FOUNDATIONS of NONSTANDARD ANALYSIS a Gentle Introduction to Nonstandard Extensions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Introduction to Nonstandard Analysis 11
AN INTRODUCTION TO NONSTANDARD ANALYSIS ISAAC DAVIS Abstract. In this paper we give an introduction to nonstandard analysis, starting with an ultrapower construction of the hyperreals. We then demon- strate how theorems in standard analysis \transfer over" to nonstandard anal- ysis, and how theorems in standard analysis can be proven using theorems in nonstandard analysis. 1. Introduction For many centuries, early mathematicians and physicists would solve problems by considering infinitesimally small pieces of a shape, or movement along a path by an infinitesimal amount. Archimedes derived the formula for the area of a circle by thinking of a circle as a polygon with infinitely many infinitesimal sides [1]. In particular, the construction of calculus was first motivated by this intuitive notion of infinitesimal change. G.W. Leibniz's derivation of calculus made extensive use of “infinitesimal” numbers, which were both nonzero but small enough to add to any real number without changing it noticeably. Although intuitively clear, infinitesi- mals were ultimately rejected as mathematically unsound, and were replaced with the common -δ method of computing limits and derivatives. However, in 1960 Abraham Robinson developed nonstandard analysis, in which the reals are rigor- ously extended to include infinitesimal numbers and infinite numbers; this new extended field is called the field of hyperreal numbers. The goal was to create a system of analysis that was more intuitively appealing than standard analysis but without losing any of the rigor of standard analysis. In this paper, we will explore the construction and various uses of nonstandard analysis. In section 2 we will introduce the notion of an ultrafilter, which will allow us to do a typical ultrapower construction of the hyperreal numbers. -
Connes on the Role of Hyperreals in Mathematics
Found Sci DOI 10.1007/s10699-012-9316-5 Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics Vladimir Kanovei · Mikhail G. Katz · Thomas Mormann © Springer Science+Business Media Dordrecht 2012 Abstract We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in func- tional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S, all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being “vir- tual” if it is not definable in a suitable model of ZFC. If so, Connes’ claim that a theory of the hyperreals is “virtual” is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren’t definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in Noncommutative Geometry, raising the question whether the latter may not be vulnera- ble to Connes’ criticism of virtuality. We analyze the philosophical underpinnings of Connes’ argument based on Gödel’s incompleteness theorem, and detect an apparent circularity in Connes’ logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace − (featured on the front cover of Connes’ magnum opus) V. -
Arxiv:1405.0984V4 [Math.DG] 23 Dec 2015 Ai N Vryte Pwt Lsia Nltcntos Ntepresen D the finite in by Defined Notions
DIFFERENTIAL GEOMETRY VIA INFINITESIMAL DISPLACEMENTS TAHL NOWIK AND MIKHAIL G. KATZ Abstract. We present a new formulation of some basic differential geometric notions on a smooth manifold M, in the setting of nonstandard analysis. In place of classical vector fields, for which one needs to construct the tangent bundle of M, we define a prevector field, which is an internal map from ∗M to itself, implementing the intuitive notion of vectors as infinitesimal displacements. We introduce regularity conditions for prevector fields, defined by finite dif- ferences, thus purely combinatorial conditions involving no analysis. These conditions replace the more elaborate analytic regularity conditions appearing in previous similar approaches, e.g. by Stroyan and Luxemburg or Lutz and Goze. We define the flow of a prevector field by hyperfinite iteration of the given prevector field, in the spirit of Euler’s method. We define the Lie bracket of two prevector fields by appropriate iteration of their commutator. We study the properties of flows and Lie brackets, particularly in relation with our proposed regularity conditions. We present several simple applications to the classical setting, such as bounds re- lated to the flow of vector fields, analysis of small oscillations of a pendulum, and an instance of Frobenius’ Theorem regarding the complete integrability of independent vector fields. 1. Introduction We develop foundations for differential geometry on smooth manifolds, based on infinites- imals, where vectors and vector fields are represented by infinitesimal displacements in the arXiv:1405.0984v4 [math.DG] 23 Dec 2015 manifold itself, as they were thought of historically. Such an approach was previously intro- duced e.g. -
Nonstandard Analysis (Math 649K) Spring 2008
Nonstandard Analysis (Math 649k) Spring 2008 David Ross, Department of Mathematics February 29, 2008 1 1 Introduction 1.1 Outline of course: 1. Introduction: motivation, history, and propoganda 2. Nonstandard models: definition, properties, some unavoidable logic 3. Very basic Calculus/Analysis 4. Applications of saturation 5. General Topology 6. Measure Theory 7. Functional Analysis 8. Probability 1.2 Some References: 1. Abraham Robinson (1966) Nonstandard Analysis North Holland, Amster- dam 2. Martin Davis and Reuben Hersh Nonstandard Analysis Scientific Ameri- can, June 1972 3. Davis, M. (1977) Applied Nonstandard Analysis Wiley, New York. 4. Sergio Albeverio, Jens Erik Fenstad, Raphael Høegh-Krohn, and Tom Lindstrøm (1986) Nonstandard Methods in Stochastic Analysis and Math- ematical Physics. Academic Press, New York. 5. Al Hurd and Peter Loeb (1985) An introduction to Nonstandard Real Anal- ysis Academic Press, New York. 6. Keith Stroyan and Wilhelminus Luxemburg (1976) Introduction to the Theory of Infinitesimals Academic Press, New York. 7. Keith Stroyan and Jose Bayod (1986) Foundations of Infinitesimal Stochas- tic Analysis North Holland, Amsterdam 8. Leif Arkeryd, Nigel Cutland, C. Ward Henson (eds) (1997) Nonstandard Analysis: Theory and Applications, Kluwer 9. Rob Goldblatt (1998) Lectures on the Hyperreals, Springer 2 1.3 Some history: • (xxxx) Archimedes • (1615) Kepler, Nova stereometria dolorium vinariorium • (1635) Cavalieri, Geometria indivisibilus • (1635) Excercitationes geometricae (”Rigor is the affair of philosophy rather -
Arxiv:Math/0209292V2 [Math.OA] 13 Dec 2002 Ntsmlnr.Though Norm
QUASIDIAGONAL C∗-ALGEBRAS AND NONSTANDARD ANALYSIS F. Javier Thayer Suppose B is an ultraproduct of finite dimensional C∗-algebras. We consider mapping and injectability properties for separable C∗- algebras into B. In the case of approximately finite C∗-algebras, we obtain a classification of these mappings up to inner conju- gacy. Using a Theorem of Voiculescu, we show that for nuclear C∗-algebras injectability into an ultraproduct of finite dimensional C∗-algebras is equivalent to quasidiagonality. 1. Introduction In this paper we use nonstandard analysis ([1], [13], [15]) to investigate injectability into C∗-algebras B which are infinitesimal hulls of hyperfinite dimensional inter- nal C∗-algebras B. B is obtained from B by considering the subspace Fin(B) of elements with norm and identifying x, y Fin(B) whenever x y has in- finitesimal norm. Though≪ ∞ B is a legitimate standard∈ C∗-algebra, it is− very large, except in the uninteresting case the original B is finite dimensional. We point out that the C∗-algebras B are exactly ultraproducts of finite-dimensional C∗-algebras (see [11] or the appendix). A more interesting question from an operator theorist’s viewpoint, is which kinds of separable C∗-algebras are injectable into B and what kinds of mappings exist from separable C∗-algebras into B. We show the following: If A is an AF algebra, Proposition 5.3 determines the inner conjugacy classes of C∗-morphisms for A into a fixed B in terms of certain projective systems of matrices with nonnegative integer entries. Proposition 5.6 gives a necessary and sufficient condition for injectability of an AF algebra into a fixed B in similar terms. -
H. Jerome Keisler : Foundations of Infinitesimal Calculus
FOUNDATIONS OF INFINITESIMAL CALCULUS H. JEROME KEISLER Department of Mathematics University of Wisconsin, Madison, Wisconsin, USA [email protected] June 4, 2011 ii This work is licensed under the Creative Commons Attribution-Noncommercial- Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ Copyright c 2007 by H. Jerome Keisler CONTENTS Preface................................................................ vii Chapter 1. The Hyperreal Numbers.............................. 1 1A. Structure of the Hyperreal Numbers (x1.4, x1.5) . 1 1B. Standard Parts (x1.6)........................................ 5 1C. Axioms for the Hyperreal Numbers (xEpilogue) . 7 1D. Consequences of the Transfer Axiom . 9 1E. Natural Extensions of Sets . 14 1F. Appendix. Algebra of the Real Numbers . 19 1G. Building the Hyperreal Numbers . 23 Chapter 2. Differentiation........................................ 33 2A. Derivatives (x2.1, x2.2) . 33 2B. Infinitesimal Microscopes and Infinite Telescopes . 35 2C. Properties of Derivatives (x2.3, x2.4) . 38 2D. Chain Rule (x2.6, x2.7). 41 Chapter 3. Continuous Functions ................................ 43 3A. Limits and Continuity (x3.3, x3.4) . 43 3B. Hyperintegers (x3.8) . 47 3C. Properties of Continuous Functions (x3.5{x3.8) . 49 Chapter 4. Integration ............................................ 59 4A. The Definite Integral (x4.1) . 59 4B. Fundamental Theorem of Calculus (x4.2) . 64 4C. Second Fundamental Theorem of Calculus (x4.2) . 67 Chapter 5. Limits ................................................... 71 5A. "; δ Conditions for Limits (x5.8, x5.1) . 71 5B. L'Hospital's Rule (x5.2) . 74 Chapter 6. Applications of the Integral........................ 77 6A. Infinite Sum Theorem (x6.1, x6.2, x6.6) . 77 6B. Lengths of Curves (x6.3, x6.4) . -
Nonstandard Analysis and Vector Lattices Managing Editor
Nonstandard Analysis and Vector Lattices Managing Editor: M. HAZEWINKEL Centre for Mathematics and Computer Science, Amsterdam, The Netherlands Volume 525 Nonstandard Analysis and Vector Lattices Edited by S.S. Kutateladze Sobolev Institute of Mathematics. Siberian Division of the Russian Academy of Sciences. Novosibirsk. Russia SPRINGER-SCIENCE+BUSINESS MEDIA, B. V. A C.LP. Catalogue record for this book is available from the Library of Congress. ISBN 978-94-010-5863-6 ISBN 978-94-011-4305-9 (eBook) DOI 10.1007/978-94-011-4305-9 This is an updated translation of the original Russian work. Nonstandard Analysis and Vector Lattices, A.E. Gutman, \'E.Yu. Emelyanov, A.G. Kusraev and S.S. Kutateladze. Novosibirsk, Sobolev Institute Press, 1999. The book was typeset using AMS-TeX. Printed an acid-free paper AII Rights Reserved ©2000 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2000 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. Contents Foreword ix Chapter 1. Nonstandard Methods and Kantorovich Spaces (A. G. Kusraev and S. S. Kutateladze) 1 § 1.l. Zermelo-Fraenkel Set·Theory 5 § l.2. Boolean Valued Set Theory 7 § l.3. Internal and External Set Theories 12 § 1.4. Relative Internal Set Theory 18 § l.5. Kantorovich Spaces 23 § l.6. Reals Inside Boolean Valued Models 26 § l.7. Functional Calculus in Kantorovich Spaces 30 § l.8. -
Extremal Axioms
Extremal axioms Jerzy Pogonowski Extremal axioms Logical, mathematical and cognitive aspects Poznań 2019 scientific committee Jerzy Brzeziński, Agnieszka Cybal-Michalska, Zbigniew Drozdowicz (chair of the committee), Rafał Drozdowski, Piotr Orlik, Jacek Sójka reviewer Prof. dr hab. Jan Woleński First edition cover design Robert Domurat cover photo Przemysław Filipowiak english supervision Jonathan Weber editors Jerzy Pogonowski, Michał Staniszewski c Copyright by the Social Science and Humanities Publishers AMU 2019 c Copyright by Jerzy Pogonowski 2019 Publication supported by the National Science Center research grant 2015/17/B/HS1/02232 ISBN 978-83-64902-78-9 ISBN 978-83-7589-084-6 social science and humanities publishers adam mickiewicz university in poznań 60-568 Poznań, ul. Szamarzewskiego 89c www.wnsh.amu.edu.pl, [email protected], tel. (61) 829 22 54 wydawnictwo fundacji humaniora 60-682 Poznań, ul. Biegańskiego 30A www.funhum.home.amu.edu.pl, [email protected], tel. 519 340 555 printed by: Drukarnia Scriptor Gniezno Contents Preface 9 Part I Logical aspects 13 Chapter 1 Mathematical theories and their models 15 1.1 Theories in polymathematics and monomathematics . 16 1.2 Types of models and their comparison . 20 1.3 Classification and representation theorems . 32 1.4 Which mathematical objects are standard? . 35 Chapter 2 Historical remarks concerning extremal axioms 43 2.1 Origin of the notion of isomorphism . 43 2.2 The notions of completeness . 46 2.3 Extremal axioms: first formulations . 49 2.4 The work of Carnap and Bachmann . 63 2.5 Further developments . 71 Chapter 3 The expressive power of logic and limitative theorems 73 3.1 Expressive versus deductive power of logic . -
Infinitesimal Methods in Mathematical Economics
Infinitesimal Methods in Mathematical Economics Robert M. Anderson1 Department of Economics and Department of Mathematics University of California at Berkeley Berkeley, CA 94720, U.S.A. and Department of Economics Johns Hopkins University Baltimore, MD 21218, U.S.A. January 20, 2008 1The author is grateful to Marc Bettz¨uge, Don Brown, Hung- Wen Chang, G´erard Debreu, Eddie Dekel-Tabak, Greg Engl, Dmitri Ivanov, Jerry Keisler, Peter Loeb, Paul MacMillan, Mike Magill, Andreu Mas-Colell, Max Stinchcombe, Cathy Wein- berger and Bill Zame for their helpful comments. Financial sup- port from Deutsche Forschungsgemeinschaft, Gottfried-Wilhelm- Leibniz-F¨orderpreis is gratefully acknowledged. Contents 0Preface v 1 Nonstandard Analysis Lite 1 1.1 When is Nonstandard Analysis Useful? . 1 1.1.1 Large Economies . 2 1.1.2 Continuum of Random Variables . 4 1.1.3 Searching For Elementary Proofs . 4 1.2IdealElements................. 5 1.3Ultraproducts.................. 6 1.4InternalandExternalSets........... 9 1.5NotationalConventions............. 11 1.6StandardModels................ 12 1.7 Superstructure Embeddings . 14 1.8AFormalLanguage............... 16 1.9TransferPrinciple................ 16 1.10Saturation.................... 18 1.11InternalDefinitionPrinciple.......... 19 1.12 Nonstandard Extensions, or Enough Already with the Ultraproducts . 20 1.13HyperfiniteSets................. 21 1.14 Nonstandard Theorems Have Standard Proofs 22 2 Nonstandard Analysis Regular 23 2.1 Warning: Do Not Read this Chapter . 23 i ii CONTENTS 2.2AFormalLanguage............... 23 2.3 Extensions of L ................. 25 2.4 Assigning Truth Value to Formulas . 28 2.5 Interpreting Formulas in Superstructure Em- beddings..................... 32 2.6TransferPrinciple................ 33 2.7InternalDefinitionPrinciple.......... 34 2.8NonstandardExtensions............ 35 2.9TheExternalLanguage............. 36 2.10TheConservationPrinciple.......... 37 3RealAnalysis 39 3.1Monads..................... 39 3.2OpenandClosedSets............. 44 3.3Compactness................. -
Nonstandard Analysis
Nonstandard Analysis Armin Straub Technische Universität Darmstadt Dec 10, 2007 Contents 1 Introduction........................ ............ 2 1.1 Approaches to Getting Infinitesimals . 2 1.2 The Use of Infinitesimals . ... 5 2 Diving In....................... ............... 6 2.1 Limits and Ultrafilters ........................ .... 6 2.2 A First Nonstandard Peak . ...... 9 2.3 An Axiomatic Approach . ..... 11 2.4 Basic Usage . ............. 12 2.5 The Source of Nonstandard Strength . 16 2.6 Stronger Nonstandard Models . .. 17 2.7 Studying Z in its Own Right . .. 19 3 Conclusions....................... ............ 20 References....................... ............... 21 Abstract These notes complement a seminar talk I gave as a student at TU Darm- stadt as part of the StuVo (Studentische Vortragsreihe), Dec 10, 2007. While this text is meant to be informal in nature, any corrections as well as suggestions are very welcome. We discuss some ways to add infinitesimals to our usual numbers, get acquainted with ultrafilters and how they can be used to construct nonstandard extensions, and then provide an axiomatic framework for nonstandard analysis. As basic working examples we present nonstan- dard characterizations of continuity and uniform continuity. We close with a short external look at the nonstandard integers and point out connections withp-adic integers. 1 2 Nonstandard Analysis 1 Introduction 1.1 Approaches to Getting Infinitesimals One aspect of nonstandard analysis is that it introduces a new kind of numbers, namely infinitely large numbers (and hence infinitesimally small ones as well). This is something that may be philosophically challenging to a Platonist. It's not just that we are talking about infinity but its quality here is of a particular kind. -
Arxiv:1210.7750V1 [Math.HO] 29 Oct 2012 Tsml Ehdo Aiaadmnm;Rfato;Selslaw
ALMOST EQUAL: THE METHOD OF ADEQUALITY FROM DIOPHANTUS TO FERMAT AND BEYOND MIKHAIL G. KATZ, DAVID M. SCHAPS, AND STEVEN SHNIDER Abstract. We analyze some of the main approaches in the liter- ature to the method of ‘adequality’ with which Fermat approached the problems of the calculus, as well as its source in the παρισoτης´ of Diophantus, and propose a novel reading thereof. Adequality is a crucial step in Fermat’s method of finding max- ima, minima, tangents, and solving other problems that a mod- ern mathematician would solve using infinitesimal calculus. The method is presented in a series of short articles in Fermat’s col- lected works [66, p. 133-172]. We show that at least some of the manifestations of adequality amount to variational techniques ex- ploiting a small, or infinitesimal, variation e. Fermat’s treatment of geometric and physical applications sug- gests that an aspect of approximation is inherent in adequality, as well as an aspect of smallness on the part of e. We question the rel- evance to understanding Fermat of 19th century dictionary defini- tions of παρισoτης´ and adaequare, cited by Breger, and take issue with his interpretation of adequality, including his novel reading of Diophantus, and his hypothesis concerning alleged tampering with Fermat’s texts by Carcavy. We argue that Fermat relied on Bachet’s reading of Diophantus. Diophantus coined the term παρισoτης´ for mathematical pur- poses and used it to refer to the way in which 1321/711 is ap- proximately equal to 11/6. Bachet performed a semantic calque in passing from pariso¯o to adaequo. -
Constructive Nonstandard Analysis Without Actual Infinity
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto CONSTRUCTIVE NONSTANDARD ANALYSIS WITHOUT ACTUAL INFINITY JUHA RUOKOLAINEN Academic dissertation To be presented, with the permission of the Faculty of Science of the University of Helsinki, for public criticism in Auditorium III, Porthania, on May 15th, 2004, at 10 a.m. UNIVERSITY OF HELSINKI FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS AND STATISTICS HELSINKI 2004 ISBN 952-91-7140-4 (paperback) ISBN 952-10-1822-4 (PDF) YLIOPISTOPAINO HELSINKI 2004 Contents 1 Introduction 1 2 Framework 5 2.1 Formal Systems HA and HA∗ . 5 2.2 Conversion of Proofs of HA∗ into Proofs of HA . 6 2.3 Finite Sets . 9 3 Finite Elementary Analysis in HA∗ 13 3.1 On Notation . 13 3.2 Real Numbers . 13 3.3 Finite Sequences and Series of Real Numbers . 17 3.4 Subsets and Functions . 26 3.5 Differentiation . 32 3.6 Riemann Integration . 38 3.7 Finite Sequences of Functions . 42 3.8 Taylor’s Theorem . 44 3.9 Some Elementary Functions . 46 3.10 Ordinary First Order Differential Equations . 51 p 4 Finite L -Spaces in HA∗ 55 5 Finite Probability Spaces in HA∗ 67 5.1 Basic Notions . 67 5.2 On Laws of Large Numbers . 72 5.3 A Derivation of the Black-Scholes Formula . 77 6 Examples of the Conversion Algorithm 85 References 89 1 Introduction At least from the computational point of view we can only possess and process a finite amount of finitely precise information in a finitely long period of time.