Mixed Ax-Schanuel for the Universal Abelian Varieties and Some
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
6 GAGA & Chow's Theorem
Chow’s Theorem Yohannes D. A Advisor: Fernando Q. Gouvêa May 25, 2017 Contents 1 Introduction 2 2 Sheaves and Ringed Spaces 2 2.1 Sheaves . 2 2.2 Ringed Spaces . 6 2.3 Sheaves of Modules . 7 3 Schemes 10 3.1 A˘ne Schemes . 11 3.2 General Schemes . 13 3.3 Projective Schemes . 14 4 Analytic Spaces 18 4.1 Definitions . 18 4.2 Analytic Sheaves . 19 4.3 Coherent Analytic Sheaves . 19 5 Analytification 19 5.1 Associating an analytic sheaf to a sheaf on a variety . 20 5.2 Analytic space associated to a scheme . 21 6 GAGA & Chow’s Theorem 21 6.1 GAGA . 21 6.2 Chow’s Theorem . 21 6.3 Consequences of Chow’s Theorem . 22 7 Acknowledgments 22 8 References 23 1 1 Introduction In 1949, W.-L. Chow published the paper On Compact Complex Analytic Varieties in which he proved the theorem that now bears his name Pn Theorem 1.0.1 (Chow). Every closed analytic subspace of C is an algebraic set. In that paper, he gave a completely analytic proof of this result. His proof, as opposed to the one J.-P. Serre gave as a consequence his famous correspondence theorem GAGA, did not involve the scheme-theoretic or homological algebraic methods. In 1956, a year after he published the paper Faisceaux algebriques coherents, or Coherent algebraic sheaves, Serre proved the GAGA correspondence theorem; the theorem takes its name from the paper—Géometrie Algébrique et Géométrie Ana- lytique. The GAGA correspondence states that an equivalence of categories that preserves cohomology exists between coherent sheaves on a complex projective space X and on its associated analytic space X ℎ . -
A Non-Archimedean Definable Chow Theorem
ANON-ARCHIMEDEANDEFINABLECHOW THEOREM by abhishek oswal A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Mathematics University of Toronto c 2020 Abhishek Oswal ABSTRACT A non-archimedean definable Chow theorem Abhishek Oswal Doctor of Philosophy Graduate Department of Mathematics University of Toronto 2020 O-minimality has had some striking applications to number theory. The utility of o-minimal structures originates from the remarkably tame topological properties satisfied by sets definable in such structures. Despite the rigidity that it imposes, the theory is sufficiently flexible to allow for a range of analytic constructions. An illustration of this ‘tame’ property is the following surprising generalization of Chow’s theorem proved by Peterzil and Starchenko - A closed analytic subset of a complex algebraic variety that is also definable in an o-minimal structure, is in fact algebraic. While the o-minimal machinery aims to capture the archimedean order topology of the real line, it is natural to wonder if such a machinery can be set up over non-archimedean fields. In this thesis, we explore a non- archimedean analogue of an o-minimal structure and prove a version of the definable Chow theorem in this context. ii To my first math teacher, my grandfather. iii ACKNOWLEDGEMENTS This thesis would not have been possible without the guidance and sup- port of my advisor Jacob Tsimerman. It is a great pleasure to thank him for his patience, encouragement and generosity with his ideas. I have greatly benefitted through my interactions with him and his influence has undoubtedly shaped me into the mathematician that I am today. -
ALGEBRAIC STEIN VARIETIES Jing Zhang
Math. Res. Lett. 15 (2008), no. 4, 801–814 c International Press 2008 ALGEBRAIC STEIN VARIETIES Jing Zhang Abstract. It is well-known that the associated analytic space of an affine variety defined over C is Stein but the converse is not true, that is, an algebraic Stein variety is not necessarily affine. In this paper, we give sufficient and necessary conditions for an algebraic Stein variety to be affine. One of our results is that an irreducible quasi- projective variety Y defined over C with dimension d (d ≥ 1) is affine if and only if Y is i Stein, H (Y, OY ) = 0 for all i > 0 and κ(D, X) = d (i.e., D is a big divisor), where X is a projective variety containing Y and D is an effective divisor with support X − Y . If Y is algebraic Stein but not affine, we also discuss the possible transcendental degree of the nonconstant regular functions on Y . We prove that Y cannot have d − 1 algebraically independent nonconstant regular functions. The interesting phenomenon is that the transcendental degree can be even if the dimension of Y is even and the degree can be odd if the dimension of Y is odd. 1. Introduction We work over complex number field C and use the terminology in Hartshorne’s book [H1]. Affine varieties (i.e., irreducible closed subsets of Cn in Zariski topology) are impor- tant in algebraic geometry. Since J.-P. Serre discovered his well-known cohomology criterion ([H2], Chapter II, Theorem 1.1), the criteria for affineness have been in- vestigated by many algebraic geometers (Goodman and Harshorne [GH]; Hartshorne [H2], Chapter II; Kleiman [Kl]; Neeman [N]; Zhang[Zh3]). -
TOPICS in D-MODULES. Contents 1. Introduction: Local Systems. 3 1.1
TOPICS IN D-MODULES. TYPED BY RICHARD HUGHES FROM LECTURES BY SAM GUNNINGHAM Contents 1. Introduction: Local Systems. 3 1.1. Local Systems. 3 2. Sheaves. 6 2.1. Etal´espaces.´ 7 2.2. Functors on sheaves. 8 2.3. Homological properties of sheaves. 9 2.4. Simplicial homology. 12 3. Sheaf cohomology as a derived functor. 17 3.1. Idea and motivation. 17 3.2. Homological Algebra. 19 3.3. Why does Sh(X) have enough injectives? 22 3.4. Computing sheaf cohomology. 23 4. More derived functors. 25 4.1. Compactly supported sections. 26 4.2. Summary of induced functors so far. 27 4.3. Computing derived functors. 27 4.4. Functoriality. 29 4.5. Open-closed decomposition. 30 5. Verdier Duality. 31 5.1. Dualizing complex. 31 5.2. Poincar´eDuality. 35 5.3. Borel-Moore homology. 35 6. The 6-functor formalism. 38 6.1. Functoriality from adjunctions. 39 6.2. Base change. 41 Date: September 21, 2015. 1 2 TYPED BY RICHARD HUGHES FROM LECTURES BY SAM GUNNINGHAM 7. Nearby and vanishing cycles. 42 8. A preview of the Riemann-Hilbert correspondence. 47 8.1. C1 Riemann-Hilbert. 47 8.2. Complex geometry. 48 9. Constructible sheaves. 50 10. Preliminaries on D-modules. 51 10.1. Differential equations. 52 10.2. The ring DX . 53 11. Algebraic geometry. 56 11.1. Cycle of a coherent sheaf. 57 12. D-modules: Singular support and filtrations. 59 13. Holonomic D-modules. 63 14. Functors for D-modules. 64 14.1. Transfer bimodule. 65 14.2. Closed embeddings. -
Arxiv:2105.13069V2 [Math.AG] 2 Jun 2021 2303 F 42 Swl Sudrgrayseclec S Excellence Germany’S Ger Under Structure
CONSTRUCTIBLE SHEAF COMPLEXES IN COMPLEX GEOMETRY AND APPLICATIONS LAURENT¸IU G. MAXIM AND JORG¨ SCHURMANN¨ ABSTRACT. We present a detailed introduction of the theory of constructible sheaf com- plexes in the complex algebraic and analytic setting. All concepts are illustrated by many interesting examples and relevant applications, while some important results are presented with complete proofs. This paper is intended as a broadly accessible user’s guide to these topics, providing the readers with a taste of the subject, reflected by concrete examples and applications that motivate the general theory. We discuss the stability of constructible sheaf complexes under the standard functors, and explain the relation of these functors to perverse sheaves and the perverse t-structure. We introduce the main results of stratified Morse theory in the framework of constructible sheaves, for proving the basic vanishing and finiteness results. Applications are given to various index theorems, the functorial cal- culus of characteristic cycles of constructible functions, and to weak Lefschetz and Artin- Grothendieck type theorems. We recall the construction of Deligne’s nearby and vanishing cycle functors, prove that they preserve constructible complexes, and discuss their relation with the perverse t-structure. We finish this paper with a description and applications of the K¨ahler package for intersection cohomology of complex algebraic varieties, and the recent study of perverse sheaves on semi-abelian varieties. CONTENTS 1. Introduction 2 2. Constructible and perverse sheaf complexes 5 2.1. Constructibility 5 2.2. Perverse sheaves 12 2.3. Strongly perverse sheaves. dual t-structure and rectified homological depth 21 3. Stratified Morse theory for constructible sheaves 24 arXiv:2105.13069v2 [math.AG] 2 Jun 2021 3.1.