A New Family of Bird-Like Dinosaurs Linking Laurasia and Gondwanaland

Total Page:16

File Type:pdf, Size:1020Kb

A New Family of Bird-Like Dinosaurs Linking Laurasia and Gondwanaland Journal of Vertebrate Paleontology 5(2):133-138, June 1985 A NEW FAMILY OF BIRD-LIKE DINOSAURS LINKING LAURASIA AND GONDWANALAND M. K. BRETT-SURMAN' and GREGORY S. PAUU 'Department of Geology, Division of Geobiology, George Washington University, Washington, D.C. 20052 23109 N. Calvert St., Baltimore, Maryland 21218 ABSTRACT - A new family oftheropod dinosaurs is described based on metatarsi f:T0m~ o~h ~merica and Argentina. Because birds are theropod descendants, there are.often proble~s ill assigning isolated metatarsi to the proper group. Differences between the metatarsi of ground birds ~d theropods are detailed. In particular, it is shown that the length/width ratio of articulated metatarsi cannot be used to distinguish higher taxa. This new family represents the first occurrence ofthe same.genus of theropod dinosaur from both Laurasia and Gondwanaland at the end of the Cretaceous, a time when the two supercontinents were supposedly still separate. INTRODUCTION nia (Berkeley); UNT = Universidad Nacional de Tu- cuman. In 1975, an expedition from the University ofCal- ifornia (Berkeley) collecting in the Hell Creek For- mation (Cretaceous, Maastrichtian) of Mo?tana, ~e- THEROPOD AND BIRD METATARSI covered fragments of fossil bird bones associated WIth A series of studies conclusively demonstrates that dinosaurian and other reptilian remains. This collec- theropod dinosaurs and birds have an ancestor-de- tion included a complete metatarsus (UCMP 117600, scendantrelationship (Ostrom, 1974, 1976;Bakker and Fig. 3A-I) that was called dinosaurian by neo0!lli- Galton, 1974; Bakker, 1975; Osmolska, 1981; Padian, thologists but avian by most dinosaur paleontologists! 1982; Paul, 1984; Benton, 1984; Paul and Carpenter, The question then arose as to how to separate the unpublished). As a consequence, there is considerable metatarsi of dinosaurs morphologically from those of morphological similarity and parallel evolution be- birds. While pursuing this problem, the authors ex- tween the two clades. In particular, there often are amined the material from the Lecho Formation (Cre- problems in assigning isolated theropod or bird-like taceous Maastrichtian?) of Argentina, at that time on metatarsi, such as those discussed herein, to the proper loan to'the University of Florida and to the British group. Museum (Natural History) in London. This material Traditionally, two characteristics used to separate (with the exception of a metatarsus on. loan to the birds from theropods are the length/width (L/W) ratio University of Florida), was recently descnbed as a new of the metatarsus and the degree offusion of the meta- subclass of birds (Walker, 1981), the Enantiornithes. tarsus. As an example, Sagittarius (the Secretary bird) In this unassociated and mixed assemblage are two has a LlW ratio of 31/1 while Allosaurus (a Jurassic metatarsi (Figs.2K-L, 3J-P) that closelyresemble, and theropod) has a LlW ratio of only 2.5/1. Figure 1shows share derived characters with, the metatarsus from that the overlap of the two clades (birds and theropods) Montana (UCMP 117600)described here. These meta- is almost total for animals with a metatarsus longer tarsi mark the first occurrence of the same Cretaceous than 80 mm, based ori a sample of 31 families of di- dinosaur genus from both Laurasia and Gondwana- nosaurs and birds. Consequently, the length/width ra- land at the end of the Mesozoic, a time when the two tio of the metatarsus can no longer be considered a supercontinents were supposedly still separate ~Kauff- valid criterion for separating birds from theropods and man, 1977; Rage, 1981). This supports an earher ~y- other dinosaurs. It must be emphasized that in the pothesis (Brett-Surman, 1979) of a land connection fossil record, size alone cannot be used to distinguish between North and South America based on the pa- taxa without reference to actual structural and mor- leobiogeography of hadrosaurs and ceratopsians phological features. (Reptilia; Omithischia). Birds have a fused metatarsus while that of thero- Institutional Abbreviations- BMNH = British Mu- pods is typically unfused. Fusion of this element, or a seum (Natural History), London; HMN = Humboldt less extensive coossification, is known to occur in the Museum Berlin' JM = Jura Museum, Eichstatt; PU = theropods Ceratosaurus (Gilmore, 1920), Coelophysis Princeto~ Univ~rsity; UCMP = University of Califor- (Raath, 1969, =Syntarsus, Paul, 1984), Elmisaurus © 1985 by the Society of Vertebrate Paleontology l33 3 TABLE L Characteristics of metatarsi that separate birds and dinosaurs. Birds Dinosaurs 1) Metatarsal fusion distal 1) Fusion rare, restricted to 2-----/ at first, then: proceeds proximal end; bundle I I proximally; metatarsal coossification rare; com- I I I I bundle fusion complete. plete bundle fusion ab- I I sent. I I Metatarsal III proximally Often proximally I 3 I 2) 2) 2 pinched, not visible in pinched and visible over / I anterior view at proxi- entire length. mal end. II 4A " I 5/ 1~ I 3) Foramen present be- 3) No such foramen. 18BI 6 ~~ tween metatarsals III & IV. 9 19 /10 8/ /1 4) Distal tarsals always 4) Complete fusion absent, 11 / completely fused to except in Elmisaurus. HA'®P 13 Q//16 E metatarsals in adults. I 12 / F 150 / I 5) Hypotarsus very promi- 5) Hypotarsus moderately 1 I // nent, developed behind developed behind meta- II,J / metatarsal III (except tarsals II & IlL 14 .•.• L K/G H esperornis ), N ~M in Archaeopteryx is more closely related to age and R. health. In Elmisaurus, it may be the normal condition w (Osmolska, 1981). Table 1 lists five characteristics of metatarsi. Each characteristic may occur in both groups with varying 2 3 degrees of frequency, but taken as two "character l suites," they reliably separate the metatarsi of thero- FIGURE 1. A log-log scale of the length (X-axis) versus pods from those of post-Archaeopteryx birds. the midshaft diameter or width (Y-axis) of metatarsi in nat- Theropod and avian metatarsi represent an excellent ural articulation. Integers on the axes are powers of 10 mea- example of both the similarities and the differences sured in millimeters. Numbers refer to bipedal dinosaurs and that can be found within an ancestor-descendant re- letters refer to birds. @ = A visaurus, • = Dipus (Rodentia, lationship. The similarities include a laterally com- Mammalia). Dinosaurs: 1 = Tyrannosaurus, 2 = Allosaurus, 3 = Ceratosaurus, 4 + 7 = Ornithamimus, 5 + 11 = Dryo- pressed, tridactyl pes in which metatarsal I no longer saurus, 6 = Ornitholestes, 8 = Gallimimus, 9 = Hypsilopho- articulates with the ankle, digit I is a semi-reversed don, 10 = Nanosaurus, 12 = Laosaurus, 13 = Coelophysis, hallux, and metatarsal V is either extremely reduced 14 = Archaeopteryx (postcranially a dinosaur; based on or lost. This adaptive suite is not found in any other BMNH 37001, HMN MB.1880/8L4598), 15 = Compsog- tetrapod clade and may have evolved only once. As nathus, 16 = Struthiomimus, 17 = Macrophalangia, 18 = such, it is an excellent minimum definition of the ther- Velociraptor, 19 = Elmisaurus. Birds: A = Pachyornis, B = opod-bird clade. Diornis (juvenile), C = Diatryma, D = Diornis (adult), E = The differences, however, are also important. In Rhea, F = Dromaeus, G = Sagittarius, H = Pygoscelis, I = birds, fusion of the metatarsal bundle starts distally Pandion, J = Sula, K = Apteryx (juvenile), L = Falco, M = and migrates proximally with ontogeny (Fig. 2). In Aramides, N = Opisthocomus, 0 = Apteryx (juvenile), P = Apteryx (adult), Q = Hesperornis, R = Ichthyornis. The theropods, the coossification is always more pro- regression equation for both birds and dinosaurs, excluding nounced proximally (Fig. 2). This is also the case in the penguin, is Y = L06X - 0.92 and where r = 0.8. the Montana and Argentina metatarsi (Fig. 3). Note that metatarsal fusion/coossification in theropods oc- curs erratically, being found in some, but not all, basal and derived taxa. Almost all birds (except for some (Osmolska, 1981), and in Archaeopteryx (Ostrom, psittacids and spheniscids) including Hesperornis and 1976). Possible occurrences have also been reported Ichthyornis, have a metatarsal III that is proximally in A vipes ('f on Huene, 1932) and in H eterodontosaurus pinched and hidden behind metatarsals II + IV. Vary- (Santa Luca, 1980). Indeed, metatarsal fusion is typical ing degrees of proximal and lateral compression of gracile ungulates, and is also known in a 'rodent (pinching) of metatarsal III is a derived feature found (Rich, 1973). Fusion or coossification in dinosaurs and in the theropod dinosaurs most closely linked to bird 134 JYP 5(2), June 1985 l •••••ABC DE -~"F G ,'; " I' ,!, , I i ; ! i if! i I fl 1 .~ t . ~, !li\ I' \!l y1; ~f •. ~ r ( : I I 'It ~.; I ~ III ._---/ J K L M k-',: :1 .~ . .!( k-' ,~' " i. FIGURE 2. Left metatarsi of dinosaurs and birds in anterior view (shaded) and proximal view (black). A, Ceratosaurus; B, Velociraptor, C, Elmisaurus; D, Archaeopteryx (based on BMNH 37001, HMN MB.1880/81.4598); E, Ichthyornis; F, Hes- perornis; G, Rhea (juvenile); H, Pygoscelis; I, "Enantiornithes," UNT 4021; J, "Enantiornithes" UNT 4053; K, Avisaurid UNT 4048; L, Avisaurus sp., UNT uncataloged specimen; M, Avisaurus archibaldi (holotype); N, mid shaft cross-section of Avisaurus archibaldi; 0, midshaft cross-section of Elmisaurus. Knob for proposed origin ofm. tibialis anticus = k. Figures 2 and 3 by the junior author. ancestry (paul, 1984), and in true birds. Examination the above criteria. However, it is beyond the scope of ofArchaeopteryx(BMNH 37001, JM SoS 2257) shows this paper to settle the higher systematics of Archaeop- a moderate degree of proximal compression of meta- teryx only on the basis of its metatarsus. tarsal III (contra Ostrom, 1976). The Montana and It is readily apparent that the Argentina and Mon- Argentina metatarsi contrast in having a proximally tana metatarsi are more like those of theropods than robust metatarsal III, a condition found elsewhere in of birds. It is possible that these metatarsi are those of such basal theropods as Coelophysis ( =Syntarsus) and enantiornithids, and that the enantiomithids represent Ceratosaurus.
Recommended publications
  • Flying Dromaeosaurs
    A winged, but flightless, Deinonychus by Stephen A. Czerkas FLYING DROMAEOSAURS Stephen A. Czerkas, Dianshuang Zhang, Jinglu Li and Yinxian Li The Dinosaur Museum, 754 South 200 West, Blanding, Utah 84511, USA; Liaoning Provincial Bureau of Land Resources Management, Liaoning Fossil Administration Office, and Liaoning Museum of Paleontology, Left of Nanshan Park, Beipiao, Liaoning Province 122100, People’s Republic of China. The Dinosaur Museum © 2002 Abstract Dromaeosaurs have been regarded as theropod dinosaurs that were among the closest avian ancestors which were strictly terrestrial having not yet evolved the ability to fly. Consequently, phylogenetic analyses have resulted in the claims of birds having evolved from “the ground up” within a dinosaurian ancestry. Though widely accepted, the relationship between birds and dinosaurs has remained highly controversial and disputed by advocates of birds as having been derived from an arboreal, non-dinosaurian type of archosaur. The cladistical interpretation of the dinosaur/bird relationship hinges upon the presumption of the dromaeosaurs inability to fly. Recent discoveries of dromaeosaurs have revealed impressions of feathers and avian characters in the skeleton that nearly equal and even surpass that of Archaeopteryx. Yet despite this, the ability to fly has been discounted due to the shorter length of the forelimbs. Described below are two such dromaeosaurs, but preserved with impressions of primary flight feathers extending from the manus which demonstrate an undeniable correlation towards the ability to fly. This compelling evidence refutes the popular interpretation of birds evolving from dinosaurs by revealing that dromaeosaurs were already birds and not the non-avian theropod dinosaurs as previously believed.
    [Show full text]
  • Tiny Fossil Sheds Light on Miniaturization of Birds
    Retraction Tiny fossil sheds light on miniaturization of birds Roger B. J. Benson Nature 579, 199–200 (2020) In view of the fact that the authors of ‘Hummingbird-sized dinosaur from the Cretaceous period of Myanmar‘ (L. Xing et al. Nature 579, 245–249; 2020) are retracting their report, I wish to retract this News & Views article, which dealt with this study and was based on the accuracy and reproducibility of their data. Nature | 22 July 2020 ©2020 Spri nger Nature Li mited. All rights reserved. drives the assembly of DNA-PK and stimulates regulation of protein synthesis. And, although 3. Dragon, F. et al. Nature 417, 967–970 (2002). its catalytic activity in vitro, although does so further studies are required, we might have 4. Adelmant, G. et al. Mol. Cell. Proteom. 11, 411–421 (2012). much less efficiently than can DNA. taken a step closer to deciphering the 5. Britton, S., Coates, J. & Jackson, S. P. J. Cell Biol. 202, Taken together, these observations suggest mysterious ribosomopathies. 579–595 (2013). a model in which KU recruits DNA-PKcs to the 6. Barandun, J. et al. Nature Struct. Mol. Biol. 24, 944–953 (2017). small-subunit processome. In the case of Alan J. Warren is at the Cambridge Institute 7. Ma, Y. et al. Cell 108, 781–794 (2002). kinase-defective DNA-PK, the mutant enzyme’s for Medical Research, Hills Road, Cambridge 8. Yin, X. et al. Cell Res. 27, 1341–1350 (2017). inability to regulate its own activity gives the CB2 OXY, UK. 9. Sharif, H. et al.
    [Show full text]
  • Mini Page 1.28.15.Indd
    © 2015 Universal Uclick Roaming North America from The Mini Page © 2015 Universal Uclick Land of Dinosaurs Gigantic dinosaurs such as It wasn’t snowing then Tyrannosaurus rex (ty-RAN- Right now, in the middle of the oh-SORE-rus RECKS) and winter, if you look at the states where Triceratops (tri-SER-uh-tops) the Hell Creek Formation is, it is hard ruled western North America 66 to imagine that in the time of the million years ago. dinosaurs it was a rainy, subtropical Dinosaurs had been roaming forest. There were no cold winters. It the Earth for about 165 million would have been much like southern years. And then, in just a few Florida today. years, all dinosaurs but birds The Earth was much warmer 66 were wiped from the planet. million to 68 million years ago, at the Much of what we know end of the Cretaceous (kruh-TAY-shus) about these awesome animals Period. There were no polar ice caps. and the land they ruled comes The planet’s sea levels were much from fossil discoveries in one higher than today. The oceans had set of rocks, the Hell Creek flooded parts of North America, Formation. This layer of rocks creating a huge inland sea. Dinosaurs covers parts of Montana, North lived to the east and west of the sea. Dakota, South Dakota and Wyoming. (It is called the Lance At the top of the Formation in Wyoming.) art, Anzu In November 2014, the (the pink art by Mary Parrish, courtesy Smithsonian National Museum of Natural History Smithsonian’s National dinosaurs) Museum of Natural History in In the background, an Edmontosaurus (ed-MON- roam toh-SAW-rus) travels through a swamp in the through Washington, D.C., opened a new Hell Creek Formation area 66 million years ago.
    [Show full text]
  • A New Raptorial Dinosaur with Exceptionally Long Feathering Provides Insights Into Dromaeosaurid flight Performance
    ARTICLE Received 11 Apr 2014 | Accepted 11 Jun 2014 | Published 15 Jul 2014 DOI: 10.1038/ncomms5382 A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance Gang Han1, Luis M. Chiappe2, Shu-An Ji1,3, Michael Habib4, Alan H. Turner5, Anusuya Chinsamy6, Xueling Liu1 & Lizhuo Han1 Microraptorines are a group of predatory dromaeosaurid theropod dinosaurs with aero- dynamic capacity. These close relatives of birds are essential for testing hypotheses explaining the origin and early evolution of avian flight. Here we describe a new ‘four-winged’ microraptorine, Changyuraptor yangi, from the Early Cretaceous Jehol Biota of China. With tail feathers that are nearly 30 cm long, roughly 30% the length of the skeleton, the new fossil possesses the longest known feathers for any non-avian dinosaur. Furthermore, it is the largest theropod with long, pennaceous feathers attached to the lower hind limbs (that is, ‘hindwings’). The lengthy feathered tail of the new fossil provides insight into the flight performance of microraptorines and how they may have maintained aerial competency at larger body sizes. We demonstrate how the low-aspect-ratio tail of the new fossil would have acted as a pitch control structure reducing descent speed and thus playing a key role in landing. 1 Paleontological Center, Bohai University, 19 Keji Road, New Shongshan District, Jinzhou, Liaoning Province 121013, China. 2 Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. 3 Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, China. 4 University of Southern California, Health Sciences Campus, BMT 403, Mail Code 9112, Los Angeles, California 90089, USA.
    [Show full text]
  • Winter Bird Feeding
    BirdNotes 1 Winter Bird Feeding birds at feeders in winter If you feed birds, you’re in good company. Birding is one of North America’s favorite pastimes. A 2006 report from the U.S. Fish and Wildlife Service estimates that about 55.5 mil- lion Americans provide food for wild birds. Chickadees Titmice Cardinals Sparrows Wood- Orioles Pigeons Nuthatches Finches Grosbeaks Blackbirds Jays peckers Tanagers Doves Sunflower ◆ ◆ ◆ ◆ ◆ ◆ ◆ Safflower ◆ ◆ ◆ Corn ◆ ◆ ◆ Millet ◆ ◆ ◆ Milo ◆ ◆ Nyjer ◆ Suet ◆ ◆ ◆ ◆ ◆ Preferred ◆ Readily Eaten Wintertime—and the Living’s counting birds at their feeders during selecting the best foods daunting. To Not Easy this winterlong survey. Great Back- attract a diversity of birds, provide a yard Bird Count participants provide variety of food types. But that doesn’t n much of North America, winter valuable data with a much shorter mean you need to purchase one of ev- Iis a difficult time for birds. Days time commitment—as little as fifteen erything on the shelf. are often windy and cold; nights are minutes in mid-February! long and even colder. Lush vegeta- Which Seed Types tion has withered or been consumed, Types of Bird Food Should I Provide? and most insects have died or become uring spring and summer, most dormant. Finding food can be espe- lack-oil sunflower seeds attract songbirds eat insects and spi- cially challenging for birds after a D Bthe greatest number of species. ders, which are highly nutritious, heavy snowfall. These seeds have a high meat-to- abundant, and for the most part, eas- shell ratio, they are nutritious and Setting up a backyard feeder makes ily captured.
    [Show full text]
  • A New Coelurosaurian Dinosaur from the Forest Sandstone of Rhodesia. Arnoldia, 4(28
    -'- .ARNOLDIA (RHODESIA) SERIES OF MISCELLANEOUS PUBLICATIONS NATIONAL MUSEUMS OF RHODESIA No. 28 Volume 4 14th October, 1969 A NEW COELUROSAURIAN DINOSAUR FROM THE FOREST SANDSTONE OF RHODESIA by M. A. RAATH Queen Victoria Museum, Salisbury INTRODUCTION During 1963, a group of boys from North1ea School, Bulawayo, under the direction of their teacher, Mr. Ian K. Stewart, came across a partially exposed fossil in Forest Sandstone on Southcote Farm in the Nyamandhlovu district of Rhodesia. When the author joined the staff of the school in 1964, the fossil was pointed out to him and was later excavated over a protracted period, during weekends and school holidays. On development, the fossil proved to consist of most of the postcranial skeleton of-a small Coelurosaurian dinosaur in a very remarkable state of preservation and articu­ lation. The animal was preserved lying on its left side, which was largely complete, while the right side had been exposed and weathered to some extent. The specimen was found in the sandstone bank of a small stream, the Kwengula River, on Southcote farm, which lies 20 miles N.W. of Bulawayo (19058' S; 28°24' 35" E). Other dinosaur remains have been recovered from the rather limited exposures in the Southcote stream in the past (see e.g. Bond, 1955; Attridge, 1963), and on the basis of its fossil fauna Bond (op. cit.) has correlated the Forest Sandstone with the Upper part of the South African Red Beds. The deposits are thus Upper Karroo (Upper Triassic) in age. In order to preserve the articulated state of some of the bones, development has not yet been completed.
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • R~;: PHYSIOLOGICAL, MIGRATORIAL
    ....----------- 'r~;: i ! 'r; Pa/eont .. 62(4), 1988, pp. 64~52 Copyright © 1988, The Paleontological Society 0022-3360/88/0062-0640$03.00 PHYSIOLOGICAL, MIGRATORIAL, CLIMATOLOGICAL, GEOPHYSICAL, SURVIVAL, AND EVOLUTIONARY IMPLICATIONS OF CRETACEOUS POLAR DINOSAURS GREGORY S. PAUL 3109 North Calvert Street, Baltimore, Maryland 21218 ABSTRACTT- he presence of Late Cretaceous social dinosaurs in polar regions confronted them with winter conditions of extended dark, coolness, breezes, and precipitation that could best be coped with via an endothermic homeothermic physiology of at least the tenrec level. This is true whether the dinosaurs stayed year round in the polar regime-which in North America extended from Alaska south to Montana-or if they migrated away from polar winters. More reptilian physiologies fail to meet the demands of such winters -in certain key ways, a· point tentatively confirmed by the apparent failure of giant Late Cretaceous phobosuchid crocodilians to dwell north of Montana. Low metabolisms were also insufficient for extended annual migrations away from and towards the poles. It is shown that even high metabolic rate dinosaurs probably remained in their polar habitats year-round. The possibility that dinosaurs had avian-mammalian metabolic systems, and may have borne insulation at least seasonally, severely limits their use as polar paleoclimatic and Earth axial tilt indicators. Polar dinosaurs may have been a center of dinosaur evolution. The possible ability of polar dinosaurs to cope with conditions of cool and dark challenges theories that a gradual temperature decline, or a sudden, meteoritic or volcanic induced collapse in temperature and sunlight, destroyed the dinosaurs. INTRODUCTION America suggests that dinosaurs were regularly crossing, and NCREASINGNUMBERSof remains show that dinosaurs lived living upon, the Bering Land Bridge within a few degrees of the I near the North and South Poles during the Cretaceous.
    [Show full text]
  • PROGRAMME ABSTRACTS AGM Papers
    The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia, Spain PROGRAMME ABSTRACTS AGM papers Palaeontological Association 6 ANNUAL MEETING ANNUAL MEETING Palaeontological Association 1 The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia The programme and abstracts for the 63rd Annual Meeting of the Palaeontological Association are provided after the following information and summary of the meeting. An easy-to-navigate pocket guide to the Meeting is also available to delegates. Venue The Annual Meeting will take place in the faculties of Philosophy and Philology on the Blasco Ibañez Campus of the University of Valencia. The Symposium will take place in the Salon Actos Manuel Sanchis Guarner in the Faculty of Philology. The main meeting will take place in this and a nearby lecture theatre (Salon Actos, Faculty of Philosophy). There is a Metro stop just a few metres from the campus that connects with the centre of the city in 5-10 minutes (Line 3-Facultats). Alternatively, the campus is a 20-25 minute walk from the ‘old town’. Registration Registration will be possible before and during the Symposium at the entrance to the Salon Actos in the Faculty of Philosophy. During the main meeting the registration desk will continue to be available in the Faculty of Philosophy. Oral Presentations All speakers (apart from the symposium speakers) have been allocated 15 minutes. It is therefore expected that you prepare to speak for no more than 12 minutes to allow time for questions and switching between presenters. We have a number of parallel sessions in nearby lecture theatres so timing will be especially important.
    [Show full text]
  • State of the Palaeoart
    Palaeontologia Electronica http://palaeo-electronica.org State of the Palaeoart Mark P. Witton, Darren Naish, and John Conway The discipline of palaeoart, a branch of natural history art dedicated to the recon- struction of extinct life, is an established and important component of palaeontological science and outreach. For more than 200 years, palaeoartistry has worked closely with palaeontological science and has always been integral to the enduring popularity of prehistoric animals with the public. Indeed, the perceived value or success of such products as popular books, movies, documentaries, and museum installations can often be linked to the quality and panache of its palaeoart more than anything else. For all its significance, the palaeoart industry ment part of this dialogue in the published is often poorly treated by the academic, media and literature, in turn bringing the issues concerned to educational industries associated with it. Many wider attention. We argue that palaeoartistry is standard practises associated with palaeoart pro- both scientifically and culturally significant, and that duction are ethically and legally problematic, stifle improved working practises are required by those its scientific and cultural growth, and have a nega- involved in its production. We hope that our views tive impact on the financial viability of its creators. inspire discussion and changes sorely needed to These issues create a climate that obscures the improve the economy, quality and reputation of the many positive contributions made by palaeoartists palaeoart industry and its contributors. to science and education, while promoting and The historic, scientific and economic funding derivative, inaccurate, and sometimes exe- significance of palaeoart crable artwork.
    [Show full text]
  • Norntates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, NY 10024 Number 3265, 36 Pp., 15 Figures May 4, 1999
    AMERICANt MUSEUM Norntates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3265, 36 pp., 15 figures May 4, 1999 An Oviraptorid Skeleton from the Late Cretaceous of Ukhaa Tolgod, Mongolia, Preserved in an Avianlike Brooding Position Over an Oviraptorid Nest JAMES M. CLARK,I MARK A. NORELL,2 AND LUIS M. CHIAPPE3 ABSTRACT The articulated postcranial skeleton of an ovi- presence of a single, ossified ventral segment in raptorid dinosaur (Theropoda, Coelurosauria) each rib as well as ossified uncinate processes from the Late Cretaceous Djadokhta Formation associated with the thoracic ribs. Remnants of of Ukhaa Tolgod, Mongolia, is preserved over- keratinous sheaths are preserved with four of the lying a nest. The eggs are similar in size, shape, manal claws, and the bony and keratinous claws and ornamentation to another egg from this lo- were as strongly curved as the manal claws of cality in which an oviraptorid embryo is pre- Archaeopteryx and the pedal claws of modern served, suggesting that the nest is of the same climbing birds. The skeleton is positioned over species as the adult skeleton overlying it and was the center of the nest, with its limbs arranged parented by the adult. The lack of a skull pre- symmetrically on either side and its arms spread cludes specific identification, but in several fea- out around the nest perimeter. This is one of four tures the specimen is more similar to Oviraptor known oviraptorid skeletons preserved on nests than to other oviraptorids. The ventral part of the of this type of egg, comprising 23.5% of the 17 thorax is exceptionally well preserved and pro- oviraptorid skeletons collected from the Dja- vides evidence for other avian features that were dokhta Formation before 1996.
    [Show full text]
  • Alan Feduccia's Riddle of the Feathered Dragons: What Reptiles
    Leigh Evolution: Education and Outreach 2014, 7:9 http://www.evolution-outreach.com/content/7/1/9 BOOK REVIEW Open Access Alan Feduccia’s Riddle of the Feathered Dragons: what reptiles gave rise to birds? Egbert Giles Leigh Jr Riddle of the Feathered Dragons: Hidden Birds of China, properly. This is a great pity, for his story is wonderful: by Alan Feduccia. New Haven, CT: Yale University Press, his birds would have made a far better focus for this 2012. Pp. x + 358. H/b $55.00 book than the dispute. This book’s author is at home in the paleontology, So, what is this dispute that spoiled the book? The anatomy, physiology, and behavior of birds. Who could scientific argument is easily summarized. It started be more qualified to write on their origin and evolution? when a paleontologist from Yale University, John Ostrom, This book is unusually, indeed wonderfully, well and unearthed a 75-kg bipedal theropod dinosaur, Deinonychus, clearly illustrated: its producers cannot be praised too buried 110 million years ago in Montana. Deinonychus highly. It is well worth the while of anyone interested in stood a meter tall, and its tail was 1.5 m long. It was active: bird evolution to read it. Although it offers no answers Ostrom thought that both it and Archaeopteryx,which to ‘where birds came from’, it has God’s plenty of fascin- lived 40 million years earlier, were warm-blooded. Deinony- ating, revealing detail, knit together in powerful criticism chus bore many skeletal resemblances to Archaeopteryx, of prevailing views of bird evolution.
    [Show full text]