Molecular Mechanisms Underlying Heterochromatin Formation in the Mouse Embryo Joanna Weronika Jachowicz

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Mechanisms Underlying Heterochromatin Formation in the Mouse Embryo Joanna Weronika Jachowicz Molecular mechanisms underlying heterochromatin formation in the mouse embryo Joanna Weronika Jachowicz To cite this version: Joanna Weronika Jachowicz. Molecular mechanisms underlying heterochromatin formation in the mouse embryo. Embryology and Organogenesis. Université de Strasbourg, 2015. English. NNT : 2015STRAJ094. tel-01681610v2 HAL Id: tel-01681610 https://tel.archives-ouvertes.fr/tel-01681610v2 Submitted on 11 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE des SCIENCES de la VIE et de la SANTÉ THÈSE présentée par : Joanna Weronika JACHOWICZ soutenue le : 17 Décembre 2015 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Aspects moléculaires et cellulaire de la biologie du développement Molecular mechanisms underlying heterochromatin formation in the mouse embryo THÈSE dirigée par : Dr Maria Elena TORRES-PADILLA , Université de Strasbourg RAPPORTEURS : Prof Didier TRONO EPFL, Lausanne Dr Andrew BANNISTER The Gurdon Institute, Cambridge AUTRES MEMBRES DU JURY : Dr Michael WEBER ESBS, Illkirch Table of Contents Acknowledgements ............................................................................................................................. ! 4 ! Abstract ............................................................................................................................................... ! 5 ! Avant propos ....................................................................................................................................... ! 7 ! I. Introduction ............................................................................................................................. ! 11 ! 1. Characteristics of (hetero)chromatin in mammalian cells ...................................................... ! 11 ! 1.1. Brief introduction to chromatin .................................................................................... ! 11 ! 1.2. Euchromatin versus heterochromatin .......................................................................... ! 12 ! 1.3. Maintenance and establishment of heterochromatin in somatic and stem cells ......... ! 14 ! 1.3.1. DNA methylation ................................................................................................... ! 15 ! 1.3.2. Histone modifications and related pathways ....................................................... ! 16 ! 1.3.3. Histone variants .................................................................................................... ! 18 ! 1.3.4. DNA binding factors .............................................................................................. ! 19 ! 1.3.5. Small RNAs and RNAi pathway .............................................................................. ! 21 ! 1.3.6. Nuclear organization ............................................................................................. ! 22 ! 1.4. Concluding remarks ....................................................................................................... ! 24 ! 2. Characteristics of heterochromatin during mouse development ....................................... ! 24 ! 2.1. Mouse development at a glance ................................................................................... ! 24 ! 2.2. Formation of gametes ................................................................................................... ! 25 ! 2.2.1. Primordial germ cells specification ....................................................................... ! 25 ! 2.2.2. Formation of sex specific gametes ........................................................................ ! 27 ! 2.3. Preimplanation development ........................................................................................ ! 32 ! 2.3.1. Most important events in preimplantation embryos ........................................... ! 32 ! 2.3.2. DNA methylation ................................................................................................... ! 34 ! 2.3.3. Histone variants .................................................................................................... ! 35 ! 2.3.4. Pathways responsible for establishment of repressive and active histone marks ! 37 ! 2.3.5. Nuclear organization in preimplantation embryos ............................................... ! 41 ! 3. Heterochromatin during mouse development – specific regions and open questions about their establishment ....................................................................................................................... ! 45 ! 3.1. Pericentric repeats ........................................................................................................ ! 45 ! 3.2. L1 transposable elements ............................................................................................. ! 47 ! 3.2.1. Publication 1 – LINEs in mice ................................................................................. ! 49 ! II. Main questions and objectives ..................................................................................... ! 50 ! Part I – Pericentric repeats ............................................................................................................ ! 50 ! Part II – L1 transposable elements ................................................................................................ ! 50 ! ! 2 ! III. Results & Discussions ....................................................................................................... ! 52 ! Part I ! Pericentric repeats ............................................................................................................ ! 52 ! 1.1. Summary of Publication 2 ............................................................................................. ! 52 ! 1.2. Publication 2 .................................................................................................................. ! 53 ! 1.3. Discussion ...................................................................................................................... ! 54 ! Part II ! L1 transposable elements ................................................................................................ ! 59 ! 2.1. L1 biology during early mouse development ................................................................ ! 59 ! 2.1.1. Description of the transcription pattern of L1spa elements from fertilization until morula stage .......................................................................................................................... ! 59 ! 2.1.2. Protein expression ................................................................................................. ! 60 ! 2.2. Establishment of tools and experimental conditions .................................................... ! 61 ! 2.2.1. TALEs design and verification in human and mouse cells ..................................... ! 61 ! 2.2.2. Establishment of experimental conditions for TALE expression in mouse embryos ... ! 62 ! 2.3. Role of the repression of L1 elements during preimplantation development of mouse embryos ..................................................................................................................................... ! 64 ! 2.3.1. Artificial tethering of the L1 TALE !VP64 activators and their effect on the level of L1 transcript at 4! and 8!cell stage mouse embryos .................................................................. ! 64 ! 2.3.2. The consequences of the L1 activation on the preimplantation development of mouse embryos ..................................................................................................................... ! 66 ! 2.3.3. Dissecting the plausible cause of the developmental arrest ................................ ! 67 ! 2.4. Figures ........................................................................................................................... ! 69 ! 2.5. Materials & Methods..................................................................................................... ! 80 ! 2.6. Discussion ...................................................................................................................... ! 82 ! IV. Concluding remarks .......................................................................................................... ! 88 ! V. Bibliography ........................................................................................................................... ! 90 ! ! 3 ! Acknowledgements Firstly, I would like to express my sincere gratitude to my advisor Dr. Maria Elena Torres ! Padilla for the continuous support during my studies, for her patience, motivation, and immense knowledge. Her guidance has helped me throughout the research and the thesis writing and without it I would have been probably lost. Thank you for showing me how amazing science is and for proving that one can be a great researcher but still stay a human being. I could not have imagined having a better advisor and
Recommended publications
  • Tricarboxylic Acid Cycle Metabolites As Mediators of DNA Methylation Reprogramming in Bovine Preimplantation Embryos
    Supplementary Materials Tricarboxylic Acid Cycle Metabolites as Mediators of DNA Methylation Reprogramming in Bovine Preimplantation Embryos Figure S1. (A) Total number of cells in fast (FBL) and slow (SBL) blastocysts; (B) Fluorescence intensity for 5-methylcytosine and 5-hydroxymethylcytosine of fast and slow blastocysts of cells from Trophoectoderm (TE) or inner cell mass (ICM). Fluorescence intensity for 5-methylcytosine of cells from the ICM or TE in blastocysts cultured with (C) dimethyl-succinate or (D) dimethyl-α- ketoglutarate. Statistical significance is identified by different letters. Figure S2. Experimental design. Table S1. Selected genes related to metabolism and epigenetic mechanisms from RNA-Seq analysis of bovine blastocysts (slow vs. fast). Genes in blue represent upregulation in slow blastocysts, genes in red represent upregulation in fast blastocysts. log2FoldCh Gene p-value p-Adj ange PDHB −1.425 0.000 0.000 MDH1 −1.206 0.000 0.000 APEX1 −1.193 0.000 0.000 OGDHL −3.417 0.000 0.002 PGK1 −0.942 0.000 0.002 GLS2 1.493 0.000 0.002 AICDA 1.171 0.001 0.005 ACO2 0.693 0.002 0.011 CS −0.660 0.002 0.011 SLC25A1 1.181 0.007 0.032 IDH3A −0.728 0.008 0.035 GSS 1.039 0.013 0.053 TET3 0.662 0.026 0.093 GLUD1 −0.450 0.032 0.108 SDHD −0.619 0.049 0.143 FH −0.547 0.054 0.149 OGDH 0.316 0.133 0.287 ACO1 −0.364 0.141 0.297 SDHC −0.335 0.149 0.311 LIG3 0.338 0.165 0.334 SUCLG −0.332 0.174 0.349 SDHA 0.297 0.210 0.396 SUCLA2 −0.324 0.248 0.439 DNMT1 0.266 0.279 0.486 IDH3B1 −0.269 0.296 0.503 SDHB −0.213 0.339 0.544 DNMT3B 0.181 0.386 0.598 APOBEC1 0.629 0.386 0.598 TDG 0.427 0.398 0.611 IDH3G 0.237 0.468 0.675 NEIL2 0.509 0.572 0.720 IDH2 0.298 0.571 0.720 DNMT3L 1.306 0.590 0.722 GLS 0.120 0.706 0.821 XRCC1 0.108 0.793 0.887 TET1 −0.028 0.879 0.919 DNMT3A 0.029 0.893 0.920 MBD4 −0.056 0.885 0.920 PDHX 0.033 0.890 0.920 SMUG1 0.053 0.936 0.954 TET2 −0.002 0.991 0.991 Table S2.
    [Show full text]
  • The Molecular Hallmarks of Epigenetic Control
    PERSPECTIVES EPIGENETICS mainly highlight important mechanistic TIMELINE and conceptual advances. Seminal primary papers are cited, but for in-depth discussions The molecular hallmarks of epigenetic and additional references the reader is at times referred to the textbook Epigenetics3 control or other timely reviews. Foundation of epigenetics C. David Allis and Thomas Jenuwein Pioneering work carried out between Abstract | Over the past 20 years, breakthrough discoveries of chromatin-modifying 1869 and 1928 by Miescher, Flemming, Kossel and Heitz defined nucleic acids, enzymes and associated mechanisms that alter chromatin in response to chromatin and histone proteins, which physiological or pathological signals have transformed our knowledge of led to the cytological distinction between epigenetics from a collection of curious biological phenomena to a functionally euchromatin and heterochromatin4 (FIG. 1a). dissected research field. Here, we provide a personal perspective on the This was followed by ground-breaking 5 development of epigenetics, from its historical origins to what we define as studies by Muller (in Drosophila melanogaster) and McClintock6 (in maize) ‘the modern era of epigenetic research’. We primarily highlight key molecular on position-effect variegation (PEV) and mechanisms of and conceptual advances in epigenetic control that have changed transposable elements, providing early our understanding of normal and perturbed development. hints of non-Mendelian inheritance. Descriptions of the phenomena of X-chromosome inactivation7
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Genome-Wide DNA Methylation Analysis Reveals Molecular Subtypes of Pancreatic Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 17), pp: 28990-29012 Research Paper Genome-wide DNA methylation analysis reveals molecular subtypes of pancreatic cancer Nitish Kumar Mishra1 and Chittibabu Guda1,2,3,4 1Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA 2Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE, 68198, USA 3Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA 4Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA Correspondence to: Chittibabu Guda, email: [email protected] Keywords: TCGA, pancreatic cancer, differential methylation, integrative analysis, molecular subtypes Received: October 20, 2016 Accepted: February 12, 2017 Published: March 07, 2017 Copyright: Mishra et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Pancreatic cancer (PC) is the fourth leading cause of cancer deaths in the United States with a five-year patient survival rate of only 6%. Early detection and treatment of this disease is hampered due to lack of reliable diagnostic and prognostic markers. Recent studies have shown that dynamic changes in the global DNA methylation and gene expression patterns play key roles in the PC development; hence, provide valuable insights for better understanding the initiation and progression of PC. In the current study, we used DNA methylation, gene expression, copy number, mutational and clinical data from pancreatic patients.
    [Show full text]
  • Protecting the Code Human Tumours
    But can these bacteria be used to treat human cancers? Future exper- iments are required to answer safety questions, as the rapid destruction of large tumours was toxic and caused the death of some animals. It will also be important to deter- mine the mechanism by which C. novyi selectively destroys viable tumour cells that are adjacent to hypoxic areas. The authors also point out that not all tumours will GENOMIC INSTABILITY be susceptible to COBALT, and they will have to determine which chemotherapeutic drugs act syner- gistically with bacteria against Protecting the code human tumours. Kristine Novak References and links A code of post-translational modifications — with none of the wild-type mice. Karotypic ORIGINAL RESEARCH PAPER Dang, L. H., including methylation, acetylation and analysis of the lymphomas revealed that some Bettegowda, C., Husa, D. L., Kinzler, K. W. & phosphorylation — in the amino termini of had ‘butterfly’ chromosomes, which did not Vogelstein, B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc. histones determines the level of chromatin segregate as they remained attached at their Natl Acad. Sci. (2001) Nov 27; [epub ahead of compaction. Histone acetylation is now centromeric regions. Could this be due to an print] recognized as an important therapeutic target in effect on the pericentric heterochromatin region FURTHER READING Sznol, M. et al. Use of preferentially replicating bacteria for the treatment cancer, but what about other histone in these cells? of cancer. J. Clin. Invest. 105, 1027–1030 (2000) modifications? Thomas Jenuwein’s group now The authors used an antibody that acts as a WEB SITE Bert Vogelstein’s lab: http://www.med.jhu.edu/ provides the first indication that histone marker of heterochromatin — by specifically pharmacology/pages/faculty/vogelstein.html methylation might also influence tumour recognizing H3 methylated at Lys9 — to show formation, by regulating genome stability.
    [Show full text]
  • Histone Modifications and Cancer
    Downloaded from http://cshperspectives.cshlp.org/ on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Histone Modifications and Cancer James E. Audia1 and Robert M. Campbell2 1Constellation Pharmaceuticals, Cambridge, Massachusetts 02142; 2Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285 Correspondence: [email protected] SUMMARY Histone posttranslational modifications represent a versatile set of epigenetic marks involved not only in dynamic cellular processes, such as transcription and DNA repair, but also in the stable maintenance of repressive chromatin. In this article, we review many of the key and newly identified histone modifi- cations known to be deregulated in cancer and how this impacts function. The latter part of the article addresses the challenges and current status of the epigenetic drug development process as it applies to cancer therapeutics. Outline 1 Introduction 3 Drug-discovery challenges for histone- modifying targets 2 Histone modifications References Editors: C. David Allis, Marie-Laure Caparros, Thomas Jenuwein, Danny Reinberg, and Monika Lachner Additional Perspectives on Epigenetics available at www.cshperspectives.org Copyright # 2016 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a019521 Cite this article as Cold Spring Harb Perspect Biol 2016;8:a019521 1 Downloaded from http://cshperspectives.cshlp.org/ on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press J.E. Audia and R.M. Campbell OVERVIEW Cancer is a diverse collection of diseases characterized by the Collectively, the combination of histone marks found in dysregulation of important pathways that control normal cel- a localized region of chromatin function through multiple lular homeostasis. This escape from normal control mecha- mechanisms as part of a “chromatin-based signaling” system nisms leads to the six hallmarks of cancer, which include (Jenuwein and Allis 2001; Schreiber and Bradley 2002).
    [Show full text]
  • Identification of Key Genes Related to the Mechanism and Prognosis of Lung Squamous Cell Carcinoma Using Bioinformatics Analysis
    Identification of key genes related to the mechanism and prognosis of lung squamous cell carcinoma using bioinformatics analysis Miaomiao Gaoa,#, Weikaixin Kongb,#, Zhuo Huangb,* and Zhengwei Xiea,* #These authors contributed equally to this work aDepartment of Pharmacology and Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Lu, Haidian district, Beijing 100191, China bDepartment of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Lu, Haidian district, Beijing 100191, China * To whom correspondence should be addressed. ZhengweiXie Tel: 86-10-82802798; Fax: 86-10-82802798; Email: [email protected]. Zhuo Huang E-mail: [email protected] Abstract Objectives Lung squamous cell carcinoma (LUSC) often diagnosed as advanced with poor prognosis. The mechanisms of its pathogenesis and prognosis require urgent elucidation. This study was performed to screen potential biomarkers related to the occurrence, development and prognosis of LUSC to reveal unknown physiological and pathological processes. Materials and Methods Using bioinformatics analysis, the lung squamous cell carcinoma microarray datasets from the GEO and TCGA databases were analyzed to identify differentially expressed genes (DEGs). Furthermore, PPI and WGCNA network analysis were integrated to identify the key genes closely related to the process of LUSC development. In addition, survival analysis was performed to achieve a prognostic model that accomplished a high level of prediction accuracy. Results and Conclusion Eighty-five up-regulated and 39 down-regulated genes were identified, on which functional and pathway enrichment analysis was conducted. GO analysis demonstrated that up-regulated genes were principally enriched in epidermal development and DNA unwinding in DNA replication.
    [Show full text]
  • DNA Methylation of Intragenic Cpg Islands Depends on Their Transcriptional Activity During Differentiation and Disease
    DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease Danuta M. Jeziorskaa, Robert J. S. Murrayb,c,1, Marco De Gobbia,2, Ricarda Gaentzscha,3, David Garricka,4, Helena Ayyuba, Taiping Chend,EnLie, Jelena Teleniusa, Magnus Lyncha,5, Bryony Grahama, Andrew J. H. Smitha,f, Jonathan N. Lundc, Jim R. Hughesa, Douglas R. Higgsa,6, and Cristina Tufarellic,6 aMedical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom; bDepartment of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom; cDivision of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, United Kingdom; dDepartment of Epigenetics and Molecular Carcinogenesis, Division of Basic Science Research, The University of Texas M. D. Anderson Cancer Center, Smithville, TX 78957; eChina Novartis Institutes for BioMedical Research, Shanghai 201203, China; and fMedical Research Council Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, United Kingdom Edited by Adrian P. Bird, University of Edinburgh, Edinburgh, United Kingdom, and approved July 28, 2017 (received for review February 23, 2017) The human genome contains ∼30,000 CpG islands (CGIs). While CGIs (RHBDF1), which becomes methylated during normal devel- associated with promoters nearly always remain unmethylated, many opment in vivo (11) (Fig. 1). of the ∼9,000 CGIs lying within gene bodies become methylated during In both cases, we show that methylation of these specific CGIs development and differentiation. Both promoter and intragenic CGIs is associated with transcription traversing the CGI, a reduction of may also become abnormally methylated as a result of genome rear- H3K4me3, a gain of H3K36me3, and DNA methyltransferase 3B rangements and in malignancy.
    [Show full text]
  • Drosophila CAF-1 Regulates HP1-Mediated Epigenetic Silencing and Pericentric Heterochromatin Stability
    Research Article 2853 Drosophila CAF-1 regulates HP1-mediated epigenetic silencing and pericentric heterochromatin stability Hai Huang1,2, Zhongsheng Yu1,2, Shuaiqi Zhang1, Xuehong Liang1, Jianming Chen3, Changqing Li1, Jun Ma1,4 and Renjie Jiao1,* 1State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China 2Graduate School of the Chinese Academy of Sciences, Beijing 100080, China 3Third Institute of Oceanography, State Oceanic Administration, University Road 178, Xiamen 361005, China 4Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children’s Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA *Author for correspondence ([email protected]) Accepted 20 May 2010 Journal of Cell Science 123, 2853-2861 © 2010. Published by The Company of Biologists Ltd doi:10.1242/jcs.063610 Summary Chromatin assembly factor 1 (CAF-1) was initially characterized as a histone deliverer in the process of DNA-replication-coupled chromatin assembly in eukaryotic cells. Here, we report that CAF-1 p180, the largest subunit of Drosophila CAF-1, participates in the process of heterochromatin formation and functions to maintain pericentric heterochromatin stability. We provide evidence that Drosophila CAF-1 p180 plays a role in both classes of position effect variegation (PEV) and in the expression of heterochromatic genes. A decrease in the expression of Drosophila CAF-1 p180 leads to a decrease in both H3K9 methylation at pericentric heterochromatin regions and the recruitment of heterochromatin protein 1 (HP1) to the chromocenter of the polytene chromosomes. The artificial targeting of HP1 to a euchromatin location leads to the enrichment of Drosophila CAF-1 p180 at this ectopic heterochromatin, suggesting the mutual recruitment of HP1 and CAF-1 p180.
    [Show full text]
  • Current Evidence for a Role of Epigenetic Mechanisms in Response to Ionizing Radiation in an Ecotoxicological Context N
    Current evidence for a role of epigenetic mechanisms in response to ionizing radiation in an ecotoxicological context N. Horemans, D.J. Spurgeon, C. Lecomte-Pradines, E. Saenen, C. Bradshaw, D. Oughton, I. Rasnaca, J.H. Kamstra, C. Adam-Guillermin To cite this version: N. Horemans, D.J. Spurgeon, C. Lecomte-Pradines, E. Saenen, C. Bradshaw, et al.. Current ev- idence for a role of epigenetic mechanisms in response to ionizing radiation in an ecotoxicological context. Environmental Pollution, Elsevier, 2019, 251, pp.469-483. 10.1016/j.envpol.2019.04.125. hal-02524800 HAL Id: hal-02524800 https://hal.archives-ouvertes.fr/hal-02524800 Submitted on 7 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Manuscript Details Manuscript number ENVPOL_2019_714_R1 Title Current evidencefor a role of epigenetic mechanisms in response to ionizing radiation in an ecotoxicological context Article type Review Article Abstract The issue of potential long-term or hereditary effects for both humans and wildlife exposed to low doses (or dose rates) of ionising radiation is a major concern. Chronic exposure to ionising radiation, defined as an exposure over a large fraction of the organism's lifespan or even over several generations, can possibly have consequences in the progeny.
    [Show full text]
  • G2 Histone Methylation Is Required for the Proper Segregation of Chromosomes
    Research Article 2957 G2 histone methylation is required for the proper segregation of chromosomes Ryan Heit1, Jerome B. Rattner2, Gordon K. T. Chan1 and Michael J. Hendzel1,* 1Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, Canada T6G 1Z2 2Departments of Cell Biology and Anatomy, Biochemistry and Molecular Biology, and Oncology, Faculty of Medicine, University of Calgary, Calgary, Canada T2N 4N1 *Author for correspondence ([email protected]) Accepted 18 May 2009 Journal of Cell Science 122, 2957-2968 Published by The Company of Biologists 2009 doi:10.1242/jcs.045351 Summary Trimethylation of lysine 9 on histone H3 (H3K9me3) is known pericentric heterochromatin might be responsible for a noted both to be necessary for proper chromosome segregation and loss of tension at the centromere in AdOx-treated cells and to increase in late G2. We investigated the role of late G2 activation of the spindle assembly checkpoint. We postulate that methylation, specifically in mitotic progression, by inhibiting late G2 methylation is necessary for proper pericentric methylation for 2 hours prior to mitosis using the general heterochromatin formation. The results suggest that a reduction methylation inhibitor adenosine dialdehyde (AdOx). AdOx in heterochromatin integrity might interfere both with inhibits all methylation events within the cell but, by shortening microtubule attachment to chromosomes and with the proper the treatment length to 2 hours and studying mitotic cells, the sensing of tension from correct microtubule-kinetochore only methylation events that are affected are those that occur connections, either of which will result in activation of the in late G2. We discovered that methylation events in this time mitotic checkpoint.
    [Show full text]
  • A Novel Histone H4 Variant Regulates Rdna Transcription in Breast Cancer
    bioRxiv preprint doi: https://doi.org/10.1101/325811; this version posted May 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A novel histone H4 variant regulates rDNA transcription in breast cancer 1# 1# 1 1 Mengping Long , Xulun Sun , Wenjin Shi , Yanru An , Tsz Chui Sophia Leung1, 2 3 2 Dongbo Ding1, Manjinder S. Cheema , Nicol MacPherson , Chris Nelson , Juan 2 1 1 Ausio , Yan Yan , and Toyotaka Ishibashi * 1Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, NT, Hong Kong, HKSAR, China 2 Department of Biochemistry and Microbiology, University of Victoria, Victoria BC, Canada 3 Department of Medical Oncology BC Cancer, Vancouver Island Centre, Victoria, BC, Canada # These authors contributed equally to this work *correspondence: [email protected] Key Words Histone variant, histone H4, rDNA transcription, breast cancer, nucleophosmin bioRxiv preprint doi: https://doi.org/10.1101/325811; this version posted May 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Histone variants, present in various cell types and tissues, are known to exhibit different functions. For example, histone H3.3 and H2A.Z are both involved in gene expression regulation, whereas H2A.X is a specific variant that responds to DNA double-strand breaks. In this study, we characterized H4G, a novel hominidae-specific histone H4 variant. H4G expression was found in a variety of cell lines and was particularly overexpressed in the tissues of breast cancer patients.
    [Show full text]