Nitrogenase Femoco Investigated by Spatially Resolved Anomalous Dispersion Refinement

Total Page:16

File Type:pdf, Size:1020Kb

Nitrogenase Femoco Investigated by Spatially Resolved Anomalous Dispersion Refinement University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Biochemistry -- Faculty Publications Biochemistry, Department of 2016 Nitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement Thomas Spatzal Albert-Ludwigs-Universitat Freiburg & California Institute of Technology Julia Schlesier Albert-Ludwigs-Universitat Freiburg Eva-Maria Burger Albert-Ludwigs-Universitat Freiburg Daniel Sippel Albert-Ludwigs-Universitat Freiburg Limei Zhang California Institute of Technology See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/biochemfacpub Part of the Biochemistry Commons, Biotechnology Commons, and the Other Biochemistry, Biophysics, and Structural Biology Commons Spatzal, Thomas; Schlesier, Julia; Burger, Eva-Maria; Sippel, Daniel; Zhang, Limei; Andrade, Susana L.A.; Rees, Douglas C.; and Einsle, Oliver, "Nitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement" (2016). Biochemistry -- Faculty Publications. 487. https://digitalcommons.unl.edu/biochemfacpub/487 This Article is brought to you for free and open access by the Biochemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biochemistry -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Thomas Spatzal, Julia Schlesier, Eva-Maria Burger, Daniel Sippel, Limei Zhang, Susana L.A. Andrade, Douglas C. Rees, and Oliver Einsle This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ biochemfacpub/487 ARTICLE Received 25 Aug 2015 | Accepted 31 Jan 2016 | Published 14 Mar 2016 DOI: 10.1038/ncomms10902 OPEN Nitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement Thomas Spatzal1,2, Julia Schlesier1, Eva-Maria Burger1, Daniel Sippel1, Limei Zhang3, Susana L.A. Andrade1,4, Douglas C. Rees2 & Oliver Einsle1,4 The [Mo:7Fe:9S:C] iron-molybdenum cofactor (FeMoco) of nitrogenase is the largest known metal cluster and catalyses the 6-electron reduction of dinitrogen to ammonium in biological nitrogen fixation. Only recently its atomic structure was clarified, while its reactivity and electronic structure remain under debate. Here we show that for its resting S ¼ 3/2 state the common iron oxidation state assignments must be reconsidered. By a spatially resolved refinement of the anomalous scattering contributions of the 7 Fe atoms of FeMoco, we conclude that three irons (Fe1/3/7) are more reduced than the other four (Fe2/4/5/6). Our data are in agreement with the recently revised oxidation state assignment for the molybdenum ion, providing the first spatially resolved picture of the resting-state electron distribution within FeMoco. This might provide the long-sought experimental basis for a generally accepted theoretical description of the cluster that is in line with available spectroscopic and functional data. 1 Institute for Biochemistry, Albert-Ludwigs-Universita¨t Freiburg, Albertstrasse 21, 79104 Freiburg, Germany. 2 Howard Hughes Medical Institute, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA. 3 Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA. 4 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universita¨t Freiburg, Hebelstrasse 25, 79104 Freiburg, Germany. Correspondence and requests for materials should be addressed to O.E. (email: [email protected]). NATURE COMMUNICATIONS | 7:10902 | DOI: 10.1038/ncomms10902 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10902 iological nitrogen fixation is an essential process required to aba CC275275 tap into the predominant reservoir of bioavailable nitrogen, atmospheric N . Although at any given time an estimated B 2 Fe1 99% of all nitrogen cycling the biosphere are present in this form1, only a single enzymatic reaction has evolved to break the Fe4F 4 stable triple bond of the dinitrogen molecule. The enzyme Fe2 FeFe33 nitrogenase is a complex two-component system consisting of the Fe5Fe5e5 FeFe77 heterotetrameric MoFe protein (NifD2K2), where substrates are Fe6 reduced, and the dimeric Fe protein (NifH2) that serves as the Mo only known electron donor for N2 reduction and as the site 2,3 of ATP hydrolysis . Nitrogenase reduces N2 according to HH44244 equation (1), as well as a series of alternative substrates, 7,100 7,110 7,120 7,130 7,140 Energy (eV) prominently including carbon monoxide that is converted to a HomocitrateHomocitra mixture of unsaturated hydrocarbons with potential relevance for biofuel production4,5. c þ À þ N2 þ 10 H þ 8e þ 16 ATP ! 2NH4 þ H2 þ 16ADP þ 16Pi ð1Þ The MoFe protein of nitrogenase contains two unique metal clusters, the [8Fe:7S] P-cluster, an electron transfer centre with an Figure 1 | FeMo cofactor, the active site cluster of nitrogenase. unusual 8Fe þ 2 ground state as isolated, and FeMo cofactor (a) Structure of FeMo cofactor as observed in MoFe protein from (FeMoco), the site of substrate reduction. FeMoco was originally A. vinelandii (PDB-ID 3U7Q). The structure represents the S ¼ 3/2 described as a [Mo:7Fe:9S]:R-homocitrate entity with a central FeMocoN state, a stable resting state that does not bind substrates. cavity surrounded by six coordinatively unsaturated iron ions6,7. (b) Strategy for spatially resolved anomalous dispersion (SpReAD) The arrangement intuitively suggested a coordination site for refinement. A XAS spectrum or a fluorescence scan of the iron K-edge (red) substrates within the central cavity, but this hypothesis was is chosen to determine energies for the collection of full diffraction data challenged by the structural inertness of the cluster. We then found sets. In these, the anomalous scattering contribution can be refined for that a central light atom that was masked by an unfavourable individual atoms. (c) Anomalous difference electron density maps occurrence of Fourier series termination artefacts was eventually contoured at the 3s level around FeMo cofactor, calculated for data sets located in the cofactor centre8. Only recently this light atom was taken at the indicated positions along the iron K-edge. The magnitude of the identified as a carbon species9,10 that originates from S- electron density peak does not directly reflect f 00, but the increase of signal adenosylmethionine11 and does not exchange during catalysis12. is clearly visible. Note that strong features appear first for the most It thus constitutes a stabilizing element that provides rigidity to the electron-rich atoms, Fe1, Fe3 and Fe7 (orientation as in a). cluster ground state and explains the observed structural homogeneity. Nitrogenase MoFe protein is commonly isolated in extended this to a Fe-based system with iron and carbon ligands a reduced form, with a diamagnetic, all-ferrous P-cluster (PN)and that is chemically reminiscent of FeMoco24. Each of these studies the FeMo cofactor in an S ¼ 3/2 state (FeMocoN)thathasbeen represented a major advance in synthetic inorganic chemistry and extensively characterized by electron paramagnetic resonance the catalysis of dinitrogen reduction, but they did not provide (EPR) and enhanced nuclear double-resonance (ENDOR), X-ray unambiguous evidence for the mode of action of the enzyme. absorption spectroscopy (XAS) and Mo¨ssbauer spectroscopies13–17. Because of the inertness of the resting state, the investigation of A recent analysis of single-crystal EPR data for the FeMocoN state inhibitor/substrate interactions with FeMo cofactor was limited to revealed the orientation of the magnetic g-tensor of the cluster spectroscopic methods, and here an incomplete understanding of within MoFe protein, highlighting that the electrostatic potential the electronic structure of FeMoco precluded the precise field induced by the protein matrix orients the spin system18.In assignment of signals19. Very recently, the discovery of CO- this study, the gz main axis of the magnetic tensor oriented along bound FeMoco by X-ray crystallography provided structural the intrinsic threefold symmetry axis of FeMo cofactor, whereas the information on a functionalized state of the active site for the 25 gy axis was found to align with a cluster edge formed by atoms Fe1, first time . The utility of such structural data for guiding further Fe3, Fe7 and Mo (Fig. 1a). spectroscopic and theoretical studies is obvious and may help to The final clarification of the structure of FeMo cofactor, however, advance understanding of the mechanism of nitrogenase did not help to answer key mechanistic question, and the exact substantially. However, a prerequisite for this approach is a binding site for substrates as well as the mechanism of their detailed electronic description of FeMoco, and in spite of reduction remain to be elucidated (Table 1). A deeper under- numerous studies by many of the leaders is their field, theoretical standing of complex bioinorganic systems commonly approaches to date have not succeeded to produce a generally arises only from a combination of methodologies, with structural accepted model19. Different models proposed ligand binding to the information complemented by spectroscopy, but also by theoretical central cavity26,27, but also to various positions on the cluster calculations and synthetic models. Small-molecule compounds able surface28,29, and most
Recommended publications
  • Identification of a Spin-Coupled Mo (III) in the Nitrogenase Iron
    Identification of a spin-coupled Mo(III) in the nitrogenase iron-molybdenum cofactor Ragnar Bjornsson, Frederico A. Lima, Thomas Spatzal, Thomas Weyhermueller, Pieter Glatzel, Eckhard Bill, Oliver Einsle, Frank Neese, Serena Debeer To cite this version: Ragnar Bjornsson, Frederico A. Lima, Thomas Spatzal, Thomas Weyhermueller, Pieter Glatzel, et al.. Identification of a spin-coupled Mo(III) in the nitrogenase iron-molybdenum cofactor. Chemical Science , The Royal Society of Chemistry, 2014, 5 (8), pp.3096-3103. 10.1039/c4sc00337c. hal- 01572851 HAL Id: hal-01572851 https://hal.archives-ouvertes.fr/hal-01572851 Submitted on 8 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Identification of a spin-coupled Mo(III)inthe nitrogenase iron–molybdenum cofactor† Cite this: Chem. Sci.,2014,5,3096 a a b a Ragnar Bjornsson,‡ Frederico A. Lima,‡§ Thomas Spatzal,{ Thomas Weyhermuller,¨ Pieter Glatzel,c Eckhard Bill,a Oliver Einsle,*b Frank Neese*a and Serena DeBeer*ad Nitrogenase is a complex enzyme that catalyzes the formation of ammonia utilizing a MoFe7S9C cluster. The presence of a central carbon atom was recently revealed, finally completing the atomic level description of the active site.
    [Show full text]
  • A Model for Dinitrogen Binding in the E4 State of Nitrogenase† Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue A model for dinitrogen binding in the E4 state of nitrogenase† Cite this: Chem. Sci.,2019,10, 11110 ab a ab All publication charges for this article Albert Th. Thorhallsson, Bardi Benediktsson and Ragnar Bjornsson * have been paid for by the Royal Society of Chemistry Molybdenum nitrogenase is one of the most intriguing metalloenzymes in nature, featuring an exotic iron– molybdenum–sulfur cofactor, FeMoco, whose mode of action remains elusive. In particular, the molecular and electronic structure of the N2-binding E4 state is not known. In this study we present theoretical QM/ MM calculations of new structural models of the E4 state of molybdenum-dependent nitrogenase and compare to previously suggested models for this enigmatic redox state. We propose two models as possible candidates for the E4 state. Both models feature two hydrides on the FeMo cofactor, bridging atoms Fe2 and Fe6 with a terminal sulfhydryl group on either Fe2 or Fe6 (derived from the S2B bridge) and the change in coordination results in local lower-spin electronic structure at Fe2 and Fe6. These structures appear consistent with the bridging hydride proposal put forward from ENDOR studies and are calculated to be lower in energy than other proposed models for E4 at the TPSSh-QM/MM level of Creative Commons Attribution 3.0 Unported Licence. theory. We critically analyze the DFT method dependency in calculations of FeMoco that has resulted in strikingly different proposals for this state. Importantly, dinitrogen binds exothermically to either Fe2 or Fe6 in our models, contrary to others, an effect rationalized via the unique ligand field (from the hydrides) at the Fe with an empty coordination site.
    [Show full text]
  • The Mysterious Central Atom in the Nitrogenase Femo Cofactor
    The mysterious central atom in the nitrogenase FeMo cofactor Kevin Hwang Literature Seminar December 6, 2011 The reduction of dinitrogen remains one of the biggest challenges in chemistry today. While industrial-scale production of ammonia has been made possible by the Haber- Bosch process, this process requires harsh conditions, with very high temperatures and pressures necessary in order to break the extremely robust N-N triple bond. In contrast, certain bacteria have evolved enzymes capable of catalytically reducing nitrogen to ammonia under ambient conditions (Eq. 1), a feat thus far unmatched by human ingenuity.1 As a result, substantial effort has been applied towards understanding the mechanism of bacterial nitrogenases, and in particular one of the most studied is the molybdenum- containing nitrogenase (Mo-nitrogenase).2 This review will cover recent work elucidating the structure of the iron-molybdenum cofactor, which in Mo-nitrogenase is believed to be the site of nitrogen binding and reduction. The structure of nitrogenase from Azotobacter vinelandii was first reported in 1992 by Kim and Rees.3 From this structure, the overall organization of nitrogenase was described. Nitrogenase contains two proteins - an iron-containing protein, with a [4Fe:4S] cluster used for electron transfer; and an iron-molybdenum protein, which contains a [8Fe:7S] cluster (the P cluster), also used for electron transfer, and an iron-molybdenum cluster known alternatively as the M cluster or the iron- molybdenum cofactor (FeMoco). The assigned structure contained a unique arrangement of seven iron atoms and one molybdenum atom, bridged by sulfur atoms, surrounding a cavity with diameter approximately 4Å (Figure 1).3 Investigation of MoFe-deficient variants of nitrogenase have suggested that this cluster is the site of nitrogen fixation, Figure 1.
    [Show full text]
  • Femo Cofactor Maturation on Nifen SPECIAL FEATURE
    FeMo cofactor maturation on NifEN SPECIAL FEATURE Yilin Hu*, Mary C. Corbett†, Aaron W. Fay*, Jerome A. Webber*, Keith O. Hodgson†‡§, Britt Hedman‡§, and Markus W. Ribbe*§ *Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900; †Department of Chemistry, Stanford University, Stanford, CA 94305; and ‡Stanford Synchrotron Radiation Laboratory, Stanford Linear Accellerator Center, Stanford University, 2575 Sand Hill Road, MS 69, Menlo Park, CA 94025-7015 Edited by Douglas C. Rees, California Institute of Technology, Pasadena, CA, and approved May 10, 2006 (received for review March 31, 2006) FeMo cofactor (FeMoco) biosynthesis is one of the most compli- Unlike the P cluster, FeMoco, which contains additional hetero- cated processes in metalloprotein biochemistry. Here we show that metal (Mo) and organic moiety (homocitrate), is first assembled on Mo and homocitrate are incorporated into the Fe͞S core of the a scaffold protein (17, 18) and then inserted into its destined FeMoco precursor while it is bound to NifEN and that the resulting location in MoFe protein (‘‘ex situ’’ assembly). Biosynthesis of fully complemented, FeMoco-like cluster is transformed into a FeMoco presumably starts with the production of the Fe͞Scoreby mature FeMoco upon transfer from NifEN to MoFe protein through NifB (encoded by nifB) (19, 20), which is then transferred to, and direct protein–protein interaction. Our findings not only clarify the further processed on, the ␣2␤2 tetrameric NifEN protein (17, 21). process of FeMoco
    [Show full text]
  • Incorporating Light Atoms Into Synthetic Analogues of Femoco Daniel E
    COMMENTARY COMMENTARY Incorporating light atoms into synthetic analogues of FeMoco Daniel E. DeRoshaa and Patrick L. Hollanda,1 Nitrogen is an essential element for all life on Earth. atoms into cluster cores, Lee and coworkers (14) have However, the elemental form of dinitrogen (N2) is typ- described an iron–sulfur cubane featuring a core N ically inert, and must be converted to the more reac- atom, while Ohki and coworkers (9) have formed one tive and biologically accessible ammonia (NH3) before cluster with an O atom in the center. These are nota- incorporation into proteins, nucleic acids, and other ble synthetic achievements, but because these reac- biomolecules. In nature, the only enzymes capable tions involve self-assembly, rational design of more of the multielectron reduction of N2 to NH3 are nitro- biologically relevant clusters based on these results genases, whose complexity has captured the imagina- is challenging. Now, in PNAS, Xu et al. (15) report a tion of biochemists (1), synthetic chemists (2), and systematic method for incorporating nitrogen- and spectroscopists (3) alike. Their active sites are iron– oxygen-based core atoms into iron–tungsten–sulfur sulfur clusters that are produced through elaborate clusters, in a strategy that may be transferable to the biosynthetic pathways (4). One special aspect of the challenge of embedding a carbon donor into analogs nitrogenase active-site clusters is the presence of mo- of the FeMoco. lybdenum or vanadium heteroatoms in addition to The new clusters (Fig. 1) include complete cubanes iron: the cofactors are described as the iron–molybde- and incomplete cubanes that feature a single W atom, num cofactor (FeMoco) or the iron–vanadium cofactor a congener of the biologically relevant Mo.
    [Show full text]
  • Department of Chemistry & Biochemistry, University Of
    Expressing βF99H & βF99H/βS188A Variants of Nitrogenase in Azotobacter vinelandii Kendall Shields, Hannah Rutledge, Laura Williamson, Alkane W. Xu, Akif Tezcan Department of Chemistry & Biochemistry, University of Caliornia, San Diego Introduction & Abstract Method for Making Mutants Future Directions & Transformation Nitrogen is essential for the biosynthesis of nucleic acids and proteins. 1.)1.) PCRPCR 2.) 3.) Miniprep into E. coli Experiments Although N₂ is the most abundant gas in Earth’s atmosphere, organisms are unable to access this Nitrogen until it is fixed into ammonia (NH₃) or ●Purification of βF99H and βF99H/βS188A other reduced forms. There is only one enzyme known to catalyze the N₂ ●Crystal structures of βF99H and fixation process: Nitrogenase, a metalloenzyme produced by diazotrophs. HEAT In order for Nitrogenase’s active site, FeMo-cofactor (FeMoCo), to be SHOCK βF99H/βS188A activated, a series of electron transfers must relay electrons to FeMoCo, ●Assays on βF99H and βF99H/βS188A which is located in MoFe protein (MoFeP). Surprisingly, evidence suggests Transformation 4.) Sequencing 5.) Fe starve A. v. 6.) ○ATP hydrolysis assay that the 8Fe-7S P-cluster, also found in MoFeP, relays electrons to into A. v. cells ○H₂ production assay FeMoCo prior to being reduced by the 4Fe-4S cluster in Fe protein (FeP). However, despite this, the P-cluster cannot perform this "deficit spending" F99H S188A ○NH₃ production assay of electrons in the absence of FeP, suggesting that conformational gating Fe Fe ●Once the ATP, H₂, and NH₃ assays
    [Show full text]
  • Structural Insights Into a Protein-Bound Iron-Molybdenum Cofactor Precursor
    Structural insights into a protein-bound iron-molybdenum cofactor precursor Mary C. Corbett*, Yilin Hu†, Aaron W. Fay†, Markus W. Ribbe†‡, Britt Hedman‡§, and Keith O. Hodgson*‡§ *Department of Chemistry, Stanford University, Stanford, CA 94305; †Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900; and §Stanford Synchrotron Radiation Laboratory, Stanford University, 2575 Sand Hill Road, MS 69, Menlo Park, CA 94025-7015 Edited by Helmut Beinert, University of Wisconsin, Madison, WI, and approved November 29, 2005 (received for review September 11, 2005) The iron-molybdenum cofactor (FeMoco) of the nitrogenase MoFe cluster from NifB, is transferred to the NifEN protein complex, protein is a highly complex metallocluster that provides the cata- where it is further processed and potentially molybdenum and lytically essential site for biological nitrogen fixation. FeMoco is homocitrate are added. The iron protein (NifH) is somehow assembled outside the MoFe protein in a stepwise process requir- involved in this process, and, although its exact role is unknown, ing several components, including NifB-co, an iron- and sulfur- it is thought to effect a change in NifEN that facilitates modi- containing FeMoco precursor, and NifEN, an intermediary assembly fication of the FeMoco precursor. Comparison with the chemical protein on which NifB-co is presumably converted to FeMoco. synthesis of P-cluster topologs indicates that an intermediate in Through the comparison of Azotobacter vinelandii strains express- FeMoco biosynthesis might consist of two bridged [4Fe–4S] ing the NifEN protein in the presence or absence of the nifB gene, clusters (14, 18), however, there was previously no structural the structure of a NifEN-bound FeMoco precursor has been ana- evidence to support this theory or any proposed mechanism.
    [Show full text]
  • The Electronic Complexity of the Ground-State of the Femo Cofactor of Nitrogenase As Relevant to Quantum Simulations Zhendong Li, Junhao Li, Nikesh S
    The electronic complexity of the ground-state of the FeMo cofactor of nitrogenase as relevant to quantum simulations Zhendong Li, Junhao Li, Nikesh S. Dattani, C. J. Umrigar, and Garnet Kin-Lic Chan Citation: J. Chem. Phys. 150, 024302 (2019); doi: 10.1063/1.5063376 View online: https://doi.org/10.1063/1.5063376 View Table of Contents: http://aip.scitation.org/toc/jcp/150/2 Published by the American Institute of Physics The Journal of Chemical Physics ARTICLE scitation.org/journal/jcp The electronic complexity of the ground-state of the FeMo cofactor of nitrogenase as relevant to quantum simulations Cite as: J. Chem. Phys. 150, 024302 (2019); doi: 10.1063/1.5063376 Submitted: 26 September 2018 • Accepted: 10 December 2018 • Published Online: 8 January 2019 Zhendong Li,1 Junhao Li,2 Nikesh S. Dattani,3,4 C. J. Umrigar,2 and Garnet Kin-Lic Chan1 AFFILIATIONS 1 Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA 2 Department of Physics, Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, New York 14853, USA 3 National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada 4Hertford College, Oxford University, Oxford OX1 3BW, United Kingdom ABSTRACT We report that a recent active space model of the nitrogenase FeMo cofactor, proposed in the context of simulations on quantum computers, is not representative of the electronic structure of the FeMo cofactor ground-state. A more representative model does not affect much certain resource estimates for a quantum computer such as the cost of a Trotter step, while strongly affecting others such as the cost of adiabatic state preparation.
    [Show full text]
  • Construction of Synthetic Models for Nitrogenase-Relevant Nifb Biogenesis Intermediates and Iron-Carbide-Sulfide Clusters
    catalysts Perspective Construction of Synthetic Models for Nitrogenase-Relevant NifB Biogenesis Intermediates and Iron-Carbide-Sulfide Clusters Chris Joseph , John Patrick Shupp , Caitlyn R. Cobb and Michael J. Rose * Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA; [email protected] (C.J.); [email protected] (J.P.S.); [email protected] (C.R.C.) * Correspondence: [email protected] Received: 14 October 2020; Accepted: 10 November 2020; Published: 13 November 2020 Abstract: The family of nitrogenase enzymes catalyzes the reduction of atmospheric dinitrogen (N2) to ammonia under remarkably benign conditions of temperature, pressure, and pH. Therefore, the development of synthetic complexes or materials that can similarly perform this reaction is of critical interest. The primary obstacle for obtaining realistic synthetic models of the active site iron-sulfur-carbide cluster (e.g., FeMoco) is the incorporation of a truly inorganic carbide. This review summarizes the present state of knowledge regarding biological and chemical (synthetic) incorporation of carbide into iron-sulfur clusters. This includes the Nif cluster of proteins and associated biochemistry involved in the endogenous biogenesis of FeMoco. We focus on the chemical (synthetic) incorporation portion of our own efforts to incorporate and modify C1 units in iron/sulfur clusters. We also highlight recent contributions from other research groups in the area toward C1 and/or inorganic carbide insertion. Keywords: nitrogenase; biomimetic; FeMoco; NifB-co; carbide; biogenesis 1. Introduction 1.1. Structural Determination of the Resting Nitrogenase Active Site The nitrogenases are a class of enzymes that catalyze ammonia synthesis from dinitrogen and are the only biological systems known to catalyze the N 2 NH conversion.
    [Show full text]
  • Electron-Transfer Chemistry of the Iron-Molybdenum Cofactor Of
    FULL PAPER Electron-Transfer Chemistry of the Iron ± Molybdenum Cofactor of Nitrogenase: Delocalized and Localized Reduced States of FeMoco which Allow Binding of Carbon Monoxide to Iron and Molybdenum Christopher J. Pickett,*[a] Kylie A. Vincent,[b] Saad K. Ibrahim,[a] Carol A. Gormal,[a] Barry E. Smith,[a] and Stephen P. Best*[b] Abstract: The electron-transfer chemis- fur core of the cofactor, whilst the third bands at 1885 and 1920 cmÀ1 respective- try of the isolated iron ± molybdenum irreversible process is localised on mo- ly. Moreover, in parallel with earlier cofactor of nitrogenase (FeMoco) has lybdenum. This is strongly reinforced by studies on the enzyme system, it is been studied by electrochemical and spectroelectrochemical studies under shown that at low CO concentration, spectroelectrochemical methods. Two 12CO and 13CO which reveal two inde- carbon monoxide binds to the cofactor interconverting forms of the cofactor pendent carbon monoxide binding sites in bridging modes, with n(CO) bands at arise from a redox-linked ligand isomer- that are specifically associated with the 1835 and 1808 cmÀ1 that are intercon- ism at the terminal iron atom;this is second (iron core) and third (molybde- verted by single-electron transfer. Impor- attributed to rotamerism of an anionic num) electron-transfer processes and tantly we show that the contentious over- N-methyl formamide ligand bound at which give rise to terminal n(12CO) all 2e difference in the assignment of the this site. FeMoco in its EPR-silent metal oxidation levels in the resting state oxidised state is shown to undergo three of the enzyme-bound cofactor, arising Keywords: bridging ligands ¥ cofac- successive one-electron transfer steps.
    [Show full text]
  • Localized Electronic Structure of Nitrogenase Femoco Revealed by Selenium K‑Edge High Resolution X‑Ray Absorption Spectroscopy # † # ‡ § ∥ ∥ Justin T
    This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. Article Cite This: J. Am. Chem. Soc. 2019, 141, 13676−13688 pubs.acs.org/JACS Localized Electronic Structure of Nitrogenase FeMoco Revealed by Selenium K‑Edge High Resolution X‑ray Absorption Spectroscopy # † # ‡ § ∥ ∥ Justin T. Henthorn, , Renee J. Arias, , Sergey Koroidov, Thomas Kroll, Dimosthenis Sokaras, § ‡ ⊥ † Uwe Bergmann, Douglas C. Rees,*, , and Serena DeBeer*, † Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany ‡ Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States § PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States ∥ Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States ⊥ Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, United States *S Supporting Information ABSTRACT: The size and complexity of Mo-dependent nitrogenase, a multi- component enzyme capable of reducing dinitrogen to ammonia, have made a detailed understanding of the FeMo cofactor (FeMoco) active site electronic structure an ongoing challenge. Selective substitution of sulfur by selenium in FeMoco affords a unique probe wherein local Fe−Se interactions can be directly interrogated via high-energy resolution fluorescence detected X-ray absorption spectroscopic (HERFD XAS) and extended X-ray absorption fine structure (EXAFS) studies. These studies reveal a significant asymmetry in the electronic distribution of the FeMoco, suggesting a more localized electronic structure picture than is typically assumed for iron−sulfur clusters.
    [Show full text]
  • Elucidating Reaction Mechanisms on Quantum Computers
    Elucidating Reaction Mechanisms on Quantum Computers Markus Reiher,1 Nathan Wiebe,2 Krysta M. Svore,2 Dave Wecker,2 and Matthias Troyer3, 2, 4 1Laboratorium f¨urPhysikalische Chemie, ETH Zurich, Valdimir-Prelog-Weg 2, 8093 Zurich, Switzerland 2Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA 3Theoretische Physik and Station Q Zurich, ETH Zurich, 8093 Zurich, Switzerland 4Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA We show how a quantum computer can be employed to elucidate reaction mechanisms in com- plex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical-computer simulations for such problems, to significantly increase their accuracy and enable hitherto intractable simulations. Detailed resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computa- tions can be performed in reasonable time on small quantum computers. This demonstrates that quantum computers will realistically be able to tackle important problems in chemistry that are both scientifically and economically significant. Chemical reaction mechanisms are networks of molecu- development, with ever more sophisticated methods be- lar structures representing short- or long-lived intermedi- ing employed to reduce the costs of quantum chemistry ates connected by transition structures. At its core, this simulation [12{20]. surface is determined by the nuclear coordinate depen- The promise of exponential speedups for the electronic dent electronic energy, i.e., by the Born{Oppenheimer structure problem has led many to suspect that quan- surface, which can be supplemented by nuclear-motion tum computers will one day revolutionize chemistry and corrections.
    [Show full text]