Cornucopia: Temporal Safety for CHERI Heaps
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Extending the UHC LLVM Backend: Adding Support for Accurate Garbage Collection
Extending the UHC LLVM backend: Adding support for accurate garbage collection Paul van der Ende MSc Thesis October 18, 2010 INF/SCR-09-59 Daily Supervisors: Center for Software Technology dr. A. Dijkstra Dept. of Information and Computing Sciences drs. J.D. Fokker Utrecht University Utrecht, the Netherlands Second Supervisor: prof. dr. S.D. Swierstra Abstract The Utrecht Haskell Compiler has an LLVM backend for whole program analyse mode. This backend pre- viously used the Boehm-Weiser library for heap allocation and conservative garbage collection. Recently an accurate garbage collector for the UHC compiler has been developed. We wanted this new garbage collection library to work with the LLVM backend. But since this new collector is accurate, it needs cooperation with the LLVM backend. Functionality needs to be added to find the set of root references and traversing all live references. To find the root set, the bytecode interpreter backend currently uses static stack maps. This is where the problem arises. The LLVM compiler is known to do various aggressive transformations. These optimizations might change the stack layout described by the static stack map. So to avoid this problem we wanted to use the shadow-stack provided by the LLVM framework. This is a dynamic structure maintained on the stack to safely find the garbage collection roots. We expect that the shadow-stack approach comes with a runtime overhead for maintaining this information dynamically on the stack. So we did measure the impact of this method. We also measured the performance improvement of the new garbage collection method used and compare it with the other UHC backends. -
Improving Memory Management Security for C and C++
Improving memory management security for C and C++ Yves Younan, Wouter Joosen, Frank Piessens, Hans Van den Eynden DistriNet, Katholieke Universiteit Leuven, Belgium Abstract Memory managers are an important part of any modern language: they are used to dynamically allocate memory for use in the program. Many managers exist and depending on the operating system and language. However, two major types of managers can be identified: manual memory allocators and garbage collectors. In the case of manual memory allocators, the programmer must manually release memory back to the system when it is no longer needed. Problems can occur when a programmer forgets to release it (memory leaks), releases it twice or keeps using freed memory. These problems are solved in garbage collectors. However, both manual memory allocators and garbage collectors store management information for the memory they manage. Often, this management information is stored where a buffer overflow could allow an attacker to overwrite this information, providing a reliable way to achieve code execution when exploiting these vulnerabilities. In this paper we describe several vulnerabilities for C and C++ and how these could be exploited by modifying the management information of a representative manual memory allocator and a garbage collector. Afterwards, we present an approach that, when applied to memory managers, will protect against these attack vectors. We implemented our approach by modifying an existing widely used memory allocator. Benchmarks show that this implementation has a negligible, sometimes even beneficial, impact on performance. 1 Introduction Security has become an important concern for all computer users. Worms and hackers are a part of every day internet life. -
Comparative Studies of Programming Languages; Course Lecture Notes
Comparative Studies of Programming Languages, COMP6411 Lecture Notes, Revision 1.9 Joey Paquet Serguei A. Mokhov (Eds.) August 5, 2010 arXiv:1007.2123v6 [cs.PL] 4 Aug 2010 2 Preface Lecture notes for the Comparative Studies of Programming Languages course, COMP6411, taught at the Department of Computer Science and Software Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC, Canada. These notes include a compiled book of primarily related articles from the Wikipedia, the Free Encyclopedia [24], as well as Comparative Programming Languages book [7] and other resources, including our own. The original notes were compiled by Dr. Paquet [14] 3 4 Contents 1 Brief History and Genealogy of Programming Languages 7 1.1 Introduction . 7 1.1.1 Subreferences . 7 1.2 History . 7 1.2.1 Pre-computer era . 7 1.2.2 Subreferences . 8 1.2.3 Early computer era . 8 1.2.4 Subreferences . 8 1.2.5 Modern/Structured programming languages . 9 1.3 References . 19 2 Programming Paradigms 21 2.1 Introduction . 21 2.2 History . 21 2.2.1 Low-level: binary, assembly . 21 2.2.2 Procedural programming . 22 2.2.3 Object-oriented programming . 23 2.2.4 Declarative programming . 27 3 Program Evaluation 33 3.1 Program analysis and translation phases . 33 3.1.1 Front end . 33 3.1.2 Back end . 34 3.2 Compilation vs. interpretation . 34 3.2.1 Compilation . 34 3.2.2 Interpretation . 36 3.2.3 Subreferences . 37 3.3 Type System . 38 3.3.1 Type checking . 38 3.4 Memory management . -
Protecting the Stack with Metadata Policies and Tagged Hardware
2018 IEEE Symposium on Security and Privacy Protecting the Stack with Metadata Policies and Tagged Hardware Nick Roessler Andre´ DeHon University of Pennsylvania University of Pennsylvania [email protected] [email protected] Abstract—The program call stack is a major source of ex- stack data, or hijack the exposed function call mechanism in ploitable security vulnerabilities in low-level, unsafe languages a host of other malicious ways. like C. In conventional runtime implementations, the underlying Consequently, protecting the stack abstraction is critical stack data is exposed and unprotected, allowing programming errors to turn into security violations. In this work, we design for application security. Currently deployed defenses such as W X and stack canaries [2] make attacks more difficult to novel metadata-tag based, stack-protection security policies for ⊕ a general-purpose tagged architecture. Our policies specifically conduct, but do not protect against more sophisticated attack exploit the natural locality of dynamic program call graphs to techniques. Full memory safety can be retrofitted onto existing achieve cacheability of the metadata rules that they require. C/C++ code through added software checks, but at a high cost Our simple Return Address Protection policy has a performance overhead of 1.2% but just protects return addresses. The two of 100% or more in runtime overhead [3]. These expensive richer policies we present, Static Authorities and Depth Isola- solutions are unused in practice due to their unacceptably high tion, provide object-level protection for all stack objects. When overheads [4]. enforcing memory safety, our Static Authorities policy has a There is a long history of accelerating security policies with performance overhead of 5.7% and our Depth Isolation policy hardware to bring their overheads to more bearable levels has a performance overhead of 4.5%. -
Diploma Thesis
Faculty of Computer Science Chair for Real Time Systems Diploma Thesis Porting DotGNU to Embedded Linux Author: Alexander Stein Supervisor: Jun.-Prof. Dr.-Ing. Robert Baumgartl Dipl.-Ing. Ronald Sieber Date of Submission: May 15, 2008 Alexander Stein Porting DotGNU to Embedded Linux Diploma Thesis, Chemnitz University of Technology, 2008 Abstract Programming PLC systems is limited by the provided libraries. In contrary, hardware-near programming needs bigger eorts in e. g. initializing the hardware. This work oers a foundation to combine advantages of both development sides. Therefore, Portable.NET from the DotGNU project has been used, which is an im- plementation of CLI, better known as .NET. The target system is the PLCcore- 5484 microcontroller board, developed by SYS TEC electronic GmbH. Built upon the porting, two variants to use interrupt routines withing the Portabe.NET runtime environment have been analyzed. Finally, the reaction times to occuring interrupt events have been examined and compared. Die Programmierung für SPS-Systeme ist durch die gegebenen Bibliotheken beschränkt, während hardwarenahe Programmierung einen gröÿeren Aufwand durch z.B. Initialisierungen hat. Diese Arbeit bietet eine Grundlage, um die Vorteile bei- der Entwicklungsseiten zu kombinieren. Dafür wurde Portable.NET des DotGNU- Projekts, eine Implementierung des CLI, bekannter unter dem Namen .NET, be- nutzt. Das Zielsystem ist das PLCcore-5484 Mikrocontrollerboard der SYS TEC electronic GmbH. Aufbauend auf der Portierung wurden zwei Varianten zur Ein- bindung von Interrupt-Routinen in die Portable.NET Laufzeitumgebung untersucht. Abschlieÿend wurden die Reaktionszeiten zu eintretenden Interrupts analysiert und verglichen. Acknowledgements I would like to thank some persons who had inuence and supported me in my work. -
Using and Porting the GNU Compiler Collection
Using and Porting the GNU Compiler Collection Richard M. Stallman Last updated 14 June 2001 for gcc-3.0 Copyright c 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. For GCC Version 3.0 Published by the Free Software Foundation 59 Temple Place - Suite 330 Boston, MA 02111-1307, USA Last printed April, 1998. Printed copies are available for $50 each. ISBN 1-882114-37-X Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant Sections being “GNU General Public License”, the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the section entitled “GNU Free Documentation License”. (a) The FSF’s Front-Cover Text is: A GNU Manual (b) The FSF’s Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development. Short Contents Introduction......................................... 1 1 Compile C, C++, Objective C, Fortran, Java ............... 3 2 Language Standards Supported by GCC .................. 5 3 GCC Command Options ............................. 7 4 Installing GNU CC ............................... 111 5 Extensions to the C Language Family .................. 121 6 Extensions to the C++ Language ...................... 165 7 GNU Objective-C runtime features .................... 175 8 gcov: a Test Coverage Program ...................... 181 9 Known Causes of Trouble with GCC ................... 187 10 Reporting Bugs................................. -
Using the GNU Compiler Collection
Using the GNU Compiler Collection Richard M. Stallman Last updated 20 April 2002 for GCC 3.2.3 Copyright c 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. For GCC Version 3.2.3 Published by the Free Software Foundation 59 Temple Place—Suite 330 Boston, MA 02111-1307, USA Last printed April, 1998. Printed copies are available for $50 each. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant Sections being “GNU General Public License”, the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the section entitled “GNU Free Documentation License”. (a) The FSF’s Front-Cover Text is: A GNU Manual (b) The FSF’s Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development. i Short Contents Introduction ...................................... 1 1 Compile C, C++, Objective-C, Ada, Fortran, or Java ....... 3 2 Language Standards Supported by GCC ............... 5 3 GCC Command Options .......................... 7 4 C Implementation-defined behavior ................. 153 5 Extensions to the C Language Family ................ 157 6 Extensions to the C++ Language ................... 255 7 GNU Objective-C runtime features.................. 267 8 Binary Compatibility ........................... 273 9 gcov—a Test Coverage Program ................... 277 10 Known Causes of Trouble with GCC ............... -
Embedding Mono Code in Unmanaged Applications on GNU/Linux
Embedding Mono code in unmanaged applications on GNU/Linux LTH School of Engineering at Campus Helsingborg Department of Computer Science Bachelor thesis: Martin Arvidsson Viktor Hermansson c Copyright Martin Arvidsson, Viktor Hermansson LTH School of Engineering Lund University Box 882 SE-251 08 Helsingborg Sweden LTH Ingenj¨orsh¨ogskolan vid Campus Helsingborg Lunds universitet Box 882 251 08 Helsingborg Printed in Sweden Media-Tryck Biblioteksdirektionen Lunds universitet Lund 2011 Abstract In today's society more and more work is carried out with the help of dif- ferent computer systems. To benefit from the data, integration between the systems is needed. Saab has developed a solution to the problem, by the name WISE. With a modular design costs can be minimized, because a new integration does not necessarily require new software, but can be achieved with configuration of an existing module. (a so-called driver). By supporting languages on a higher level than C++, development of new drivers can be speeded up to further decrease the costs. As a first step C# support was implemented with the help of C++/CLI. Such a solution is constrained to the Windows platform. To be able to meet the customers need for Linux compatibility this project was initiated, to create a wrapper driver with the help of Mono. In the report it is shown that it is fully possible to create a working embedding of C# with the Mono runtime. The documentation of the limited embedding-API is however inadequate, this resulted in us having to investigate the functionality by creating small test cases and read the source code to see how function calls behaved. -
Rootcore < Atlascomputing < Twiki
Table of Contents RootCore.............................................................................................................................................................1 Introduction........................................................................................................................................................2 If Something Goes Wrong......................................................................................................................2 Individual Build Commands.............................................................................................................................4 Setting up RootCore................................................................................................................................4 Setting up Root on Lxplus and Tier 3 Sites......................................................................................5 Setting up RootCore on MacOS.......................................................................................................5 Compilation Commands.........................................................................................................................5 Package Management.............................................................................................................................6 Code Commit and Tag Creation.......................................................................................................8 Miscellaneous Commands......................................................................................................................8 -
In-Fat Pointer: Hardware-Assisted Tagged-Pointer Spatial Memory Safety Defense with Subobject Granularity Protection
In-Fat Pointer: Hardware-Assisted Tagged-Pointer Spatial Memory Safety Defense with Subobject Granularity Protection Shengjie Xu Wei Huang David Lie [email protected] [email protected] [email protected] University of Toronto University of Toronto University of Toronto Canada Canada Canada ABSTRACT 1 INTRODUCTION Programming languages like C and C++ are not memory-safe be- Memory corruption vulnerabilities in programs written in non- cause they provide programmers with low-level pointer manipu- memory-safe programming languages like C and C++ have been lation primitives. The incorrect use of these primitives can result a research focus for more than a decade [40]. When a pointer is in bugs and security vulnerabilities: for example, spatial memory dereferenced, errors, causing memory-safety violations, can result safety errors can be caused by dereferencing pointers outside the in the unintended disclosure or corruption of memory. Such errors legitimate address range belonging to the corresponding object. are a powerful primitive for attackers to mount further attacks, While a range of schemes to provide protection against these vul- such as code reuse attacks [34] and data-only attacks [18]. Memory- nerabilities have been proposed, they all suffer from the lack of one safety violations usually result from spatial memory errors, where or more of low performance overhead, compatibility with legacy incorrect pointer arithmetic causes an address to point outside the code, or comprehensive protection for all objects and subobjects. intended memory range when it is dereferenced. We present In-Fat Pointer, the first hardware-assisted defense To detect all spatial memory errors, the value of the pointer that can achieve spatial memory safety at subobject granularity must be checked against pointer bounds, which are metadata that while maintaining compatibility with legacy code and low over- describes the memory range over which the pointer may safely head. -
Memory Management in the D Programming Language
Technical University of Moldova MEMORY MANAGEMENT IN THE D PROGRAMMING LANGUAGE Student: Panteleev Vladimir Advisor: Lect. Sup. Melnic Radu Chişinău – 2009 Ministerul Educaţiei şi Tineretului al Republicii Moldova Universitatea Tehnică a Moldovei Facultatea de Calculatoare, Informatică şi Microelectronică Catedra Filiera Anglofonă Admis la susţinere Şef de catedră: conf. unif. dr. Bostan Viorel _____________________________ „__”_____________ 200_ Memory Management in the D Programming Language Proiect de licenţă Student: _______________ (Panteleev V. ) Conducător: ____________ (Melnic R. ___ ) Consultanţi: ____________ (Bostan V. ___ ) _____________ (Nicolenco V. ) _____________ (Guţu Al. ____ ) Chişinău – 2009 Abstract This report describes a study of automatic memory management techniques, their implementation in the D Programming Language, and work to improve the state of memory management in the D Programming Language. Chapter 1 describes garbage collection as a form of automatic memory management. Automatic memory management implies freeing the programmer of the task of manually managing system memory. This approach has several advantages, such as less programming effort, as well as some disadvantages. Chapter 2 outlines the D programming language. D is based on C/C++, however it breaks backwards compatibility in favor of redesigned features, as well as introducing new features present in other modern languages. One of these features is automatic memory management using garbage collection, which is also described in detail. Chapter 3 contains three problems commonly encountered while authoring programs in the D programming language (and possibly other garbage collected languages). The covered problems are inadequate performance, memory corruption and memory leaks. The problems are analyzed, and appropriate solutions are developed and deployed. Chapter 4 introduces Diamond, a memory debugger and profiler developed specifically for the D programming language. -
Caladan: Mitigating Interference at Microsecond Timescales
Caladan: Mitigating Interference at Microsecond Timescales Joshua Fried and Zhenyuan Ruan, MIT CSAIL; Amy Ousterhout, UC Berkeley; Adam Belay, MIT CSAIL https://www.usenix.org/conference/osdi20/presentation/fried This paper is included in the Proceedings of the 14th USENIX Symposium on Operating Systems Design and Implementation November 4–6, 2020 978-1-939133-19-9 Open access to the Proceedings of the 14th USENIX Symposium on Operating Systems Design and Implementation is sponsored by USENIX Caladan: Mitigating Interference at Microsecond Timescales Joshua Fried, Zhenyuan Ruan, Amy Ousterhout†, Adam Belay MIT CSAIL, †UC Berkeley Abstract example, Intel’s Cache Allocation Technology (CAT) uses way-based cache partitioning to reserve portions of the last The conventional wisdom is that CPU resources such as cores, level cache (LLC) for specific cores [21]. Many systems use caches, and memory bandwidth must be partitioned to achieve these partitioning mechanisms to improve performance isola- performance isolation between tasks. Both the widespread tion [8,12,28,38,62,73]. They either statically assign enough availability of cache partitioning in modern CPUs and the rec- resources for peak load, leaving significant CPU utilization ommended practice of pinning latency-sensitive applications on the table, or else make dynamic adjustments over hundreds to dedicated cores attest to this belief. of milliseconds to seconds. Because each adjustment is incre- In this paper, we show that resource partitioning is nei- mental, converging to the right configuration after a change ther necessary nor sufficient. Many applications experience in resource usage can take dozens of seconds [8, 12, 38]. bursty request patterns or phased behavior, drastically chang- ing the amount and type of resources they need.