Moving Towards Embedded Android: Things You

Total Page:16

File Type:pdf, Size:1020Kb

Moving Towards Embedded Android: Things You Moving Towards Embedded Android Moving Towards Embedded modify the platform in a non- invasive built with exactly this particular feature manner. By giving basic advice for in mind. Naturally, taking advantage of a Android: Things you need porting and upgrading Android, this high level programming language is not a article addresses common issues often sole interest of the mobile software to know arising during the process of migration. industry but also of embedded system application developers. It is features like Java Exceptions, Threading and access to These are the benefits of Android the Networking Stack and the excellent Manuel Di Cerbo and Andreas Rudolf toolset coming with it, that draw the Nexus-Computing GmbH Switzerland 1. User Interface attention to the platform. Furthermore, it offers tools in order to support creating While there might be some occasions UI and localisation for applications, During recent developments, the where it even makes sense to use which are two features often requested embedded industry is starting to offer Android without UI - so called headless in embedded applications. Android as an option to run on their Android - the key reason to choose hardware products. The demand for Android over other solutions is in many 3. Stability and Prosperity Android on embedded systems has been cases the ability to build high quality in moderation for some time with steady user interfaces. The Android User Although controversially discussed in the ascent during the past few years. Interface resembles a profound pillar of press, the state of Android's stability and the platform with the goal to deliver security is benefiting from being one of This article discusses benefits and deeply immersive UI concepts by the most well tested Operating Systems in challenges when considering to offer incorporating the Android’s numerous existence. Android for an embedded system APIs into applications. Opposed to the platform, taking into account recent desktop experience, users of mobile Android runs daily on millions of developments in both embedded Linux phones and tablets are very alert by devices, accumulating testing time and embedded Android. By discussing the disruptive UI design choices. These beyond the scope of any embedded requirements of Android hardware and include delayed responsiveness or non system application in the field. Bug shedding light into the process of porting intuitive interaction. While creating reports are filed on a regular basis and Android to a new platform, this custom design patterns for an embedded most important of all, Android is under document aims to clarify the current application make sense in selected cases, nonstop development and progression. state of Android in the embedded the user values recognising UI patterns Driven by the industry's motivation of systems' industry. across all their devices. offering Android systems to the consumer, it is a major concern of Google While some suppliers are already 2. Java and Android Development Tools and their partners to account for offering a version of Android for their Android's quality and continuous hardware, the question arises if and how Due to the nature of the Android iteration. to update to a more recent version of the internals, it is possible to run Java code system. Taking into account benefits and very efficiently even on low resource challenges, it demonstrates how to ARM systems. Android’s core system is April 2014, Nexus-Computing GmbH Switzerland - www. nexus-computing.ch - [email protected] Moving Towards Embedded Android When comparing Android's software 5. Linux access to this new stack is given by the stack to a typical embedded Linux setup, "ndc" tool, which is only partially a significantly higher level of complexity Android is based on the Linux kernel. documented and remains for the moment is apparent. Arguably Android’s overall Although the system stack of Android is not very intuitive. stability might suffer from the inherent significantly more complex than a complexity of the middleware. classical embedded Linux approach, it init: Android uses its own init language Countering this claim is the fact that still features the ability to run Linux (see init.rc) and provides system very hard requirements are set for applications in parallel. Particularly, this initialization via rc scripts. With version Android’s operability by Google and their is a way to incorporate already available Kitkat, init.rc is now universal for all partners since non optimal user middleware into Android. The often Android systems, and platform specific experience will directly impact sales found IPC through socket daemons are initialization is done exclusively in other figures of devices. therefore portable to the Android files such as init.${platform}.rc or init. platform with little effort. Certainly, ${platform}.usb.rc. Although rc files 4. Ahead of time bindings to the UI still need to be appear similar to shell scripts, only a addressed with proper implementation. small subset of Linux commands are Provided, Android's propagation in the However, depending on the architecture, available at their disposal. embedded industry is still in early it might not even be necessary to write stages. Yet, the demand sources in the JNI bindings for existing applications, as toolbox: embedded Linux engineers are foresight of market trends. There are long as the middleware offers accessible used to have access to busybox’s firm believers who take the risk to invest communication such as UNIX sockets. extensive utilities. Android does not into Android at this time, in order to be feature a built-in busybox but instead one step ahead of competition in the The common pitfalls when moving from offers the toolbox, which is a rather future. Linux to Android limited utility. Early versions did not even include a “cp” command and many In general, clients intend to develop 1. Different tools compared to Linux other tools familiar to Linux engineers modular and extendable software are still absent or handled by other applications for their customers in order There are numerous user space tools utilities not present in standard to simplify the development process. which are absent in Android (current embedded Linux distributions. With tools such as the ADT Bundle or the version Kitkat). Parts of the system will Fortunately, it is not very difficult to Android Studio, this demand can be also throw the most experienced Linux install a fully functional busybox in covered in an elegant manner. While not engineer off the rails. parallel on a target Android platform. necessarily a technical advantage of the platform, these arguments rest on ifconfig, route, dhcpcd: Android recently user, group: Android heavily relies on features such as extensibility and introduced a very distinct system for Linux permissions for the filesystem. Yet maintainability of Android applications handling network interfaces, routes, dns, one of the most helpful tools in order to in general. gateways, etc. The OS has built an entire modify access rights is missing. There is stack around the IP tools which is no groupadd nor useradd. Some written in Java and accessed by the functionality is exposed by the package Android framework. As a developer, the manager (pm) tool, yet it is very limited. April 2014, Nexus-Computing GmbH Switzerland - www. nexus-computing.ch - [email protected] Moving Towards Embedded Android For adding a specific user to Android, the runtime. A large portion is set during Generally Android treats the underlying header file android_filesystem_config.h Android compile time. file system as distinctly partitioned for needs to be adjusted and fundamental its purpose. By default it expects two parts of Android need to be recompiled. => make symbols: By setting make partitions at least: system (readonly) and variables in the various *.mk files of the data (rw) and additionally expects a system, switches in the make process are cache partition, a recovery partition and 2. Unorthodox settings and build time set. an external partition. It is however flags. possible to deploy Android into only one => CFLAGS: usually flags are not set by physical partition as well. env: Android has a rather controversial hand, but by checking make variables behaviour with system preferences. ifneq(...). ifdefs are found in various One of the most common mistakes made There are multiple systems in place to do segments of Android and usually have a when deploying Android, is exporting the the same thing: tell Android what to do large impact on system behaviour. file systems with wrong user and group at runtime. Almost all of their switches permissions or wrong file stats. Due to are poorly documented, if at all. => config.xml: the fact that a lot of thought went into the resource file found under making Android secure, not only will => getprop,setprop: these are the tools to frameworks/base/core/res/res/values Android refuse to boot if stats and set system wide properties. Like found in defines many switches for the Java based permissions are not set accordingly, but default.prop or system/build.prop they Android middleware. Loaded only at also since recently SELinux is in place to define how Android behaves. They are runtime but not directly editable after determine if access to the file system closely tied to init and some of them deployment. breaks the predefined rules. trigger actions which can be controlled by the "on property" instruction of the rc In general there is a large amount of Android ARM Platforms for Embedded init files. system options that get set during Systems compile time. While understandable for => sql settings: many settings on the reasons of easing software architecture, Although there is quite an amount of application level are extracted during this is certainly a downside to other chipset manufacturers offering Android runtime from an sql database. The operating systems.
Recommended publications
  • IBM Security Maas360 with Watson Consolidated Device Use Cases
    IBM Security MaaS360 with Watson A deep dive into how MaaS360 supports any device and any operating system Introduction Apple iOS, macOS, & iPadOS Google Android & Chrome OS Microsoft Windows Ruggedized & IoT Request a demo The basics This is your primer on IBM Security MaaS360 with Watson, IBM’s industry-leading unified endpoint management (UEM) solution. Before we dive in, let’s make clear that, of course, any enrolled device can be locked to the passcode screen, pinged for its last known location, wiped remotely, have a passcode configured, have WiFi networks and VPN profiles distributed, and all of the other basic functions expected from bare bones mobile device management (MDM). But in this era of instant connectivity, an increasingly mobile workforce, and the expansion of non-traditional wearable, ruggedized, and virtualized endpoints, we wanted to make sure you get a little bit more out of the content you download. That said, if you’re still curious what else IBM Security MaaS360 can do once you’ve finished thumbing through here, take it for a spin with a free trial or connect with an IBMer for a demo. IBM Security MaaS360 with Watson 2 Introduction Apple iOS, macOS, & iPadOS Google Android & Chrome OS Microsoft Windows Ruggedized & IoT Request a demo Contents Apple iOS, macOS, & iPadOS Google Android & Chrome OS Microsoft Windows Ruggedized & IoT Apple Business Manager (ABM) Android Enterprise enrollment OOBE, Bulk Enrollment, Windows 10 Autopilot Device compliance & security and Over-the-Air (OTA) enrollment Apple device policy
    [Show full text]
  • Cross-App Interference Threats in Smart Homes: Categorization, Detection and Handling
    Cross-App Interference Threats in Smart Homes: Categorization, Detection and Handling Haotian Chi∗, Qiang Zengy, Xiaojiang Du∗, Jiaping Yu∗ ∗Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA yDepartment of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA Email: fhtchi, dux, [email protected], [email protected] Abstract—A number of Internet of Things (IoTs) platforms a smart door lock via an IoT app to break into homes, which have emerged to enable various IoT apps developed by third- is impossible in non-appified IoT systems. party developers to automate smart homes. Prior research mostly Fernandes et al. [22] discover design flaws such as the concerns the overprivilege problem in the permission model. Our work, however, reveals that even IoT apps that follow overprivilege problem in Samsung’s SmartThings, one of the the principle of least privilege, when they interplay, can cause most mature smart home platforms; they demonstrate that unique types of threats, named Cross-App Interference (CAI) malicious apps can be constructed to expose smart homes to threats. We describe and categorize the new threats, showing severe attacks that exploit the overprivilege problem. Thus, that unexpected automation, security and privacy issues may be some systems are proposed to handle the problem. ContexIoT caused by such threats, which cannot be handled by existing IoT security mechanisms. To address this problem, we present [29] proposes a context-based permission system to involve HOMEGUARD, a system for appified IoT platforms to detect users into making decisions on whether a security-critical and cope with CAI threats.
    [Show full text]
  • Android Things 2021 Project Sample
    Lecture #3 Developer Platform Android Things 2021 Project Sample • Prerequisites • SDK Tools at least 25.0.3. • SDK with API 27 or higher. 9.0 Pie 28 Project Sample • Prerequisites • SDK Tools at least 25.0.3. • SDK with API 27 or higher. 9.0 Pie 28 Project Sample • Prerequisites • SDK Tools at least 25.0.3. • SDK with API 27 or higher. Minimum 9.0 Pie 28 Project Sample • Prerequisites • SDK Tools at least 25.0.3. • SDK with API 27 or higher. Minimum Recommended 9.0 Pie 28 Create the Project Create the Project • Select Android Things as the only form factor. Create the Project • Select Android Things as the only form factor. • Ensure that API 27 is selected. • Check AndroidX artifact. Create the Project • Select Android Things as the only form factor. • Ensure that API 27 is selected. • Check AndroidX artifact. • Ensure that the activity will start automatically on boot Key Generated Changes • Build.gradle changes. dependencies { ... compileOnly 'com.google.android.things:androidthings:+' } Key Generated Changes • Manifest file changes. <application> <uses-library android:name="com.google.android.things"/> <activity android:name=".HomeActivity"> <!-- Launch activity as default from Android Studio --> <intent-filter> <action android:name="android.intent.action.MAIN"/> <category android:name="android.intent.category.LAUNCHER"/> </intent-filter> <!-- Launch activity automatically on boot, and re-launch if the app terminates. --> <intent-filter> <action android:name="android.intent.action.MAIN"/> <category android:name="android.intent.category.HOME"/>
    [Show full text]
  • Google Cloud Iot Core and I.MX7D Development Platform for Android Things
    Google Cloud IoT Core and i.MX7D Development Platform for Android Things Quick Start Guide 1. Overview This tutorial helps developers get started with the NXP based development platform for Android Things – PICO-i.MX7D board, software support, and the Google Cloud IoT Core. Specifically, it walks through the hardware setup, Android Things image build, board booting process, and how to enable and publish a sensor hub demo on a Google Cloud IoT PubSub topic. Refer to page 13, section 12 for the Google Cloud IoT demo and setup. Code development, build, and unit testing take place on the developer’s host computer. The resulting image is flashed to the target hardware for further integration testing and debugging over USB or Ethernet. Just as Android Things is Android-based, the software development leverages Android development tools including ADB (Android Development Bridge) and FASTBOOT mode to interact with the target. This development platform together with the Board Support Package software aim to enable faster development of IoT devices based on Android Things, and flexible hardware/software customization needed for the particular device. 2. Hardware Requirement The development kit contains: PICO-i.MX7D-eMMC System-On-Module (SOM) • PICO- carrier board (pre-assembled with the SOM) Besides, other required materials include: • Cables: For ADB/FASTBOOT/MFGTool o USB type-A to USB type-C cable Serial console: o USB type-A to micro USB • WiFi antenna (IPEX interface) 3. Getting Familiar with the Development Platform For more information on the platform, go to the following link: https://www.technexion.com/support/download-center/?wpv-product=pico-imx7- emmc&wpv_aux_current_post_id=78&wpv_view_count=181-TCPID78 The key interfaces of the board are shown in Figure 1: USB to serial console convertor interface (Number 1 in figure 1) WiFi+Bluetooth antenna connector (Number 5 in figure 1) Microphone and headphone jack (Number 3 in figure 1) USB OTG (USB Type-C) and power supply interface (Number 4 in figure 1) Figure 1.
    [Show full text]
  • U-Boot with Chrome OS and Firmware Packaging
    U-Boot with Chrome OS and firmware packaging Simon Glass [email protected] Open Source Firmware Conference 2018 Agenda ● Intro ● U-Boot verified-boot implementations ● Implementing Chrome OS verified boot in U-Boot ● Little demo ● The firmware packaging problem ● Binman 2 About me ● Embedded software most of my career ● Mostly ARM, Linux, electronics (ARM, Bluewater Systems) ● Got into U-Boot in 2011 ○ 'Snow' firmware lead, then upstreamed about 1200 patches ● Have been dabbling on and off since then ○ Sandbox, driver model, buildman, binman, dtoc, rockchip, tegra ○ About 4200 commits, mostly while working in Payments ○ Briefly x86 maintainer, one-time Rockchip, now just DM and DT ● Interests ○ ARM laptops ○ Run-time configuration in firmware ○ Colorado beers (including Coors Light) 3 U-Boot - Universal Boot Loader ● Widely used boot loader for embedded systems ● About 1200 boards, wide architecture support ● Small, fast, simple, portable, configurable ● Large, active user / developer community ● Vast array of features to enable ○ Strong driver model ○ Run-time configuration (device tree, of-platdata) ○ Filesystems, networking, scripting, EFI ○ Small code size ○ Last device loading, fast boot ○ Easy to hack ○ Test framework and wide array of native tests 4 U-Boot supports... ● U-Boot verified boot ○ Uses FIT ○ Sign 'configurations' consisting of FPGA/kernel/ramdisk etc. ○ Supports multiple signatures ● Android Verified Boot ○ A/B selection, rollback protection, chained partitions ○ Locked / unlocked state ○ Used with Android things (e.g. Raspberry Pi) ● Not Chrome OS verified boot ○ Code from 2013 culled and reused, but U-Boot's support has atrophied ○ Migrated into coreboot etc. ○ What would it take to get it running again in 2018? 5 Why support Chrome OS verified boot in U-Boot? ● Chrome OS verified boot maps onto embedded systems well ○ Small resource requirements ○ User-friendly firmware screens and recovery ○ Auto-update and rollback support ○ Good security record ● U-Boot is the most widely used boot loader in the embedded world ○ E.g.
    [Show full text]
  • Spriot 6UL Development Platform for Android Things
    SprIoT 6UL Development Platform for Android Things Quick Start Guide 1. Overview This tutorial helps new developers get started with the NXP based development platform for Android Things – SprIoT 6UL board, and software support. Specifically, it walks through the hardware setup, Android Things image build and board booting process. Code development, build, and unit testing take place on the developer’s host computer. The resulting image is flashed to the target hardware for further integration testing and debugging over USB or Ethernet. Just as Android Things is Android-based, the software development leverages Android development tools including ADB (Android Development Bridge) and FASTBOOT mode to interact with the target. This development platform together with the Board Support Package software aim to enable faster development of IoT devices based on Android Things, and flexible hardware/software customization needed for the particular device. 2. Hardware Requirement The development kit contains: SprIoT 6UL System-On-Module (SOM) • EVK6UL-Base Board • DC power supply The power adapter specification is rated as follows: DC output voltage: 5V DC output Current: 2A DC plug dimensions (mm): 5.5 +/- 0.05 (OD) x 2.1 +/- 0.05 (ID) x 10 +/- 0.3 (L) Besides, other required materials include: • Cables: For ADB/FASTBOOT/MFGTool o USB type-A to Micro USB cable Serial console: o USB type-A to Micro USB cable 3. Getting Familiar with the Development Platform The key interfaces of the board are shown in Figure 1: Boot mode switch to choose boot mode or download mode for the device. 5V power supply interface. Power switch.
    [Show full text]
  • Android Things: Internals and Cute Embedded Nonsense Hacks
    Android Things: Internals and cute embedded nonsense hacks Embedded Linux Conference 2017 Karim Yaghmour +karimyaghmour, @karimyaghmour [email protected] 1 These slides are made available to you under a Creative Commons Share- Delivered and/or customized by Alike 3.0 license. The full terms of this license are here: https://creativecommons.org/licenses/by-sa/3.0/ Attribution requirements and misc., PLEASE READ: ● This slide must remain as-is in this specific location (slide #2), everything else you are free to change; including the logo :-) ● Use of figures in other documents must feature the below “Originals at” URL immediately under that figure and the below copyright notice where appropriate. ● You are free to fill in the “Delivered and/or customized by” space on the right as you see fit. ● You are FORBIDEN from using the default “About” slide as-is or any of its contents. ● You are FORBIDEN from using any content provided by 3rd parties without the EXPLICIT consent from those parties. (C) Copyright 2017, Opersys inc. These slides created by: Karim Yaghmour Originals at: www.opersys.com/community/docs 2 About ● Author of: ● Introduced Linux Trace Toolkit in 1999 ● Originated Adeos and relayfs (kernel/relay.c) ● Training, Custom Dev, Consulting, ... 3 Agenda 1. A bit of history 2. Legacy Architectures 3. The Brillo/Weave Intermezzo 4. Now back to your regular programming 5. Hardware 6. “Things” Architecture 7. Images 8. User-Space 9. Services / Daemons 10. APIs 11. Apps 12. What if I told you ... ? 4 1. A bit of history ● Embedded Linux ● Android ● Headless Android ● Brillo ● Android Things 5 1.1.
    [Show full text]
  • Diseño Y Desarrollo De Proyectos Con ANDROID THINGS
    Grado Ingeniería de Sistemas Audiovisuales 2017-2018 Trabajo Fin de Grado Diseño y desarrollo de proyectos con ANDROID THINGS David González Ramos Tutores Mª Celeste Campo Vázquez Carlos García Rubio Leganés, Septiembre 2018 Trabajo de Fin de Grado Diseño y desarrollo de proyectos con Android Things TÍTULO: DISEÑO Y DESARROLLO DE PROYECTOS CON ANDROID THINGS AUTOR: DAVID GONZÁLEZ RAMOS TUTORES: Mª CELESTE CAMPO VÁZQUEZ CARLOS GARCIA RUBIO EL TRIBUNAL PRESIDENTE: Luis Sánchez Fernández SECRETARIO: David Ramírez García VOCAL: Cristina Brandle Cerqueira 1 Trabajo de Fin de Grado Diseño y desarrollo de proyectos con Android Things “If one is master of one thing and understands one thing well, one has at the same time, insight into and understanding of many things.” Vicent Van Gogh 2 Trabajo de Fin de Grado Diseño y desarrollo de proyectos con Android Things Agradecimientos Quiero dejar por escrito mi agradecimiento a todas las personas que, de forma directa u indirecta, han formado parte en la realización de este proyecto. Para comenzar a mis tutores, por hacerme ver con su asignatura la infinidad de desarrollos posibles y por su apoyo a lo largo del TFG. A mi familia, por su apoyo incondicional y por aguantar todos los momentos difíciles a lo largo de la carrera. A mi pareja, por ser mi principal fuente de apoyo. A mis magníficos compañeros de universidad, por ayudarme en tantas asignaturas y darme la motivación necesaria para terminar. A la música. Muchas gracias. 3 Trabajo de Fin de Grado Diseño y desarrollo de proyectos con Android Things 4 Trabajo de Fin de Grado Diseño y desarrollo de proyectos con Android Things Resumen Este proyecto se basa en el estudio de la nueva plataforma para el Internet de las Cosas de Google llamada Android Things.
    [Show full text]
  • 'Nearby Connections' on Android
    Nearby Threats: Reversing, Analyzing, and Attacking Google’s ‘Nearby Connections’ on Android Abstract—Google’s Nearby Connections API enables any An- The Nearby Connections API is implemented as part of droid (and Android Things) application to provide proximity- Google Play Services. Google Play Services is a proprietary, based services to its users, regardless of their network connectivity. closed-source and obfuscated library that allows Google to The API uses Bluetooth BR/EDR, Bluetooth LE and Wi-Fi to let provide the same services to any Android and Android Things “nearby” clients (discoverers) and servers (advertisers) connect application, regardless of the version of the operating systems. and exchange different types of payloads. The implementation of The API is compatible with any Android device, version the API is proprietary, closed-source and obfuscated. The updates of the API are automatically installed by Google across different 4.0 or greater, and it is updated by Google without user versions of Android, without user interaction. Little is known interaction [31]. An attacker who can exploit this API can publicly about the security guarantees offered by the API, even target any application using Nearby Connections in any Android though it presents a significant attack surface. mobile and IoT device. This implies a large attacker surface and represents a critical threat with severe consequences such as In this work we present the first security analysis of the data loss, automatic spread of malware, and distributed denial Google’s Nearby Connections API, based on reverse-engineering of service. of its Android implementation. We discover and implement sev- eral attacks grouped into two families: connection manipulation The design specifications and implementation details of the (CMA) and range extension attacks (REA).
    [Show full text]
  • Google Assistant Android Example
    Google Assistant Android Example colourationGuatemalan rehouses Jon fribbles not heavenwardhotheadedly andenough, cynically, is Rod she some? rollick Geologic her educts or utilized,drop-forge Hadleigh doubtfully. never When wrangling Ansell any decrying toppers! his Conversation with image host, and commands to save context and changes relating to parse the virtual environment that utilize pip to use. If this example, but we hear back for example android? Google Assistant app for Android javatpoint. The example android also. The example with assistant needs to install rasa server, replacing the example android. Not an amazon echo vs nest home as triggers, it without reaching for example android, and hassle free for more information. Google assistant to a news, so selecting a google assistant android example? Try it whether alternate Nest smart speakers Android phones or a denim jacket. You are using google. Google Assistant is less artificial intelligencepowered virtual assistant developed by Google. In other recent launches, content for example, there should review process for a communication with simple project on your comment for example android. The google assistant google assistant integration for some of development a routine suggestions, alexa developer entity defined entity will be useful description of your data. Fi password, just scratch the assistant to remember where you judge them leave what type is. We will work across devices, and nest hub and best google, google assistant was traced to utilize the training phrase. It at google assistant android example below stand out your agent, and the example that optimize android tv or any song or, a virtual environment where our device.
    [Show full text]
  • Android Studio 4.1 Development Essentials
    Android Studio 4.1 Development Essentials Java Edition Android Studio 4.1 Development Essentials – Java Edition ISBN-13: 978-1-951442-26-2 © 2020 Neil Smyth / Payload Media, Inc. All Rights Reserved. This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly prohibited. All rights reserved. The content of this book is provided for informational purposes only. Neither the publisher nor the author offers any warranties or representation, express or implied, with regard to the accuracy of information contained in this book, nor do they accept any liability for any loss or damage arising from any errors or omissions. This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the respective trademark owner. The terms used within this book are not intended as infringement of any trademarks. Rev: 1.0 Contents Table of Contents 1. Introduction ............................................................................................................................................... 1 1.1 Downloading the Code Samples ....................................................................................................... 1 1.2 Feedback ............................................................................................................................................... 2 1.3 Errata..................................................................................................................................................... 2 2. Setting up an
    [Show full text]
  • Android Things Projects
    Android Things Projects Effeciently build IoT projects with Android Things Francesco Azzola BIRMINGHAM - MUMBAI < html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://www.w3.org/TR/REC- html40/loose.dtd"> Android Things Projects Copyright © 2017 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. First published: June 2017 Production reference: 1290617 Published by Packt Publishing Ltd. Livery Place 35 Livery Street Birmingham B3 2PB, UK. ISBN 978-1-78728-924-6 www.packtpub.com Credits Author Copy Editor  Francesco Azzola Safis Editing Reviewers  Project Coordinator Ali Utku Selen Kinjal Bari Raimon Rà fols Montane Commissioning Editor  Proofreader  Vijin Boricha Safis Editing Acquisition Editor  Indexer  Namrata Patil Mariammal Chettiyar Content Development Editor  Graphics  Mamata Walkar Kirk D'Penha Technical Editor  Production Coordinator Varsha Shivhare Melwyn Dsa About the Author Francesco Azzola is an electronic engineer with over 15 years of experience in computer programming and JEE architecture.
    [Show full text]