ICD-GPS-200C with Irns 1,2,3,4

Total Page:16

File Type:pdf, Size:1020Kb

ICD-GPS-200C with Irns 1,2,3,4 IS-GPS-200E 8 June 2010 GLOBAL POSITIONING SYSTEM WING (GPSW) SYSTEMS ENGINEERING & INTEGRATION INTERFACE SPECIFICATION IS-GPS-200 Revision E Navstar GPS Space Segment/Navigation User Interfaces AUTHENTICATED BY: ____________________________________ DAVID B. GOLDSTEIN, Col Chief Engineer Global Positioning Systems Wing DISTRIBUTION STATEMENT A.: Approved for Public Release; Distribution is Unlimited. DESCRIPTION DATE ICD-GPS-200, Initial Release 25 Jan 1983 ICD-GPS-200A 25 Sep 1984 ICD-GPS-200B 30 Nov 1987 ICD-GPS-200C 10 Oct 1993 IS-GPS-200D 7 Dec 2004 IRN-200D-001 7 Mar 2006 IS-GPS-200E 8 June 2010 DISTRIBUTION A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED APPROVALS AUTHORIZED SIGNATURES REPRESENTING DATE Signature on File GPS Wing (GPSW) 8 June 2010 Space & Missiles Center (SMC) – GPSW LAAFB INTERFACE SPECIFICATION THIS DOCUMENT SPECIFIES TECHNICAL ICD TITLE REQUIREMENTS AND NOTHING HEREIN CONTAINED SHALL BE DEEMED TO ALTER THE Navstar GPS Space Segment/Navigation User TERMS OF ANY CONTRACT OR PURCHASE ORDER BETWEEN ALL PARTIES AFFECTED. Interfaces Prepared by: DOCUMENT NO. Science Applications International Corporation IS-GPS-200 GPSW SE&I 300 N. Sepulveda Blvd., Suite 3000. CODE IDENT NO. REV SHEET I El Segundo, CA 90245 4WNC1 E ii IS-GPS-200E 8 June 2010 REVISION RECORD REV DESCRIPTION DOCUMENT APPROVED DATE NC Initial Release 25 Jan 1983 A Incorporates IRN-200NC-001, IRN-200NC-002, and IRN- 25 Sep 1984 200NC-003 B Incorporates IRN-200A-001A 30 Nov 1987 C Incorporates IRN-200B-001 thru IRN-200B-007 10 Oct 1993 C Re-formatted in Microsoft Word 6.0 in GEMS compatible format 10 Oct 1993 12 Jan 1996 C Changed distribution status to Public Release 25 Sep 1997 20 Oct 1997 D Incorporates IRN-200C-001 thru IRN-200C-005R1, change ICD- 7 Dec 2004 23 Nov 2004 GPS-200 to IS-GPS-200, introduce and specify the requirements of Improved Clock and Ephemeris (ICE) message for L2 C signal, and other additional updates IRN- Adds additional PRN sequences to Section 6 7 Mar 2006 9 Mar 2006 200D- 001 E GPS IIIA Incorporations 8 Jun 2010 8 June 2010 N/A SE&I Tech Pubs 29 July 2010 iii IS-GPS-200E 8 June 2010 TABLE OF CONTENTS 1. INTRODUCTION .................................................................................................................................................. 1 1.1 Scope ........................................................................................................................................................ 1 1.2 IS Approval and Changes ......................................................................................................................... 1 2. APPLICABLE DOCUMENTS .............................................................................................................................. 2 2.1 Government Documents ........................................................................................................................... 2 2.2 Non-Government Documents ................................................................................................................... 2 3. REQUIREMENTS ................................................................................................................................................. 3 3.1 Interface Definition .................................................................................................................................. 3 3.2 Interface Identification ............................................................................................................................. 3 3.2.1 Ranging Codes ........................................................................................................................ 3 3.2.2 NAV Data ............................................................................................................................... 9 3.2.3 L1/L2 Signal Structure .......................................................................................................... 10 3.3 Interface Criteria..................................................................................................................................... 12 3.3.1 Composite Signal .................................................................................................................. 12 3.3.2 PRN Code Characteristics ..................................................................................................... 17 3.3.3 Navigation Data .................................................................................................................... 33 3.3.4 GPS Time and SV Z-Count ................................................................................................... 35 4. NOT APPLICABLE ............................................................................................................................................. 37 5. NOT APPLICABLE ............................................................................................................................................. 38 6. NOTES................................................................................................................................................................... 39 6.1 Acronyms ............................................................................................................................................... 39 6.2 Definitions .............................................................................................................................................. 42 6.2.1 User Range Accuracy ............................................................................................................ 42 6.2.2 SV Block Definitions ............................................................................................................ 42 6.2.3 Operational Interval Definitions............................................................................................ 43 6.2.4 GPS Week Number ............................................................................................................... 44 6.2.5 L5 Civil Signal ...................................................................................................................... 44 6.3 Supporting Material ................................................................................................................................ 44 6.3.1 Received Signals ................................................................................................................... 44 6.3.2 Extended Navigation Mode (Block II/IIA) ........................................................................... 46 6.3.4 Block IIA Mode (Block IIR/IIR-M) ...................................................................................... 47 6.3.5 Autonomous Navigation Mode ............................................................................................. 47 6.3.6 PRN Code sequences expansion ........................................................................................... 47 6.3.7 Pre-Operational Use .............................................................................................................. 57 10. APPENDIX I. LETTERS OF EXCEPTION ................................................................................................... 58 10.1 Scope .................................................................................................................................................... 58 iv IS-GPS-200E 8 June 2010 10.2 Applicable Documents ......................................................................................................................... 58 10.3 Letters of Exception ............................................................................................................................. 58 20. APPENDIX II. GPS NAVIGATION DATA STRUCTURE FOR DATA, D(t) ........................................... 67 20.1 Scope .................................................................................................................................................... 67 20.2 Applicable Documents. ........................................................................................................................ 67 20.2.1 Government Documents ...................................................................................................... 67 20.2.2 Non-Government Documents ............................................................................................. 67 20.3 Requirements ........................................................................................................................................ 68 20.3.1 Data Characteristics ............................................................................................................ 68 20.3.2 Message Structure ............................................................................................................... 68 20.3.3 Message Content ................................................................................................................. 79 20.3.4 Timing Relationships ........................................................................................................ 118 20.3.5 Data Frame Parity ............................................................................................................. 125 30. APPENDIX III. GPS NAVIGATION DATA STRUCTURE FOR CNAV DATA, DC(t).......................... 128 30.1 Scope .................................................................................................................................................
Recommended publications
  • Doc.10100.Space Weather Manual FINAL DRAFT Version
    Doc 10100 Manual on Space Weather Information in Support of International Air Navigation Approved by the Secretary General and published under his authority First Edition – 2018 International Civil Aviation Organization TABLE OF CONTENTS Page Chapter 1. Introduction ..................................................................................................................................... 1-1 1.1 General ............................................................................................................................................... 1-1 1.2 Space weather indicators .................................................................................................................... 1-1 1.3 The hazards ........................................................................................................................................ 1-2 1.4 Space weather mitigation aspects ....................................................................................................... 1-3 1.5 Coordinating the response to a space weather event ......................................................................... 1-3 Chapter 2. Space Weather Phenomena and Aviation Operations ................................................................. 2-1 2.1 General ............................................................................................................................................... 2-1 2.2 Geomagnetic storms ..........................................................................................................................
    [Show full text]
  • National Space Weather Program Implementation Plan, 2Nd Edition, July 2000
    National Space Weather Program Implementation Plan, 2nd Edition, July 2000 http://www.ofcm.gov/ The National Space Weather Program The Implementation Plan 2nd Edition July 2000 National Space Weather Program Implementation Plan, 2nd Edition, July 2000 http://www.ofcm.gov/ NATIONAL SPACE WEATHER PROGRAM COUNCIL Mr. Samuel P. Williamson, Chairman Federal Coordinator Dr. David L. Evans Department of Commerce Colonel Michael A. Neyland, USAF Department of Defense Mr. Robert E. Waldron Department of Energy Mr. James F. Devine Department of the Interior Mr. David Whatley Department of Transportation Dr. Edward J. Weiler National Aeronautics and Space Administration Dr. Margaret S. Leinen National Science Foundation Lt Col Michael R. Babcock, USAF, Executive Secretary Office of the Federal Coordinator for Meteorological Services and Supporting Research National Space Weather Program Implementation Plan, 2nd Edition, July 2000 http://www.ofcm.gov/ NATIONAL SPACE WEATHER PROGRAM Implementation Plan 2nd Edition Prepared by the Committee for Space Weather for the National Space Weather Program Council Office of the Federal Coordinator for Meteorology FCM-P31-2000 Washington, DC July 2000 National Space Weather Program Implementation Plan, 2nd Edition, July 2000 http://www.ofcm.gov/ National Space Weather Program Implementation Plan, 2nd Edition, July 2000 http://www.ofcm.gov/ FOREWORD We are pleased to present this Second Edition of the National Space Weather Program Implementation Plan. We published the program's Strategic Plan in 1995 and the first Implementation Plan in 1997. In the intervening period, we have made tremendous progress toward our goals but much work remains to be accomplished to achieve our ultimate goal of providing the space weather observations, forecasts, and warnings needed by our Nation.
    [Show full text]
  • World Geodetic System 1984
    World Geodetic System 1984 Responsible Organization: National Geospatial-Intelligence Agency Abbreviated Frame Name: WGS 84 Associated TRS: WGS 84 Coverage of Frame: Global Type of Frame: 3-Dimensional Last Version: WGS 84 (G1674) Reference Epoch: 2005.0 Brief Description: WGS 84 is an Earth-centered, Earth-fixed terrestrial reference system and geodetic datum. WGS 84 is based on a consistent set of constants and model parameters that describe the Earth's size, shape, and gravity and geomagnetic fields. WGS 84 is the standard U.S. Department of Defense definition of a global reference system for geospatial information and is the reference system for the Global Positioning System (GPS). It is compatible with the International Terrestrial Reference System (ITRS). Definition of Frame • Origin: Earth’s center of mass being defined for the whole Earth including oceans and atmosphere • Axes: o Z-Axis = The direction of the IERS Reference Pole (IRP). This direction corresponds to the direction of the BIH Conventional Terrestrial Pole (CTP) (epoch 1984.0) with an uncertainty of 0.005″ o X-Axis = Intersection of the IERS Reference Meridian (IRM) and the plane passing through the origin and normal to the Z-axis. The IRM is coincident with the BIH Zero Meridian (epoch 1984.0) with an uncertainty of 0.005″ o Y-Axis = Completes a right-handed, Earth-Centered Earth-Fixed (ECEF) orthogonal coordinate system • Scale: Its scale is that of the local Earth frame, in the meaning of a relativistic theory of gravitation. Aligns with ITRS • Orientation: Given by the Bureau International de l’Heure (BIH) orientation of 1984.0 • Time Evolution: Its time evolution in orientation will create no residual global rotation with regards to the crust Coordinate System: Cartesian Coordinates (X, Y, Z).
    [Show full text]
  • Mission Conventions Document
    Earth Observation Mission CFI Software CONVENTIONS DOCUMENT Code: EO-MA-DMS-GS-0001 Issue: 4.19 Date: 29/05/2020 Name Function Signature Prepared by: Fabrizio Pirondini Project Engineer José Antonio González Abeytua Project Manager Juan José Borrego Bote Project Engineer Carlos Villanueva Project Manager Checked by: Javier Babe Quality A. Manager Approved by: Carlos Villanueva Project Manager DEIMOS Space S.L.U. Ronda de Poniente, 19 Edificio Fiteni VI, Portal 2, 2ª Planta 28760 Tres Cantos (Madrid), SPAIN Tel.: +34 91 806 34 50 Fax: +34 91 806 34 51 E-mail: [email protected] © DEIMOS Space S.L.U. All Rights Reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of DEIMOS Space S.L.U. or ESA. Code: EO-MA-DMS-GS-0001 Date: 29/05/2020 Issue: 4.19 Page: 2 DOCUMENT INFORMATION Contract Data Classification Internal Contract Number: 4000102614/1O/NL/FF/ef Public Industry X Contract Issuer: ESA / ESTEC Confidential External Distribution Name Organization Copies Electronic handling Word Processor: LibreOffice 5.2.3.3 Archive Code: P/MCD/DMS/01/026-003 Electronic file name: eo-ma-dms-gs-001-12 Earth Observation Mission CFI Software. CONVENTIONS DOCUMENT Code: EO-MA-DMS-GS-0001 Date: 29/05/2020 Issue: 4.19 Page: 3 DOCUMENT STATUS LOG Issue Change Description Date Approval 1.0 New Document 27/10/09 • Issue in-line wit EOCFI libraries version 4.1 • Section 8.2.4 Refractive
    [Show full text]
  • IERS Annual Report 2000
    International Earth Rotation Service (IERS) Service International de la Rotation Terrestre Member of the Federation of the Astronomical and Geophysical data analysis Service (FAGS) IERS Annual Report 2000 Verlag des Bundesamts für Kartographie und Geodäsie Frankfurt am Main 2001 IERS Annual Report 2000 Edited by Wolfgang R. Dick and Bernd Richter Technical support: Alexander Lothhammer International Earth Rotation Service Central Bureau Bundesamt für Kartographie und Geodäsie Richard-Strauss-Allee 11 60598 Frankfurt am Main Germany phone: ++49-69-6333-273/261/250 fax: ++49-69-6333-425 e-mail: [email protected] URL: www.iers.org ISSN: 1029-0060 (print version) ISBN: 3-89888-862-2 (print version) An online version of this document is available at: http://www.iers.org/iers/publications/reports/2000/ © Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, 2001 Table of Contents I Forewords............................................................................................. 4 II Organisation of the IERS in 2000............................................................. 7 III Reports of Coordination Centres III.1 VLBI Coordination Centre.............................................................. 10 III.2 GPS Coordination Centre.............................................................. 13 III.3 SLR and LLR Coordination Centre................................................. 16 III.4 DORIS Coordination Centre........................................................... 19 IV Reports of Bureaus, Centres and
    [Show full text]
  • Where Is the Best Site on Earth? Domes A, B, C, and F, And
    Where is the best site on Earth? Saunders et al. 2009, PASP, 121, 976-992 Where is the best site on Earth? Domes A, B, C and F, and Ridges A and B Will Saunders1;2, Jon S. Lawrence1;2;3, John W.V. Storey1, Michael C.B. Ashley1 1School of Physics, University of New South Wales 2Anglo-Australian Observatory 3Macquarie University, New South Wales [email protected] Seiji Kato, Patrick Minnis, David M. Winker NASA Langley Research Center Guiping Liu Space Sciences Lab, University of California Berkeley Craig Kulesa Department of Astronomy and Steward Observatory, University of Arizona Saunders et al. 2009, PASP, 121 976992 Received 2009 May 26; accepted 2009 July 13; published 2009 August 20 ABSTRACT The Antarctic plateau contains the best sites on earth for many forms of astronomy, but none of the existing bases was selected with astronomy as the primary motivation. In this paper, we try to systematically compare the merits of potential observatory sites. We include South Pole, Domes A, C and F, and also Ridge B (running NE from Dome A), and what we call `Ridge A' (running SW from Dome A). Our analysis combines satellite data, published results and atmospheric models, to compare the boundary layer, weather, aurorae, airglow, precipitable water vapour, thermal sky emission, surface temperature, and the free atmosphere, at each site. We ¯nd that all Antarctic sites are likely to be compromised for optical work by airglow and aurorae. Of the sites with existing bases, Dome A is easily the best overall; but we ¯nd that Ridge A o®ers an even better site.
    [Show full text]
  • Response of the Total Electron Content at Brazilian Low Latitudes to Corotating Interaction Region and High‑Speed Streams During Solar Minimum 2008 Claudia M
    Candido et al. Earth, Planets and Space (2018) 70:104 https://doi.org/10.1186/s40623-018-0875-8 FULL PAPER Open Access Response of the total electron content at Brazilian low latitudes to corotating interaction region and high‑speed streams during solar minimum 2008 Claudia M. N. Candido1,2*, Inez S. Batista2, Virginia Klausner3, Patricia M. de Siqueira Negreti2, Fabio Becker‑Guedes2, Eurico R. de Paula2, Jiankui Shi1 and Emilia S. Correia2,4 Abstract In this work, we investigate the Brazilian low-latitude ionospheric response to two corotating interaction regions (CIRs) and high-speed streams (HSSs) events during the solar minimum of solar cycle 23, in 2008. The studied inter‑ vals are enclosed in the whole heliospheric interval, studied by other authors, for distinct longitudinal sectors. CIRs/ HSSs are structures commonly observed during the descending and low solar activity, and they are related to the occurrence of coronal holes. These events cause weak-to-moderate recurrent geomagnetic storms characterized by negative excursions of the interplanetary magnetic feld, IMF_Bz, as well as long-duration auroral activity, consid‑ ered as a favorable scenario for continuous prompt penetration interplanetary electric feld (PPEF). In this study, we used the vertical total electron content (VTEC) calculated from GPS receivers database from the Brazilian Continu‑ ous Monitoring Network managed by the Brazilian Institute of Geography and Statistics. Moreover, we analyzed the F-layer peak height, hmF2 and the critical plasma frequency, foF2, taken from a Digisonde installed at the southern crest of the equatorial ionization anomaly, in Cachoeira Paulista, CP. It was observed that during the CIRs/HSSs-driven geomagnetic disturbances VTEC increased more than 120% over the quiet times averaged values, which is compa‑ rable to intense geomagnetic storms.
    [Show full text]
  • Benchmark Geomagnetic Disturbance Event Description
    Benchmark Geomagnetic Disturbance Event Description Project 2013-03 GMD Mitigation Standard Drafting Team May 12, 2016 NERC | Report Title | Report Date 1 of 23 Table of Contents Preface ........................................................................................................................................................................3 Introduction ................................................................................................................................................................4 Background .............................................................................................................................................................4 General Characteristics ...........................................................................................................................................4 Benchmark GMD Event Description ...........................................................................................................................5 Reference Geoelectric Field Amplitude ..................................................................................................................5 Reference Geomagnetic Field Waveshape .............................................................................................................5 Appendix I – Technical Considerations .......................................................................................................................8 Statistical Considerations ........................................................................................................................................8
    [Show full text]
  • Solar and Geomagnetic Activity During March 1989 and Later Honths and Their Consequences at Earth and in Near-Earth Space
    SOLAR AND GEOMAGNETIC ACTIVITY DURING MARCH 1989 AND LATER HONTHS AND THEIR CONSEQUENCES AT EARTH AND IN NEAR-EARTH SPACE J. H. Allen (NOAA/NESDIS/NGDC) Spacecraft Charging Technology Conference Naval Postgraduate School, Monterey, California October 31-November 3, 1989 ABSTRACT From 6-20 March 1989 the large, complex sunspot group Region 5395 rotated across the visible disc of the Sun producing many large flares that bombdrded Earth with a variety of intense radiation although the energetic particle spectra were unusually "soft". Aurorae were observed worldwide at low latitudes. On 13/14 March a "Great" magnetic storm occurred for which Ap* = 279 and AA* = 450. By both measures, this event rates among the largest historical magnetic storms. Geostationary sate1 1 i tes became interpl anetary monitors when the magnetopause moved earthward of 6.5 Re. Ionospheric condi- ticns were extremely disturbed, affecting hf through X-band comnunications and the operation of satellites used for surveys and navigation. At lower altitudes there were problems with satellite drag and due to the large mag- netic field changes associated with field-a1 igned current sheets. We are seeking reports of satellite anomalies at all altitudes. Reports also have been received about effects of these Sol ar-Terrestria1 di sturbances on other technology at Earth and in near-Earth space. This presentation draws heavily on material in a shorter, summary paper "iri prgss" for "EOS" (Allen, et. al., 1989). Recent major solar activity since the abstract. was submitted happened in mid-August, late September, and mid-October 1989. These events and their consequences at Earth and in Space are covered briefly.
    [Show full text]
  • Improvement of Global Ionospheric TEC Derivation with Multi-Source Data in Modip Latitude
    atmosphere Article Improvement of Global Ionospheric TEC Derivation with Multi-Source Data in Modip Latitude Weizheng Fu 1,2 , Guanyi Ma 1,3,* , Weijun Lu 1,3 , Takashi Maruyama 4, Jinghua Li 1, Qingtao Wan 1, Jiangtao Fan 1 and Xiaolan Wang 1 1 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (W.F.); [email protected] (W.L.); [email protected] (J.L.); [email protected] (Q.W.); [email protected] (J.F.); [email protected] (X.W.). 2 Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan 3 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China 4 National Institute of Information and Communications Technology, Tokyo 183-8795, Japan; [email protected] * Correspondence: [email protected] Abstract: Global ionospheric total electron content (TEC) is generally derived with ground-based Global Navigation Satellite System (GNSS) observations based on mathematical models in a solar- geomagnetic reference frame. However, ground-based observations are not well-distributed. There is a lack of observations over sparsely populated areas and vast oceans, where the accuracy of TEC derivation is reduced. Additionally, the modified dip (modip) latitude is more suitable than geomagnetic latitude for the ionosphere. This paper investigates the improvement of global TEC with multi-source data and modip latitude, and a simulation with International Reference Ionosphere (IRI) model is developed. Compared with using ground-based observations in geomagnetic latitude, the mean improvement was about 10.88% after the addition of space-based observations and the adoption Citation: Fu, W.; Ma, G.; Lu, W.; of modip latitude.
    [Show full text]
  • Spatial and Seasonal Effects on the Delayed Ionospheric Response to Solar EUV Changes
    Spatial and seasonal effects on the delayed ionospheric response to solar EUV changes Erik Schmölter1, Jens Berdermann1, Norbert Jakowski1, and Christoph Jacobi2 1German Aerospace Center, Kalkhorstweg 53, 17235 Neustrelitz, Germany 2Leipzig Institute for Meteorology, Universität Leipzig, Stephanstr. 3, 04103 Leipzig, Germany Correspondence: Erik Schmölter ([email protected]) Abstract. This study correlates different ionospheric parameters with the integrated solar EUV radiation to analyze the delayed ionospheric response, testing and improving upon previous studies on the ionospheric delay. Several time series of correlation coefficients and delays are presented to characterize the trend of the ionospheric delay from January 2011 to December 2013. The impact of the diurnal variations of ionospheric parameters in the analysis at an hourly resolution for fixed locations are 5 discussed and specified with calculations in different time scales and with comparison to solar and geomagnetic activity. An average delay for TEC of ≈ 18:7 hours and for foF2 of ≈ 18:6 hours is calculated at four European stations. The difference between northern and southern hemisphere is analyzed by comparisons with the Australian region. A seasonal variation of the delay between northern and southern hemisphere is calculated for TEC with ≈ 5 ± 0:7 hours and foF2 with ≈ 8 ± 0:8 hours. The latitudinal and longitudinal variability of the delay is analyzed for the European region, and found to be characterized by 10 a decrease in the delay from ≈ 21:5 hours at 30◦N to ≈ 19:0 hours at 70◦N for summer months. For winter months, a roughly constant delay of ≈ 19:5 hours is calculated. The results based on solar and ionospheric data at hourly resolution and the analysis of the delayed ionospheric response to solar EUV show the seasonal and latitudinal variations.
    [Show full text]
  • Interhemispheric Comparison of GPS Phase Scintillation at High Latitudes During the Magnetic-Cloud-Induced Geomagnetic Storm of 5–7 April 2010
    Ann. Geophys., 29, 2287–2304, 2011 www.ann-geophys.net/29/2287/2011/ Annales doi:10.5194/angeo-29-2287-2011 Geophysicae © Author(s) 2011. CC Attribution 3.0 License. Interhemispheric comparison of GPS phase scintillation at high latitudes during the magnetic-cloud-induced geomagnetic storm of 5–7 April 2010 P. Prikryl1, L. Spogli2, P. T. Jayachandran3, J. Kinrade4, C. N. Mitchell4, B. Ning5, G. Li5, P. J. Cilliers6, M. Terkildsen7, D. W. Danskin8, E. Spanswick9, E. Donovan9, A. T. Weatherwax10, W. A. Bristow11, L. Alfonsi2, G. De Franceschi2, V. Romano2, C. M. Ngwira6, and B. D. L. Opperman6 1Communications Research Centre Canada, Ottawa, ON, Canada 2Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy 3Physics Department, University of New Brunswick, Fredericton, NB, Canada 4Department of Electronic and Electrical Engineering, University of Bath, Bath, UK 5Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China 6South African National Space Agency, Hermanus, South Africa 7IPS Radio and Space Services, Bureau of Meteorology, Haymarket, NSW, Australia 8Geomagnetic Laboratory, Natural Resources Canada, ON, Canada 9Department of Physics and Astronomy, University of Calgary, AB, Canada 10Department of Physics and Astronomy, Siena College, Loudonville, NY, USA 11Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA Received: 1 September 2011 – Revised: 2 December 2011 – Accepted: 9 December 2011 – Published: 21 December 2011 Abstract. Arrays of GPS Ionospheric Scintillation and TEC while it was significantly higher in Cambridge Bay (77.0◦ N; Monitors (GISTMs) are used in a comparative scintillation 310.1◦ E) than at Mario Zucchelli (80.0◦ S; 307.7◦ E). In the study focusing on quasi-conjugate pairs of GPS receivers in polar cap, when the interplanetary magnetic field (IMF) was the Arctic and Antarctic.
    [Show full text]