Application of Bdellovibrio Bacteriovorus for Reducing Fouling Of

Total Page:16

File Type:pdf, Size:1020Kb

Application of Bdellovibrio Bacteriovorus for Reducing Fouling Of Turk J Biochem 2018; 43(3): 296–305 Research Article Melek Özkan*, Hilal Yılmaz, Merve Akay Çelik, Çişel Şengezer, Elif Erhan and Bülent Keskinler Application of Bdellovibrio bacteriovorus for reducing fouling of membranes used for wastewater treatment Atıksu arıtımında kullanılan membranların kirlenme probleminin azaltılması için Bdellovibrio bacteriovorus uygulaması https://doi.org/10.1515/tjb-2016-0302 showed that Alfa-proteobacteria are the most numerous Received April 28, 2016; accepted September 1, 2016; previously bacteria among the biofilm community on the membrane published online March 29, 2018 surface. Abstract Conclusion: Results suggested that cleaning of MBR mem- branes with B. bacteriovorus has a potential to be used as Background: Membrane bioreactor (MBR) systems used a biological cleaning method. for wastewater treatment (WWT) processes are regarded Keywords: Bdellovibrio bacteriovorus; Biofilm; Membrane as clean technologies. Degradation capacity of the preda- fouling; Wastewater treatment; Membrane bioreactor tor bacterium, Bdellovibrio bacteriovorus, was used as a (MBR) systems. cleaning strategy for reducing membrane fouling. Method: Wastewater with different sludge age and hydraulic retention time were filtered through Poly(ether) Özet sulphone (PES) membranes using dead end reactor. Change in filtration performance after cleaning of mem- Genel bilgi: Atıksu arıtımı için kullanılan membran biyore- brane surface by B. bacteriovorus was measured by com- aktör (MBR) sistemleri temiz teknolojiler olarak bilinmek- parison of flux values. Bacterial community of the sludge tedirler. Membran yüzeyinde biriken mikroorganizmalar was determined by 16SrRNA sequence analysis. Commu- nedeniyle membranın kirlenmesi MBR sistemlerin en önemli nity profile of membrane surface was analyzed by fluores- problemidir ve membranın kullanım ömrünün kısalmasına cent in situ hybridization technique. neden olmaktadır. Bdellovibrio bacteriovorus membranın Results: After cleaning of MP005 and UP150 membranes tıkanmasının temel nedeni olan biyofilm komunitedeki with predator bacteria, 4.8 L/m2 · h and 2.04 L/m2 · h hücre dışı polimerik maddelerin başlıca üreticilerinden olan increase in stable flux at steady state condition was Gram negatif bakterileri yiyerek beslenen avcı bir bakteridir. obtained as compared to the control, respectively. Aero- Amaç: Bu çalışmada avcı bakteri B. bacteriovorus ’un monas, Proteus, and Alcaligenes species were found to membranın tıkanma probleminin azaltılması amacıyla be dominant members of the sludge. Bdellovibrio bacte- kullanım potansiyeli araştırılmıştır. riovorus lysed pure cultures of the isolated sludge bacte- Yöntem: Farklı çamur yaşı ve hidrolik bekleme süre- ria successfully. FISH analysis of the membrane surface sine sahip atıksular Ölü Üç Reaktör hücresi kullanılarak Polietersülfon (PES) membranlardan filtre edilmişlerdir. *Corresponding author: Melek Özkan, Gebze Technical University, Bdellovibrio bacteriovorus ile temizleme işleminden sonra Environmental Engineering Department, Kocaeli, Turkey, filtrasyon performansındaki değişim membran akılarının e-mail: [email protected] kıyaslanması ile ölçülmüştür. Aktif çamurun bakteri Hilal Yılmaz, Merve Akay Çelik, Çişel Şengezer, Elif Erhan and Bülent Keskinler: Gebze Technical University, Environmental profili 16SrRNA dizi analizi ile belirlenmiştir. Membran Engineering Department, Kocaeli, Turkey, yüzeyindeki biyofilm komunitesi Floresan in Situ Hibridi- e-mail: [email protected] (H. Yılmaz) zasyonu tekniği ile analiz edilmiştir. Melek Özkan et al.: Application of Bdellovibrio bacteriovorus for reducing fouling of membranes 297 Bulgular: MP005 ve UP150 membranlarının avcı bakteri flushing (backwashing), a physical cleaning method, ile temizlenmesi sonucunda kontrol membranına kıyasla has been applied on fouled membranes in many cases. kararlı akıda sırasıyla 4,8 L/m2 · s ve 2,04 L/m2 · s ortalama This method successfully removes most of the revers- artış tespit edilmiştir. Aeromonas, Proteus, ve Alcalige- ible fouling due to pore blocking, and partially dislodges nes türlerinin çamurun baskın üyeleri olduğu görülmüş- loosely attached sludge cake from surface [5]. Respectively, tür. Bdellovibrio bacteriovorus’un izole edilen saf bakteri newer treatment method, air flushing (air sparging), is kültürlerini başarılı bir şekilde parçaladığı gözlenmiştir. another physical cleaning concept where air is used as a Membran yüzeyinin FISH analizi Alfa-proteobakterilerin back flushing medium. During the filtration process, depo- membran yüzeyinde çoğunlukta olduğunu göstermiştir. sition of particles and bacterial cells causes forming a slimy Tartışma ve Sonuç: Bdellovibrio bacteriovorus MBR sis- gel layer on the membrane surface that cannot be removed temlerin temizilenmesinde biyolojik temizleme ajanı ola- easily by physical cleaning methods. Different types of rak kullanım potansiyeline sahiptir. chemical cleaning methods may be recommended on a weekly/monthly/yearly basis to increase the membrane Anahtar kelimeler: Atıksu arıtımı; Bdellovibrio bacterio- life by removing the irreversible fouling which cannot be vorus; Biyofilm; Membran kirlenmesi; Membran Bioreak- removed by physical cleaning methods [6] Chemicals like tör (MBR) Sistemleri. HCl, HNO3, NaOCl, H2O2, citric acid have been employed on membranes to remove organic and inorganic fouling [7]. Biological control strategies are still at research and devel- Introduction opment stage. Inhibition of quorum sensing system, nitric oxide-induced biofilm dispersal, enzymatic disruption of Domestic and industrial wastewater discharges and the extracellular polysaccharides, proteins, and DNA, inhibi- contaminated rainwater run-off cause significant unfavora- tion of microbial attachment by energy uncoupling, use of ble impacts on the environment. There are many different cell wall hydrolases, and disruption of biofilm by bacte- technologies for wastewater treatment (WWT) including riophages can be listed under biological ways of microbial physico-chemical and/or microbial ones [1]. Membrane attachment control strategies [8]. bioreactors (MBRs) are now broadly favorable treatment WWT with MBRs can be regarded as clean technology technologies that combines membrane processes and sus- since it replaces secondary settlement tank. However, pended growth bioreactors [2]. MBR application in WWT harmful chemical agents are introduced to the environment is an activated sludge process serving as a replacement for during membrane cleaning process. Therefore, potential secondary settlement tanks. Because of more stringent dis- of biological ways of membrane cleaning methods should charge regulations, water reuse initiatives and decrease in be introduced for the aim of clean environment. Biofilms membrane cost, MBRs have gained increasing popularity. causing membrane fouling consist of multiple bacterial In MBR systems, membrane fouling is one of the most species including Gram-negative ones. Some previous important problems during operation which leads to a fre- researches have revealed that Bdellovibrio can consume quent cleaning and/or replacement of membranes, and Escherichia coli prey in simple biofilms, in some cases increases operation cost [3]. As soon as the membrane destroying the biofilms altogether [9]. Bdellovibrio bacte- surface contact with wastewater, deposition of particles riovorus is a Gram-negative, obligately aerobic bacterium and bacterial cells occurs onto membrane surface. The that preys upon a wide variety of other Gram-negative bac- microorganism and their products contribute to mem- teria [9]. Bdellovibrio life cycle consists of an attack phase brane fouling. As a dynamic process, biofouling occurs as cell that attaches to other Gram-negative bacteria, pene- a result of two main mechanisms: colonization of mem- trates their periplasm, multiplies in the periplasmic space brane surfaces with microorganisms and production of and finally bursts the cell envelope to start the new cycle. membrane foulants by microorganisms in the waste water Depending on the prey and environment, this life cycle [2]. Although this fouling and biofilm formation on mem- takes roughly 3–4 h. Dashiff et al. [10] showed lysis activ- brane surface enhances the removal of microbes by acting ity of B. bacteriovorus on biofilms formed by different bac- as a secondary barrier, it also reduces the flux and per- terial species, especially pathogenic ones. Although the meability of the membranes [4]. Thus, fouling needs to be main role of B. bacteriovorus in nature is not completely kept under control in order to increase the membrane life- known, there is evidence that these bacteria play a role in time and decrease the operational costs. the microbial ecology of natural environments, controlling In order to decrease the fouling problem, physical the population size of bacterial ecosystems. It is known and chemical cleaning methods are frequently used. Back that B. bacteriovorus efficiently degrades biofilms formed 298 Melek Özkan et al.: Application of Bdellovibrio bacteriovorus for reducing fouling of membranes by many Gram-negative bacteria including Aeromonas, plates. Wastewater from bench scale activated sludge Citrobacter, Enterobacter, Escherichia, Klebsiella, Proteus, reactor fed in laboratory was used for biofilm formation. Pseudomonas, Salmonella etc. [10]. Most of those bacteria Large solid particles of wastewater sludge was eliminated are members of wastewater sludge which contribute plug- by precipitation
Recommended publications
  • Proteus Vulgaris
    48 Monte Carlo Crescent Kyalami Business Park Kyalami, Johannesburg, 1684, RSA Tel: +27 (0)11 463 3260 Fax: + 27 (0)86 557 2232 Email: [email protected] www.thistle.co.za Please read this section first The HPCSA and the Med Tech Society have confirmed that this clinical case study, plus your routine review of your EQA reports from Thistle QA, should be documented as a “Journal Club” activity. This means that you must record those attending for CEU purposes. Thistle will not issue a certificate to cover these activities, nor send out “correct” answers to the CEU questions at the end of this case study. The Thistle QA CEU No is: MT- 16/009 Each attendee should claim THREE CEU points for completing this Quality Control Journal Club exercise, and retain a copy of the relevant Thistle QA Participation Certificate as proof of registration on a Thistle QA EQA. MICROBIOLOGY LEGEND CYCLE 41 ORGANISM 3 Proteus Vulgaris Proteus Vulgaris is a rod shaped Gram-Negative chemoheterotrophic bacterium. The size of the individual cells varies from 0.4 to 0.6 micrometers by 1.2 to 2.5 micrometers. P. vulgaris possesses peritrichous flagella, making it actively motile. It inhabits the soil, polluted water, raw meat, gastrointestinal tracts of animals and dust. In humans, Proteus species most frequently cause urinary tract infections, but can also produce severe abscesses and is widely associated with nosocomial infections. Isolation of Organism With basic microbiological technique, samples believed to contain P. vulgaris are first incubated on nutrient agar to form colonies. To test the Gram-Negative and oxidase-negative characteristics of Enterobacteriaceae, Gram stains and oxidase tests are performed.
    [Show full text]
  • Genomic Signatures of Predatory Bacteria
    The ISME Journal (2013) 7, 756–769 & 2013 International Society for Microbial Ecology All rights reserved 1751-7362/13 www.nature.com/ismej ORIGINAL ARTICLE By their genes ye shall know them: genomic signatures of predatory bacteria Zohar Pasternak1, Shmuel Pietrokovski2, Or Rotem1, Uri Gophna3, Mor N Lurie-Weinberger3 and Edouard Jurkevitch1 1Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel; 2Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel and 3Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel Predatory bacteria are taxonomically disparate, exhibit diverse predatory strategies and are widely distributed in varied environments. To date, their predatory phenotypes cannot be discerned in genome sequence data thereby limiting our understanding of bacterial predation, and of its impact in nature. Here, we define the ‘predatome,’ that is, sets of protein families that reflect the phenotypes of predatory bacteria. The proteomes of all sequenced 11 predatory bacteria, including two de novo sequenced genomes, and 19 non-predatory bacteria from across the phylogenetic and ecological landscapes were compared. Protein families discriminating between the two groups were identified and quantified, demonstrating that differences in the proteomes of predatory and non-predatory bacteria are large and significant. This analysis allows predictions to be made, as we show by confirming from genome data an over-looked bacterial predator. The predatome exhibits deficiencies in riboflavin and amino acids biosynthesis, suggesting that predators obtain them from their prey. In contrast, these genomes are highly enriched in adhesins, proteases and particular metabolic proteins, used for binding to, processing and consuming prey, respectively.
    [Show full text]
  • Uncommon Pathogens Causing Hospital-Acquired Infections in Postoperative Cardiac Surgical Patients
    Published online: 2020-03-06 THIEME Review Article 89 Uncommon Pathogens Causing Hospital-Acquired Infections in Postoperative Cardiac Surgical Patients Manoj Kumar Sahu1 Netto George2 Neha Rastogi2 Chalatti Bipin1 Sarvesh Pal Singh1 1Department of Cardiothoracic and Vascular Surgery, CN Centre, All Address for correspondence Manoj K Sahu, MD, DNB, Department India Institute of Medical Sciences, Ansari Nagar, New Delhi, India of Cardiothoracic and Vascular Surgery, CTVS office, 7th floor, CN 2Infectious Disease, Department of Medicine, All India Institute of Centre, All India Institute of Medical Sciences, New Delhi-110029, Medical Sciences, Ansari Nagar, New Delhi, India India (e-mail: [email protected]). J Card Crit Care 2020;3:89–96 Abstract Bacterial infections are common causes of sepsis in the intensive care units. However, usually a finite number of Gram-negative bacteria cause sepsis (mostly according to the hospital flora). Some organisms such as Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus are relatively common. Others such as Stenotrophomonas maltophilia, Chryseobacterium indologenes, Shewanella putrefaciens, Ralstonia pickettii, Providencia, Morganella species, Nocardia, Elizabethkingia, Proteus, and Burkholderia are rare but of immense importance to public health, in view of the high mortality rates these are associated with. Being aware of these organisms, as the cause of hospital-acquired infections, helps in the prevention, Keywords treatment, and control of sepsis in the high-risk cardiac surgical patients including in ► uncommon pathogens heart transplants. Therefore, a basic understanding of when to suspect these organ- ► hospital-acquired isms is important for clinical diagnosis and initiating therapeutic options. This review infection discusses some rarely appearing pathogens in our intensive care unit with respect to ► cardiac surgical the spectrum of infections, and various antibiotics that were effective in managing intensive care unit these bacteria.
    [Show full text]
  • New 16S Rrna Primers to Uncover Bdellovibrio and Like Organisms Diversity and Abundance Jade Ezzedine, Cécile Chardon, Stéphan Jacquet
    New 16S rRNA primers to uncover Bdellovibrio and like organisms diversity and abundance Jade Ezzedine, Cécile Chardon, Stéphan Jacquet To cite this version: Jade Ezzedine, Cécile Chardon, Stéphan Jacquet. New 16S rRNA primers to uncover Bdellovibrio and like organisms diversity and abundance. Journal of Microbiological Methods, Elsevier, 2020, 10.1016/j.mimet.2020.105996. hal-02935301 HAL Id: hal-02935301 https://hal.inrae.fr/hal-02935301 Submitted on 10 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Microbiological Methods 175 (2020) 105996 Contents lists available at ScienceDirect Journal of Microbiological Methods journal homepage: www.elsevier.com/locate/jmicmeth New 16S rRNA primers to uncover Bdellovibrio and like organisms diversity T and abundance ⁎ Jade A. Ezzedine, Cécile Chardon, Stéphan Jacquet Université Savoie Mont-Blanc, INRAE, UMR CARRTEL, Thonon-les-Bains, France ARTICLE INFO ABSTRACT Keywords: Appropriate use and specific primers are important in assessing the diversity and abundance of microbial groups Bdellovibrio and like organisms of interest. Bdellovibrio and like organisms (BALOs), that refer to obligate Gram-negative bacterial predators of Primer design other Gram-negative bacteria, evolved in terms of taxonomy and classification over the past two decades.
    [Show full text]
  • Original Article COMPARISON of MAST BURKHOLDERIA CEPACIA, ASHDOWN + GENTAMICIN, and BURKHOLDERIA PSEUDOMALLEI SELECTIVE AGAR
    European Journal of Microbiology and Immunology 7 (2017) 1, pp. 15–36 Original article DOI: 10.1556/1886.2016.00037 COMPARISON OF MAST BURKHOLDERIA CEPACIA, ASHDOWN + GENTAMICIN, AND BURKHOLDERIA PSEUDOMALLEI SELECTIVE AGAR FOR THE SELECTIVE GROWTH OF BURKHOLDERIA SPP. Carola Edler1, Henri Derschum2, Mirko Köhler3, Heinrich Neubauer4, Hagen Frickmann5,6,*, Ralf Matthias Hagen7 1 Department of Dermatology, German Armed Forces Hospital of Hamburg, Hamburg, Germany 2 CBRN Defence, Safety and Environmental Protection School, Science Division 3 Bundeswehr Medical Academy, Munich, Germany 4 Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Jena, Germany 5 Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg, Hamburg, Germany 6 Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany 7 Department of Preventive Medicine, Bundeswehr Medical Academy, Munich, Germany Received: November 18, 2016; Accepted: December 5, 2016 Reliable identification of pathogenic Burkholderia spp. like Burkholderia mallei and Burkholderia pseudomallei in clinical samples is desirable. Three different selective media were assessed for reliability and selectivity with various Burkholderia spp. and non- target organisms. Mast Burkholderia cepacia agar, Ashdown + gentamicin agar, and B. pseudomallei selective agar were compared. A panel of 116 reference strains and well-characterized clinical isolates, comprising 30 B. pseudomallei, 20 B. mallei, 18 other Burkholderia spp., and 48 nontarget organisms, was used for this assessment. While all B. pseudomallei strains grew on all three tested selective agars, the other Burkholderia spp. showed a diverse growth pattern. Nontarget organisms, i.e., nonfermentative rod-shaped bacteria, other species, and yeasts, grew on all selective agars.
    [Show full text]
  • Clinical Antibiotic Guidelines†
    CLINICAL ANTIBIOTIC GUIDELINES† ACYCLOVIR IV*/PO *RESTRICTED TO ANTIBIOTIC FORM Predictable activity: Unpredictable activity: No activity: Herpes Simplex Cytomegalovirus Epstein Barr Virus Herpes Zoster Indicated: IV: 1. Therapy for suspected or documented Herpes simplex encephalitis 2. Therapy for suspected or documented Herpes simplex infection of a newborn or immunocompromised patient 3. Therapy for primary varicella infection in immunocompromised patients 4. Therapy for severe or disseminated varicella-zoster infections in immunocompromised or immunocompetent patient 5. Therapy for primary genital herpes with neurologic complications Oral: 1. Therapy for primary Herpes simplex infections (oral/genital) 2. Suppressive (preventative) therapy for recurrent (³ 6 episodes/year) severe Herpes simplex infections (oral/genital) 3. Episodic therapy for recurrent (³ 6 episodes/year) Herpes simplex genital infections (initiate within 24 hours of prodrome onset) 4. Prophylaxis for HSV in bone marrow transplants where patient is seropositive 5. Therapy and suppressive therapy for Eczema Herpeticum 6. Therapy for varicella-zoster infections in immunocompetent and immunocompromised patients (if not severe) 7. Therapy for primary varicella infections in pregnancy 8. Therapy for varicella in immunocompetent patients > 13 years old (initiate within 24 hours of rash onset) 9. Therapy for varicella in patients < 13 years old (initiate within 24 hours of rash onset) if there is a chronic cutaneous or pulmonary disorder, long term salicylate therapy, or short, intermittent or aerosolized corticosteroid use Not Indicated: 1. Therapy for acute Epstein-Barr infections (acute mononucleosis) 2. Therapy for documented CMV infections CLINICAL ANTIBIOTIC GUIDELINES† AMIKACIN RESTRICTED TO ANTIBIOTIC FORM Predictable activity: Unpredictable activity: No activity: Enterobacteriaceae Staphylococcus spp Streptococcus spp Pseudomonas spp Enterococcus spp some Mycobacterium spp Alcaligenes spp Anaerobes Indicated: 1.
    [Show full text]
  • Downloaded from the National Center for Biotechnology Information (NCBI)
    microorganisms Article Phylogenomic Insights into Distribution and Adaptation of Bdellovibrionota in Marine Waters Qing-Mei Li 1,2, Ying-Li Zhou 1,2, Zhan-Fei Wei 1,2 and Yong Wang 1,* 1 Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; [email protected] (Q.-M.L.); [email protected] (Y.-L.Z.); [email protected] (Z.-F.W.) 2 University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected] Abstract: Bdellovibrionota is composed of obligate predators that can consume some Gram-negative bacteria inhabiting various environments. However, whether genomic traits influence their distribu- tion and marine adaptation remains to be answered. In this study, we performed phylogenomics and comparative genomics studies using 132 Bdellovibrionota genomes along with five metagenome- assembled genomes (MAGs) from deep sea zones. Four phylogenetic groups, Oligoflexia, Bdello- group1, Bdello-group2 and Bacteriovoracia, were revealed by constructing a phylogenetic tree, of which 53.84% of Bdello-group2 and 48.94% of Bacteriovoracia were derived from the ocean. Bacteri- ovoracia was more prevalent in deep sea zones, whereas Bdello-group2 was largely distributed in the epipelagic zone. Metabolic reconstruction indicated that genes involved in chemotaxis, flagellar (mobility), type II secretion system, ATP-binding cassette (ABC) transporters and penicillin-binding protein were necessary for the predatory lifestyle of Bdellovibrionota. Genes involved in glycerol metabolism, hydrogen peroxide (H2O2) degradation, cell wall recycling and peptide utilization were ubiquitously present in Bdellovibrionota genomes. Comparative genomics between marine and Citation: Li, Q.-M.; Zhou, Y.-L.; Wei, non-marine Bdellovibrionota demonstrated that betaine as an osmoprotectant is probably widely Z.-F.; Wang, Y.
    [Show full text]
  • The Enterotube System in the Identification of Enterohacteriaceae and Yersinia
    13 February 1974 S.A. MEDICAL JOURNAL 257 (Supplement-South African Journal of Laboratory and Clinical Medicine) LCM 9 The Enterotube System in the Identification of Enterohacteriaceae and Yersinia M. H. FINLAYSON, B. GIBBS SUMMARY Dulcitol agar for detection of acid production, absent in Proteus sp., most Enterobacters sp., Hafnia and Serratia, A trial of the Enterotube system for the identification of A rizona and Edwardsiella. Enterobacteriaceae and a comparison with the methods Urea agar for detection of urea cleavage, absent in at present in use in the Tygerberg Hospital Microbiology Escherichia, Shigella, Providencia, Enterobacter aerogenes, Laboratory, were carried out. One hunded cultures be­ Hafnia, Salmonella, A rizona and Edwardsiella. longing to the family Enterobacteriaceae including Phenylalanine agar for detection of phenylalanine Escherichia coli, Proteus mirabilis, Proteus vulgaris, deaminase by production of a green colouration after Proteus morgani, Proteus rettgeri, Providencia, Edward­ addition of ferric chloride solution. This reaction is posi­ siella, Shigella, Klebsiella, Enterobacter, Serratis, Sal­ tive only in the Proteus and Pro\'idencia groups. monella, Citrobacter and Arizona were tested with con­ ventional procedures and also with the Enterotube. The Hydrogen sulphide and indole agar for detection of conventional procedures, designed to identify the hydrogen sulphide and indole, the latter being detected organisms within 24 hours after isolation, were used. Three after the addition of Kovac's reagent to the compartment. of the cultures examined were not identified by the Hydrogen sulphide is produced by some Proteus strains Enterotube technique when their identity was established and by Salmonella, Citrobacter, Arizona and Edwardsie/la by routine conventional methods. These were non­ while indole is produced by Escherichia, .some Proteus urease-producing non-motile organisms which may have strains, Providencia and Edwardsiella.
    [Show full text]
  • Pdf 355.26 K
    Beni-Suef BS. VET. MED. J. JULY 2010 VOL.20 NO.2 P.16-24 Veterinary Medical Journal An approach towards bacterial pathogens of zoonotic importance harbored by commensal rodents prevalent in Beni- Suef Governorate W. H. Hassan1, A. E. Abdel-Ghany2 1Department of Bacteriology, Mycology and Immunology, and 2 Department of Hygiene, Management and Zoonoses, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt This study was conducted in the period July 2009 through June 2010 to determine the role of commensal rodents in transmitting bacterial pathogens to man in Beni-Suef Governorate, Egypt. A total of 50 rats of various species were selected from both urban and rural areas at different localities. In the laboratory, rodent species were identified and bacteriological examination was performed. Seven types of samples were cultured from external and internal body parts of each rat. The identified rodent spp. included Rattus norvegicus (16%), Rattus rattus rattus (42%) and Rattus rattus frugivorus (42%). The results demonstrated that S. aureus, S. lentus, S. sciuri and S. xylosus were isolated from the examined rats at percentages of 8, 2, 6 and 6 %, respectively. Moreover, E. durans (2%), E. faecalis (12%), E. faecium (24%), E. gallinarum (4%), Aerococcus viridans (12%) and S. porcinus (2%) in addition to Lc. lactis lactis (4%), Leuconostoc sp. (2%) and Corynebacterium kutscheri (8%) were also harbored by the screened rodents. On the other hand, S. arizonae, E. coli, E. cloacae and E. sakazakii were isolated from the examined rats at percentages of 4, 8, 4 and 6 %, respectively. Besides, Proteus mirabilis (6%), Proteus vulgaris (2%), Providencia rettgeri (6%), P.
    [Show full text]
  • Cultivation of Bdellovibrios
    Special Instructions Cultivation of Bdellovibrios Bdellovibrios are unique microorganisms that prey upon a wide variety of susceptible Gram-negative bacteria. Their predatory life style is characterized by two distinct phases, a free-living attack phase and an intraperiplasmic growth phase. Although members of the order Bdellovibrionales are phenotypically quite similar, they do not form a coherent phylogenetic group. Currently, they are classified into five different genera, Bdellovibrio, Bacteriovorax, Peredibacter, Halobacteriovorax and Pseudobacteriovorax. Bdellovibrios can be found in a wide variety of habitats, ranging from soil to sewage, provided these environments are densely populated with bacteria. Some strains represent prey-independent mutants that have lost their requirement for prey cells and hence are facultatively predacious (e.g., Bacteriovorax stolpii DSM 12778) or adapted to an obligate saprophytic life-style (e.g., Bdellovibrio bacteriovorus DSM 12732). Prey-dependent bdellovibrios are usually sensitive to lyophilization and consequently delivered as actively growing cultures from the DSMZ. Fresh samples of attack phase bdellovibrios are shipped either on double-layered agar plates or in liquid broth culture. Presumably, due to the high endogenous respiration rates of bdellovibrios, their viability rapidly decreases after complete lysis of prey cells. Therefore, it is important to transfer the obtained cultures immediately upon receipt into freshly prepared media containing suspensions of susceptible prey cells. An axenic culture of prey cells is shipped along with prey-dependent strains of bdellovibrios. A detailed description of the cultivation of Bdellovibrio bacteriovorus DSM 50701T follows below to exemplify the recommended handling of prey-dependent strains. You will receive from the DSMZ a double layer agar plate of DSMZ medium 257 containing predator and prey cells in the top layer and a tube of slant agar (DSMZ medium 54) with an axenic culture of the prey bacterium Pseudomonas sp.
    [Show full text]
  • Growth Forms of Bdellovibrio Bacteriovorus
    A Global Transcriptional Switch between the Attack and Growth Forms of Bdellovibrio bacteriovorus Iris Karunker1., Or Rotem2., Mally Dori-Bachash2, Edouard Jurkevitch2, Rotem Sorek1* 1 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel, 2 Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel Abstract Bdellovibrio bacteriovorus is an obligate predator of bacteria ubiquitously found in the environment. Its life cycle is composed of two essential phases: a free-living, non-replicative, fast swimming attack phase (AP) wherein the predator searches for prey; and a non-motile, actively dividing growth phase (GP) in which it consumes the prey. The molecular regulatory mechanisms governing the switch between AP and GP are largely unknown. We used RNA-seq to generate a single-base-resolution map of the Bdellovibrio transcriptome in AP and GP, revealing a specific "AP" transcriptional program, which is largely mutually exclusive of the GP program. Based on the expression map, most genes in the Bdellovibrio genome are classified as "AP only" or "GP only". We experimentally generated a genome-wide map of 140 AP promoters, controlling the majority of AP-specific genes. This revealed a common sigma-like DNA binding site highly similar to the E. coli flagellar genes regulator sigma28 (FliA). Further analyses suggest that FliA has evolved to become a global AP regulator in Bdellovibrio. Our results also reveal a non-coding RNA that is massively expressed in AP. This ncRNA contains a c-di-GMP riboswitch. We suggest it functions as an intracellular reservoir for c-di-GMP, playing a role in the rapid switch from AP to GP.
    [Show full text]
  • Characterization of Bdellovibrio Bacteriovorus Bacteriophage MAC- 1
    Journal of General Microbiology (1987), 133, 3065-3070. Printed in Great Britain 3065 Characterization of Bdellovibrio bacteriovorus Bacteriophage MAC- 1 By RICHARD C. ROBERTS, MEGAN A. KEEFER AND RAJINDER S. RANU* Department of Microbiology, Colorado State University, Fort Collins, CO 80523, USA (Received II March 1987; revised 7 July 1987) ~~~ The bacteriophage MAC-1 , which specifically infects Bdellovibrio bacteriovorus, was plaque purified and raised to high titre. The phage was purified by NaCl/polyethylene glycol precipitation, followed by two cycles of isopycnic density gradient centrifugation in CsC1. The purified phage exhibited a density of 1.363 g cm-3 and a sedimentation coefficient of 94s. Nucleic acid isolated from purified phage was resistant to hydrolysis under alkaline conditions and to digestion with RNAase, but it was hydrolysed by DNAase, providing evidence that the phage genome is made up of DNA. The lack of hyperchromic effect upon denaturation, hydrolysis of phage DNA by S 1 nuclease, characteristic fluorescent staining with acridine orange, and resistance to digestion with a variety of restriction endonucleases are consistent with the DNA being single-stranded. A buoyant density of 1-722g ~m-~and a sedimentation coefficient of 17-9swere obtained for the phage DNA. The molecular mass of phage DNA was determined as 1.58 MDa by agarose gel electrophoresis with single-stranded DNA as standards. Electron microscopy of the DNA showed that the genome is circular in nature. In addition, using Southern blots, the two replicative forms, RFl (supercoiled) and RF2 (circular) have been identified and isolated from infected cell extracts. INTRODUCTION Bdellovibrio bacteriouorus species are extremely small, highly motile, Gram-negative, soil- inhabiting bacteria that attack and replicate in other Gram-negative bacteria (Burnham et al., 1968; Rittenburg, 1983; Shilo & Bruff, 1970; Starr & Seidler, 1971 ; Stolp & Starr, 1963).
    [Show full text]