(Vconf + Hhyp +VLS ) +Cqqq i i< j " % " % 2 π 1 1 brij 2α (m p 2m ) $ ' (r) $ Coul ' Spin-Spin = ∑ i + i i + αcon ∑$ 2 + 2 'δ +∑$ − ' i 3 i< j # mi mj & i< j # 2 3rij & ) # &, 2αcon 8π 3 2αten 1 3Si ⋅ rijS j ⋅ rij + + Si ⋅ S jδ (rij )+ % − Si ⋅ S j (. ∑ 3 % 2 ( Coulomb i< j *+3m i mj 3 3mimj rij $ rij '-. the cause of mass spliPng Tensor 1 2 2 4 l s C +∑αSO 2 3 (ξi +ξ j + ξiξ j ) ij ⋅ ij + qqq i< j 3mq rij Spin orbit ü We determined the parameter that the result of the Strange baryon will agree with experimental results . -
11. the Cabibbo-Kobayashi-Maskawa Mixing Matrix
11. CKM mixing matrix 103 11. THE CABIBBO-KOBAYASHI-MASKAWA MIXING MATRIX Revised 1997 by F.J. Gilman (Carnegie-Mellon University), where ci =cosθi and si =sinθi for i =1,2,3. In the limit K. Kleinknecht and B. Renk (Johannes-Gutenberg Universit¨at θ2 = θ3 = 0, this reduces to the usual Cabibbo mixing with θ1 Mainz). identified (up to a sign) with the Cabibbo angle [2]. Several different forms of the Kobayashi-Maskawa parametrization are found in the In the Standard Model with SU(2) × U(1) as the gauge group of literature. Since all these parametrizations are referred to as “the” electroweak interactions, both the quarks and leptons are assigned to Kobayashi-Maskawa form, some care about which one is being used is be left-handed doublets and right-handed singlets. The quark mass needed when the quadrant in which δ lies is under discussion. eigenstates are not the same as the weak eigenstates, and the matrix relating these bases was defined for six quarks and given an explicit A popular approximation that emphasizes the hierarchy in the size parametrization by Kobayashi and Maskawa [1] in 1973. It generalizes of the angles, s12 s23 s13 , is due to Wolfenstein [4], where one ≡ the four-quark case, where the matrix is parametrized by a single sets λ s12 , the sine of the Cabibbo angle, and then writes the other angle, the Cabibbo angle [2]. elements in terms of powers of λ: × By convention, the mixing is often expressed in terms of a 3 3 1 − λ2/2 λAλ3(ρ−iη) − unitary matrix V operating on the charge e/3 quarks (d, s,andb): V = −λ 1 − λ2/2 Aλ2 . -
Charm Meson Molecules and the X(3872)
Charm Meson Molecules and the X(3872) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Masaoki Kusunoki, B.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Professor Eric Braaten, Adviser Professor Richard J. Furnstahl Adviser Professor Junko Shigemitsu Graduate Program in Professor Brian L. Winer Physics Abstract The recently discovered resonance X(3872) is interpreted as a loosely-bound S- wave charm meson molecule whose constituents are a superposition of the charm mesons D0D¯ ¤0 and D¤0D¯ 0. The unnaturally small binding energy of the molecule implies that it has some universal properties that depend only on its binding energy and its width. The existence of such a small energy scale motivates the separation of scales that leads to factorization formulas for production rates and decay rates of the X(3872). Factorization formulas are applied to predict that the line shape of the X(3872) differs significantly from that of a Breit-Wigner resonance and that there should be a peak in the invariant mass distribution for B ! D0D¯ ¤0K near the D0D¯ ¤0 threshold. An analysis of data by the Babar collaboration on B ! D(¤)D¯ (¤)K is used to predict that the decay B0 ! XK0 should be suppressed compared to B+ ! XK+. The differential decay rates of the X(3872) into J=Ã and light hadrons are also calculated up to multiplicative constants. If the X(3872) is indeed an S-wave charm meson molecule, it will provide a beautiful example of the predictive power of universality. -
06.08.2010 Yuming Wang the Charm-Loop Effect in B → K () L
The Charm-loop effect in B K( )`+` ! ∗ − Yu-Ming Wang Theoretische Physik I , Universitat¨ Siegen A. Khodjamirian, Th. Mannel,A. Pivovarov and Y.M.W. arXiv:1006.4945 Workshop on QCD and hadron physics, Weihai, August, 2010 1 0 2 4 6 8 10 12 14 16 18 20 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 0 2 4 6 8 10 12 14 16 18 20 I. Motivation and introduction ( ) + B K ∗ ` `− induced by b s FCNC current: • prospectiv! e channels for the search! for new physics, a multitude of non-trival observables, Available measurements from BaBar, Belle, and CDF. Current averages (from HFAG, Sep., 2009): • BR(B Kl+l ) = (0:45 0:04) 10 6 ! − × − BR(B K l+l ) = (1:08+0:12) 10 6 : ! ∗ − 0:11 × − Invariant mass distribution and FBA (Belle,−2009): ) 2 1.2 /c 1 2 1 L / GeV 0.5 0.8 F -7 (10 0.6 2 0 0.4 1 0.2 dBF/dq 0.5 ) 0 FB 2 A /c 2 0.5 0 0.4 / GeV -7 0.3 (10 1 2 0.2 I A 0 0.1 dBF/dq 0 -1 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 0 2 4 6 8 10 12 14 16 18 20 q2(GeV2/c2) q2(GeV2/c2) Yu-Ming Wang Workshop on QCD and hadron physics, Weihai, August, 2010 2 q2(GeV2/c2) q2(GeV2/c2) Decay amplitudes in SM: • A(B K( )`+` ) = K( )`+` H B ; ! ∗ − −h ∗ − j eff j i 4G 10 H = F V V C (µ)O (µ) ; eff p tb ts∗ i i − 2 iX=1 Leading contributions from O and O can be reduced to B K( ) 9;10 7γ ! ∗ form factors. -
Charm and Strange Quark Contributions to the Proton Structure
Report series ISSN 0284 - 2769 of SE9900247 THE SVEDBERG LABORATORY and \ DEPARTMENT OF RADIATION SCIENCES UPPSALA UNIVERSITY Box 533, S-75121 Uppsala, Sweden http://www.tsl.uu.se/ TSL/ISV-99-0204 February 1999 Charm and Strange Quark Contributions to the Proton Structure Kristel Torokoff1 Dept. of Radiation Sciences, Uppsala University, Box 535, S-751 21 Uppsala, Sweden Abstract: The possibility to have charm and strange quarks as quantum mechanical fluc- tuations in the proton wave function is investigated based on a model for non-perturbative QCD dynamics. Both hadron and parton basis are examined. A scheme for energy fluctu- ations is constructed and compared with explicit energy-momentum conservation. Resulting momentum distributions for charniand_strange quarks in the proton are derived at the start- ing scale Qo f°r the perturbative QCD evolution. Kinematical constraints are found to be important when comparing to the "intrinsic charm" model. Master of Science Thesis Linkoping University Supervisor: Gunnar Ingelman, Uppsala University 1 kuldsepp@tsl .uu.se 30-37 Contents 1 Introduction 1 2 Standard Model 3 2.1 Introductory QCD 4 2.2 Light-cone variables 5 3 Experiments 7 3.1 The HERA machine 7 3.2 Deep Inelastic Scattering 8 4 Theory 11 4.1 The Parton model 11 4.2 The structure functions 12 4.3 Perturbative QCD corrections 13 4.4 The DGLAP equations 14 5 The Edin-Ingelman Model 15 6 Heavy Quarks in the Proton Wave Function 19 6.1 Extrinsic charm 19 6.2 Intrinsic charm 20 6.3 Hadronisation 22 6.4 The El-model applied to heavy quarks -
Introduction to Flavour Physics
Introduction to flavour physics Y. Grossman Cornell University, Ithaca, NY 14853, USA Abstract In this set of lectures we cover the very basics of flavour physics. The lec- tures are aimed to be an entry point to the subject of flavour physics. A lot of problems are provided in the hope of making the manuscript a self-study guide. 1 Welcome statement My plan for these lectures is to introduce you to the very basics of flavour physics. After the lectures I hope you will have enough knowledge and, more importantly, enough curiosity, and you will go on and learn more about the subject. These are lecture notes and are not meant to be a review. In the lectures, I try to talk about the basic ideas, hoping to give a clear picture of the physics. Thus many details are omitted, implicit assumptions are made, and no references are given. Yet details are important: after you go over the current lecture notes once or twice, I hope you will feel the need for more. Then it will be the time to turn to the many reviews [1–10] and books [11, 12] on the subject. I try to include many homework problems for the reader to solve, much more than what I gave in the actual lectures. If you would like to learn the material, I think that the problems provided are the way to start. They force you to fully understand the issues and apply your knowledge to new situations. The problems are given at the end of each section. -
Ask a Scientist Answers
Ask a scientist answers. GN I quote the beginning of the question, then my answer: Q11: “Since beta decay is when …” A11: Good question. The weak force is responsible for changing one quark into another, in this case a d-quark into a u-quark. Because the electric charge must conserved one needs to emit a negative charge (the neutron is neutral, the proton is +1, so you need a -1- type particle). In principle there could be other -1 particles emitted (say a mu-) but nature is lazy and will go with the easiest to come by (as in the “lowest possible energy” needed to do the job) particle, an electron. Of course, because we have an electron in the final state now we also need a matching anti-neutrino, as the lepton number (quantum number that counts the electrons, neutrinos, and their kind – remember the slide with the felines in my presentation) needs to be conserved as well. Now, going back to your original question “…where they come from?” the energy of the original nucleus. Remember E=m * c^2. That is a recipe for creating particles (mass) if one has enough initial energy. In this case in order for the beta decay to occur (naturally) you need the starting nucleus to have a higher sum of the energies of the daughter nucleus one gets after decay and the energies of the electron and antineutrino combined. That energy difference can then be “spent” in creating the mass of the electron and antineutrino (and giving them, and the daughter nucleus some kinetic energy, assuming there are energy leftovers). -
Reconstruction Study of the S Particle Dark Matter Candidate at ALICE
Department of Physics and Astronomy University of Heidelberg Reconstruction study of the S particle dark matter candidate at ALICE Master Thesis in Physics submitted by Fabio Leonardo Schlichtmann born in Heilbronn (Germany) March 2021 Abstract: This thesis deals with the sexaquark S, a proposed particle with uuddss quark content which might be strongly bound and is considered to be a reasonable dark matter can- didate. The S is supposed to be produced in Pb-Pb nuclear collisions and could interact with detector material, resulting in characteristic final states. A suitable way to observe final states is using the ALICE experiment which is capable of detecting charged and neutral particles and doing particle identification (PID). In this thesis the full reconstruction chain for the S particle is described, in particular the purity of particle identification for various kinds of particle species is studied in dependence of topological restrictions. Moreover, nuclear interactions in the detector material are considered with regard to their spatial distribution. Conceivable reactions channels of the S are discussed, a phase space simulation is done and the order of magnitude of possibly detectable S candidates is estimated. With regard to the reaction channels, various PID and topology cuts were defined and varied in order to find an S candidate. In total 2:17 · 108 Pb-Pb events from two different beam times were analyzed. The resulting S particle candidates were studied with regard to PID and methods of background estimation were applied. In conclusion we found in the channel S + p ! ¯p+ K+ + K0 + π+ a signal with a significance of up to 2.8, depending on the cuts, while no sizable signal was found in the other studied channels. -
The Taste of New Physics: Flavour Violation from Tev-Scale Phenomenology to Grand Unification Björn Herrmann
The taste of new physics: Flavour violation from TeV-scale phenomenology to Grand Unification Björn Herrmann To cite this version: Björn Herrmann. The taste of new physics: Flavour violation from TeV-scale phenomenology to Grand Unification. High Energy Physics - Phenomenology [hep-ph]. Communauté Université Grenoble Alpes, 2019. tel-02181811 HAL Id: tel-02181811 https://tel.archives-ouvertes.fr/tel-02181811 Submitted on 12 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The taste of new physics: Flavour violation from TeV-scale phenomenology to Grand Unification Habilitation thesis presented by Dr. BJÖRN HERRMANN Laboratoire d’Annecy-le-Vieux de Physique Théorique Communauté Université Grenoble Alpes Université Savoie Mont Blanc – CNRS and publicly defended on JUNE 12, 2019 before the examination committee composed of Dr. GENEVIÈVE BÉLANGER CNRS Annecy President Dr. SACHA DAVIDSON CNRS Montpellier Examiner Prof. ALDO DEANDREA Univ. Lyon Referee Prof. ULRICH ELLWANGER Univ. Paris-Saclay Referee Dr. SABINE KRAML CNRS Grenoble Examiner Prof. FABIO MALTONI Univ. Catholique de Louvain Referee July 12, 2019 ii “We shall not cease from exploration, and the end of all our exploring will be to arrive where we started and know the place for the first time.” T.