Complete Dichotomy of Some Challenging Problems in Graph Theory✩ Celina M.H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Strong Perfect Graph Theorem
Annals of Mathematics, 164 (2006), 51–229 The strong perfect graph theorem ∗ ∗ By Maria Chudnovsky, Neil Robertson, Paul Seymour, * ∗∗∗ and Robin Thomas Abstract A graph G is perfect if for every induced subgraph H, the chromatic number of H equals the size of the largest complete subgraph of H, and G is Berge if no induced subgraph of G is an odd cycle of length at least five or the complement of one. The “strong perfect graph conjecture” (Berge, 1961) asserts that a graph is perfect if and only if it is Berge. A stronger conjecture was made recently by Conforti, Cornu´ejols and Vuˇskovi´c — that every Berge graph either falls into one of a few basic classes, or admits one of a few kinds of separation (designed so that a minimum counterexample to Berge’s conjecture cannot have either of these properties). In this paper we prove both of these conjectures. 1. Introduction We begin with definitions of some of our terms which may be nonstandard. All graphs in this paper are finite and simple. The complement G of a graph G has the same vertex set as G, and distinct vertices u, v are adjacent in G just when they are not adjacent in G.Ahole of G is an induced subgraph of G which is a cycle of length at least 4. An antihole of G is an induced subgraph of G whose complement is a hole in G. A graph G is Berge if every hole and antihole of G has even length. A clique in G is a subset X of V (G) such that every two members of X are adjacent. -
Decomposing Berge Graphs and Detecting Balanced Skew Partitions Nicolas Trotignon
Decomposing Berge graphs and detecting balanced skew partitions Nicolas Trotignon To cite this version: Nicolas Trotignon. Decomposing Berge graphs and detecting balanced skew partitions. 2006. halshs- 00115625 HAL Id: halshs-00115625 https://halshs.archives-ouvertes.fr/halshs-00115625 Submitted on 22 Nov 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Centre d’Economie de la Sorbonne UMR 8174 Decomposing Berge graphs and detecting balanced skew partitions Nicolas TROTIGNON 2006.36 Maison des Sciences Économiques, 106-112 boulevard de L'Hôpital, 75647 Paris Cedex 13 http://mse.univ-paris1.fr/Publicat.htm ISSN : 1624-0340 Decomposing Berge graphs and detecting balanced skew partitions Nicolas Trotignon∗ April 26, 2006 Abstract A hole in a graph is an induced cycle on at least four vertices. A graph is Berge if it has no odd hole and if its complement has no odd hole. In 2002, Chudnovsky, Robertson, Seymour and Thomas proved a decomposition theorem for Berge graphs saying that every Berge graph either is in a well understood basic class or has some kind of decomposition. Then, Chudnovsky proved stronger theorems. One of them restricts the allowed decompositions to 2-joins and balanced skew partitions. -
Some Properties of Minimal Imperfect Graphs L Chinh T
DISCRETE MATHEMATICS ELSEVIER Discrete Mathematics 160 (1996) 165 175 Some properties of minimal imperfect graphs l Chinh T. Hofing Department of Mathematical Sciences, Lakehead ~)TiversiO,, Thunder Bay, Ontario, Cana~kl P7B-5E1 Received 30 November 1993; revised 29 November 1994 Abstract The Even Pair Lemma, proved by Meyniel, states that no minimal imperfect graph contains a pair of vertices such that all chordless paths joining them have even lengths. This Lemma has proved to be very useful in the theory of perfect graphs. The Odd Pair Conjecture, with 'even' replaced by 'odd', is the natural analogue of the Even Pair Lemma. We prove a partial result for this conjecture, namely: no minimal imperfect graph G contains a three-pair, i.e. two nonadjacent vertices Ul, u2 such that all chordless paths of G joining ul to u2 contain precisely three edges. As a by-product, we obtain short proofs of two previously known theorems: the first one is a well-known theorem of Meyniel (a graph is perfect if each of its odd cycles with at least five vertices contains at least two chords), the second one is a theorem of Olariu (a graph is perfect if it contains no odd antihole, no Ps and no extended claw as induced subgraphst. 1. Introduction A graph G is said to be perfect if for each induced subgraph H of G, the chromatic number z(H) of H equals the number co(H) of vertices in a largest clique of H. For background results on perfect graphs, see [2, 10]. A graph is minimal imperJect if it is not perfect but all of its proper induced subgraphs are perfect. -
Maximum Induced Matching Algorithms Via Vertex Ordering Characterizations
Maximum Induced Matching Algorithms via Vertex Ordering Characterizations∗ Michel Habib1 and Lalla Mouatadid2 1 IRIF, CNRS & Université Paris Diderot, Paris, France & INRIA Paris, Gang project [email protected] 2 Department of Computer Science, University of Toronto, Toronto, ON, Canada [email protected] Abstract We study the maximum induced matching problem on a graph G. Induced matchings correspond to independent sets in L2(G), the square of the line graph of G. The problem is NP-complete on bipartite graphs. In this work, we show that for a number of graph families with forbidden vertex orderings, almost all forbidden patterns on three vertices are preserved when taking the square of the line graph. These orderings can be computed in linear time in the size of the input graph. In particular, given a graph class characterized by a vertex ordering, and a G graph G =(V,E) with a corresponding vertex ordering ‡ of V , one can produce (in linear œG time in the size of G) an ordering on the vertices of L2(G), that shows that L2(G) - for a œG number of graph classes - without computing the line graph or the square of the line graph of G. G These results generalize and unify previous ones on showing closure under L2( ) for various graph · families. Furthermore, these orderings on L2(G) can be exploited algorithmically to compute a maximum induced matching on G faster. We illustrate this latter fact in the second half of the paper where we focus on cocomparability graphs, a large graph class that includes interval, permutation, trapezoid graphs, and co-graphs, and we present the first (mn) time algorithm O to compute a maximum weighted induced matching on cocomparability graphs; an improvement from the best known (n4) time algorithm for the unweighted case. -
Bidimensionality and Kernels1,2
Bidimensionality and Kernels1;2 Fedor V. Fomin3;4;5 Daniel Lokshtanov6 Saket Saurabh3;7;8 Dimitrios M. Thilikos5;9;10 Abstract Bidimensionality Theory was introduced by [E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphs, J. ACM, 52 (2005), pp. 866{893] as a tool to obtain sub-exponential time parameterized algorithms on H-minor-free graphs. In [E. D. Demaine and M. Haji- aghayi, Bidimensionality: new connections between FPT algorithms and PTASs, in Proceed- ings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, 2005, pp. 590{601] this theory was extended in order to obtain polynomial time approximation schemes (PTASs) for bidimensional problems. In this work, we establish a third meta-algorithmic direc- tion for bidimensionality theory by relating it to the existence of linear kernels for parameter- ized problems. In particular, we prove that every minor (respectively contraction) bidimensional problem that satisfies a separation property and is expressible in Countable Monadic Second Order Logic (CMSO), admits a linear kernel for classes of graphs that exclude a fixed graph (respectively an apex graph) H as a minor. Our results imply that a multitude of bidimensional problems admit linear kernels on the corresponding graph classes. For most of these problems no polynomial kernels on H-minor-free graphs were known prior to our work. Keywords: Kernelization, Parameterized algorithms, Treewidth, Bidimensionality 1Part of the results of this paper have appeared in [42]. arXiv:1606.05689v3 [cs.DS] 1 Sep 2020 2Emails of authors: [email protected], [email protected], [email protected]/[email protected], [email protected]. -
Clique Stable Separation in Perfect Graphs with No Balanced Skew Partition
Clique-Stable Set Separation in Perfect Graphs with no Balanced Skew-PartitionsI Aur´elieLagouttea,∗, Th´eophileTruncka aLIP, UMR 5668 ENS Lyon - CNRS - UCBL - INRIA, Universit´ede Lyon, 46, all´eede l'Italie, 69364 Lyon France. Abstract Inspired by a question of Yannakakis on the Vertex Packing polytope of perfect graphs, we study the Clique-Stable Set separation in a non-hereditary subclass of perfect graphs. A cut (B; W ) of G (a bipartition of V (G)) separates a clique K and a stable set S if K ⊆ B and S ⊆ W .A Clique-Stable Set separator is a family of cuts such that for every clique K, and for every stable set S disjoint from K, there exists a cut in the family that separates K and S. Given a class of graphs, the question is to know whether every graph of the class admits a Clique-Stable Set separator containing only polynomially many cuts. It was recently proved to be false for the class of all graphs (G¨o¨os2015), but it remains open for perfect graphs, which was Yannakakis' original question. Here we investigate this problem on perfect graphs with no balanced skew-partition; the balanced skew-partition was introduced in the decomposition theorem of Berge graphs which led to the celebrated proof of the Strong Perfect Graph Theorem. Recently, Chudnovsky, Trotignon, Trunck and Vuˇskovi´cproved that forbidding this unfriendly decomposition permits to recursively decompose Berge graphs (more precisely, Berge trigraphs) using 2-join and complement 2-join until reaching a \basic" graph, and in this way, they found an efficient combinatorial algorithm to color those graphs. -
Polynomial-Time Algorithms for the Longest Induced Path and Induced Disjoint Paths Problems on Graphs of Bounded Mim-Width∗†
Polynomial-Time Algorithms for the Longest Induced Path and Induced Disjoint Paths Problems on Graphs of Bounded Mim-Width∗† Lars Jaffke‡1, O-joung Kwon§2, and Jan Arne Telle3 1 Department of Informatics, University of Bergen, Norway [email protected] 2 Logic and Semantics, Technische Universität Berlin, Berlin, Germany [email protected] 3 Department of Informatics, University of Bergen, Norway [email protected] Abstract We give the first polynomial-time algorithms on graphs of bounded maximum induced matching width (mim-width) for problems that are not locally checkable. In particular, we give nO(w)-time algorithms on graphs of mim-width at most w, when given a decomposition, for the following problems: Longest Induced Path, Induced Disjoint Paths and H-Induced Topological Minor for fixed H. Our results imply that the following graph classes have polynomial-time algorithms for these three problems: Interval and Bi-Interval graphs, Circular Arc, Per- mutation and Circular Permutation graphs, Convex graphs, k-Trapezoid, Circular k-Trapezoid, k-Polygon, Dilworth-k and Co-k-Degenerate graphs for fixed k. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, Computations on discrete structures, G.2.2 Graph Theory, Graph algorithms Keywords and phrases graph width parameters, dynamic programming, graph classes, induced paths, induced topological minors Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.21 1 Introduction Ever since the definition of the tree-width of graphs emerged from the Graph Minors project of Robertson and Seymour, bounded-width structural graph decompositions have been a successful tool in designing fast algorithms for graph classes on which the corresponding width-measure is small. -
Report (221.0Kb)
MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH Tagungsbericht Graph Theory The organizers of this meeting on graph theory were Reinhard Diestel and Paul Seymour Besides the normal formal lectures the meeting included a number of informal sessions Each session was concerned with a particular area of graph theory and anyone interested was welcome to attend During these informal meetings participants presented results and op en problems concerning the topic and the audience was en couraged to interrupt with questions counterexamples pro ofs etc These sessions resulted in the resolution of a number of conjectures as well as stimulating collab oration outside the structure of the conference The following is a summary of the sessions followed by a collection of abstracts of the formal talks Session on Innite Graphs Convenor Reinhard Diestel Cycle space in lo cally nite innite graphs Bruce Richter asked how the fact that the fundamental cycles of a nite graph form a basis of its cycle space can b e adapted appropriately to innite graphs In the discussion it emerged that endfaithful spanning trees would play a signicant role here and various mo dels based on these were discussed Richters ob jective was to prove a uniquenessofembedding theorem for connected lo cally nite graphs with suitable compactication such as one p oint at innity for every class of ends pairwise not separated by a nite cycle This led to further informal collab oration later in the week Transitive graphs and Cayley graphs Recalling Woesss problem of whether every lo cally -
Finding a Maximum Induced Matching in Weakly Chordal Graphs
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 266 (2003) 133–142 www.elsevier.com/locate/disc Finding a maximum induced matching in weakly chordal graphs Kathie Camerona;1 , R. Sritharanb;2 , Yingwen Tangb aDepartment of Mathematics, Wilfrid Laurier University, Waterloo, Ont., Canada N2L 3C5 bComputer Science Department, University of Dayton, Dayton, OH 45469, USA Received 4 July 2001; received in revised form 7 May 2002; accepted 12 August 2002 Abstract An induced matching in a graph G is a set of edges, no two of which meet a common vertex or are joined by an edge of G; that is, an induced matching is a matching which forms an induced subgraph. It is known that ÿnding an induced matching of maximum cardinality in a graph is NP-hard. We show that a maximum induced matching in a weakly chordal graph can be found in polynomial time. This generalizes previously known results for the induced matching problem. This also demonstrates that the maximum induced matching problem in chordal bipartite graphs can be solved in polynomial time while the problem is known to be NP-hard for bipartite graphs in general. c 2003 Elsevier Science B.V. All rights reserved. Keywords: Induced matching; Strong matching; Strong edge-colouring; Strong chromatic index; Weakly chordal graphs; Interval-ÿlament graphs; Intersection graphs; Polynomial-time algorithm 1. Introduction A matching in a graph is a set of edges no two of which share an endpoint. An induced matching in a graph is a matching such that no two edges in the matching are joined by any third edge of the graph; that is, an induced matching is a matching which forms an induced subgraph. -
Algorithmic Graph Theory Part III Perfect Graphs and Their Subclasses
Algorithmic Graph Theory Part III Perfect Graphs and Their Subclasses Martin Milanicˇ [email protected] University of Primorska, Koper, Slovenia Dipartimento di Informatica Universita` degli Studi di Verona, March 2013 1/55 What we’ll do 1 THE BASICS. 2 PERFECT GRAPHS. 3 COGRAPHS. 4 CHORDAL GRAPHS. 5 SPLIT GRAPHS. 6 THRESHOLD GRAPHS. 7 INTERVAL GRAPHS. 2/55 THE BASICS. 2/55 Induced Subgraphs Recall: Definition Given two graphs G = (V , E) and G′ = (V ′, E ′), we say that G is an induced subgraph of G′ if V ⊆ V ′ and E = {uv ∈ E ′ : u, v ∈ V }. Equivalently: G can be obtained from G′ by deleting vertices. Notation: G < G′ 3/55 Hereditary Graph Properties Hereditary graph property (hereditary graph class) = a class of graphs closed under deletion of vertices = a class of graphs closed under taking induced subgraphs Formally: a set of graphs X such that G ∈ X and H < G ⇒ H ∈ X . 4/55 Hereditary Graph Properties Hereditary graph property (Hereditary graph class) = a class of graphs closed under deletion of vertices = a class of graphs closed under taking induced subgraphs Examples: forests complete graphs line graphs bipartite graphs planar graphs graphs of degree at most ∆ triangle-free graphs perfect graphs 5/55 Hereditary Graph Properties Why hereditary graph classes? Vertex deletions are very useful for developing algorithms for various graph optimization problems. Every hereditary graph property can be described in terms of forbidden induced subgraphs. 6/55 Hereditary Graph Properties H-free graph = a graph that does not contain H as an induced subgraph Free(H) = the class of H-free graphs Free(M) := H∈M Free(H) M-free graphT = a graph in Free(M) Proposition X hereditary ⇐⇒ X = Free(M) for some M M = {all (minimal) graphs not in X} The set M is the set of forbidden induced subgraphs for X. -
The Graphs with Maximum Induced Matching and Maximum Matching
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 299 (2005) 49–55 www.elsevier.com/locate/disc The graphs with maximum induced matching and maximum matching the same sizeଁ Kathie Camerona, Tracy Walkerb aDepartment of Mathematics, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5 bDepartment of Mathematics, University of Calgary, Calgary, AB, Canada T2N 1N4 Received 2 October 2003; received inrevised form 30 June2004; accepted 1 July 2004 Available online 10 August 2005 Abstract Kobler and Rotics gave a polytime algorithm for deciding if a graph has maximum induced matching and maximum matching the same size, and for finding a maximum induced matching in a graph where equality holds. We give a simple characterizationof these graphs. Our characterizationprovides a simpler recognition algorithm. © 2005 Elsevier B.V. All rights reserved. Keywords: Matching; Induced matching; Perfect graph; Optimization problems; Matroid A matching ina graph is a set of edges, notwo of which meet a commonvertex. An induced matching M ina graph G is a matching where no two edges of M are joined by an edge of G. The problem of finding a maximum induced matching is NP-hard, even for bipartite graphs [2,15] and for planar graphs of maximum degree 4 [12]. The maximum induced matchingproblem canbe solved inpolytime for weakly chordal graphs [4], asteroidal triple-free graphs [3,5], and many classes of intersection graphs [2,3,8,9] including interval- filament graphs [3]. Interval-filament graphs [7] include co-comparability graphs [7,10] and polygon–circle graphs [7], and the latter include circle graphs, circular arc graphs [11], chordal graphs [14], and outerplanar graphs (see [14]). -
Perfect Graphs the American Institute of Mathematics
Perfect Graphs The American Institute of Mathematics This is a hard{copy version of a web page available through http://www.aimath.org Input on this material is welcomed and can be sent to [email protected] Version: Tue Aug 24 11:37:57 2004 0 The chromatic number of a graph G, denoted by Â(G), is the minimum number of colors needed to color the vertices of G in such a way that no two adjacent vertices receive the same color. Clearly Â(G) is bounded from below by the size of a largest clique in G, denoted by !(G). In 1960, Berge introduced the notion of a perfect graph. A graph G is perfect, if for every induced subgraph H of G, Â(H) = !(H). A hole in a graph is a chordless cycle of length greater than 3, and it is even or odd depending on the number of vertices it contains. An antihole is the complement of a hole. It is easily seen that odd holes and odd antiholes are not perfect. Berge conjectured that these are the only minimal imperfect graphs, i.e., a graph is perfect if and only if it does not contain an odd hole nor an odd antihole. (When we say that a graph G contains a graph H, we mean as an induced subgraph). This was known as the Strong Perfect Graph Conjecture (SPGC), whose proof has been announced recently. 0This document was organized by Maria Chudnovsky as part of the lead-in and followup to the ARCC focused workshop \The Perfect Graph Conjecture," October 29 to Novenber 2, 2002.