Eumc: High-Throughput Satellite Connectivity for the Constant Contact Vehicle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Resolving Interference Issues at Satellite Ground Stations
Application Note Resolving Interference Issues at Satellite Ground Stations Introduction RF interference represents the single largest impact to robust satellite operation performance. Interference issues result in significant costs for the satellite operator due to loss of income when the signal is interrupted. Additional costs are also encountered to debug and fix communications problems. These issues also exert a price in terms of reputation for the satellite operator. According to an earlier survey by the Satellite Interference Reduction Group (SIRG), 93% of satellite operator respondents suffer from satellite interference at least once a year. More than half experience interference at least once per month, while 17% see interference continuously in their day-to-day operations. Over 500 satellite operators responded to this survey. Satellite Communications Overview Satellite earth stations form the ground segment of satellite communications. They contain one or more satellite antennas tuned to various frequency bands. Satellites are used for telephony, data, backhaul, broadcast, community antenna television (CATV), internet, and other services. Depending on the application, each satellite system may be receive only or constructed for both transmit and receive operations. A typical earth station is shown in figure 1. Figure 1. Satellite Earth Station Each satellite antenna system is composed of the antenna itself (parabola dish) along with various RF components for signal processing. The RF components comprise the satellite feed system. The feed system receives/transmits the signal from the dish to a horn antenna located on the feed network. The location of the receiver feed system can be seen in figure 2. The satellite signal is reflected from the parabolic surface and concentrated at the focus position. -
An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems
1 An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems Robert W. Heath Jr., Nuria Gonzalez-Prelcic, Sundeep Rangan, Wonil Roh, and Akbar Sayeed Abstract Communication at millimeter wave (mmWave) frequencies is defining a new era of wireless com- munication. The mmWave band offers higher bandwidth communication channels versus those presently used in commercial wireless systems. The applications of mmWave are immense: wireless local and personal area networks in the unlicensed band, 5G cellular systems, not to mention vehicular area networks, ad hoc networks, and wearables. Signal processing is critical for enabling the next generation of mmWave communication. Due to the use of large antenna arrays at the transmitter and receiver, combined with radio frequency and mixed signal power constraints, new multiple-input multiple-output (MIMO) communication signal processing techniques are needed. Because of the wide bandwidths, low complexity transceiver algorithms become important. There are opportunities to exploit techniques like compressed sensing for channel estimation and beamforming. This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies. I. INTRODUCTION The millimeter wave (mmWave) band is the frontier for commercial – high volume consumer – wireless communication systems [1]. MmWave makes use of spectrum from 30 GHz to 300 GHz whereas most arXiv:1512.03007v1 [cs.IT] 9 Dec 2015 R. W. Heath Jr. is with The University of Texas at Austin, Austin, TX, USA (email: [email protected]). Nuria Gonzalez- Prelcic is with the University of Vigo, Spain, (email: [email protected]). -
IBUC) Operation Manual
Intelligent Block Upconverter (IBUC) Operation Manual No part of this manual may be reproduced, transcribed, translated into any language or transmitted in any form whatsoever without the prior written consent of Terrasat Communications, Inc. © Copyright 2006 Terrasat Communications, Inc. O&M – 10770-0001 Revision A 235 Vineyard Court, Morgan Hill, CA 95037 Phone: 408-782-5911 Fax: 408-782-5912 www.terrasatinc.com 24-hour Tech Support: 408-782-2166 Table of Contents ______________________________________________________________________ 1. Introduction Overview ………………………………………………………………………1-1 Reference documents ............................................................................ 1-2 Furnished Items...................................................................................... 1-4 Storage Information ................................................................................ 1-6 Warranty Information .............................................................................. 1-6 Warranty Policy ...................................................................................... 1-8 2. IBUC Systems: Description Functional Description ............................................................................ 2-1 System Configurations ........................................................................... 2-2 System Block Diagrams ......................................................................... 2-3 3. IBUC Systems: Component Descriptions Intelligent Block Upconverter (IBUC) ..................................................... -
Agile 3-D Beam-Steering for 60 Ghz Wireless Networks Anfu Zhou∗, Leilei Wu∗, Shaoqing Xu∗, Huadong Ma∗, Teng Wei†, Xinyu Zhang‡ ∗ Beijing Key Lab of Intell
Following the Shadow: Agile 3-D Beam-Steering for 60 GHz Wireless Networks Anfu Zhou∗, Leilei Wu∗, Shaoqing Xu∗, Huadong Ma∗, Teng Weiy, Xinyu Zhangz ∗ Beijing Key Lab of Intell. Telecomm. Software and Multimedia, Beijing University of Posts and Telecomm. y Department of Electrical and Computer Engineering, University of Wisconsin-Madison z Department of Electrical and Computer Engineering, University of California San Diego Email: fzhouanfu,layla,donggua,[email protected], [email protected], [email protected] Abstract—60 GHz networks, with multi-Gbps bitrate, are Much effort has been devoted to design agile beam-steering, considered as the enabling technology for emerging applications from the hierarchical beam scanning defined in standards [1], such as wireless Virtual Reality (VR) and 4K/8K real-time [9], to heuristic-based shortcuts [10], [11] or sensing-inspired Miracast. However, user motion, and even orientation change, can cause mis-alignment between 60 GHz transceivers’ directional solutions [12], [13]. However, these methods mainly focus on beams, thus causing severe link outage. Within the practical 3D two dimensional (2D) beam-steering, e.g., assuming a phased- spaces, the combination of location and orientation dynamics array that can steer the main beam among different angles leads to exponential growth of beam searching complexity, which within a 2D plane. In practice, the users and radios move in 3D substantially exacerbates the outage and hinders fast recovery. space; and a 60 GHz array can comprise a planar “matrix” of In this paper, we first conduct an extensive measurement to analyze the impact of 3D motion on 60 GHz link performance, antenna elements, steering the beams towards different angles in the context of VR and Miracast applications. -
Sources and Compensation of Skew in Single-Ended and Differential Interconnects
Published on Signal Integrity Journal, www.signalintegrityjournal.com April 2017 Sources and Compensation of Skew in Single-Ended and Differential Interconnects Eben Kunz, Oracle Corp. Jae Young Choi, Oracle Corp. Vijay Kunda, Oracle Corp. Laura Kocubinski, Oracle Corp. Ying Li, Oracle Corp. Jason Miller, Oracle Corp. Gustavo Blando, Oracle Corp. Istvan Novak, Oracle Corp. Disclaimer: This presentation does not constitute as an endorsement for any specific product, service, company, or solution. 1 Published on Signal Integrity Journal, www.signalintegrityjournal.com April 2017 Abstract In high-speed signaling with embedded clock a few ps in-pair skew may cause serious signal degradations. Point-to-point topologies, long PCB traces put the emphases on local speed variations due to bends, glass- weave, deterministic and random asymmetries. First we analyze the contributors to the delay in single-ended traces. Length in differential pairs varies due to bends and turns. At each turn the outer trace has a little extra length. We show that using the center-line trace length can give a delay estimation error up to several ps. We will show how different turns, right angle, double 45-degree or arced turn, impact delay. Second, we look at practical ways of compensating skew. A few options are looked at and their performances compared. We consider a few statistical contributors to skew and establish a limit below which compensation makes no sense. The simulated data is illustrated by the measured performance of a few simple structures. Author(s) Biography Eben Kunz graduated from MIT in 2012 with a BS and Master's in EE. -
Integrated Optical Phased Arrays for Beam Forming and Steering
applied sciences Review Integrated Optical Phased Arrays for Beam Forming and Steering Yongjun Guo 1,2, Yuhao Guo 1,2, Chunshu Li 1,2, Hao Zhang 1,2, Xiaoyan Zhou 1,2 and Lin Zhang 1,2,* 1 Key Laboratory of Opto-Electronics Information Technology of Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; [email protected] (Y.G.); [email protected] (Y.G.); [email protected] (C.L.); [email protected] (H.Z.); [email protected] (X.Z.) 2 Key Laboratory of Integrated Opto-Electronic Technologies and Devices in Tianjin, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China * Correspondence: [email protected] Abstract: Integrated optical phased arrays can be used for beam shaping and steering with a small footprint, lightweight, high mechanical stability, low price, and high-yield, benefiting from the mature CMOS-compatible fabrication. This paper reviews the development of integrated optical phased arrays in recent years. The principles, building blocks, and configurations of integrated optical phased arrays for beam forming and steering are presented. Various material platforms can be used to build integrated optical phased arrays, e.g., silicon photonics platforms, III/V platforms, and III–V/silicon hybrid platforms. Integrated optical phased arrays can be implemented in the visible, near-infrared, and mid-infrared spectral ranges. The main performance parameters, such as field of view, beamwidth, sidelobe suppression, modulation speed, power consumption, scalability, and so on, are discussed in detail. Some of the typical applications of integrated optical phased arrays, such as free-space communication, light detection and ranging, imaging, and biological sensing, are shown, with future perspectives provided at the end. -
Planar Pattern Reconfigurable Antenna Integrated with a Wifi System for Multipath Mitigation and Sustained High Definition Video
Planar Pattern Reconfigurable Antenna Integrated With a WiFi System for Multipath Mitigation and Sustained High Definition Video Networking in a Complex EM Environment Amit Mehta1, Shivam Gautam1, Hasanga Goonesinghe1, Arpan Pal1, Rob Lewis2 and Nathan Clow3 1College of Engineering, Swansea University, Swansea, U.K. [email protected] 2BAE Systems, Chelmsford, UK 3DSTL, Fort Halstead, UK Abstract—A planer pattern reconfigurable square loop antenna integrated in a complete wireless system is presented. II. ANTENNA CONFIGURATION The antenna is designed to operate at 5 GHz WiFi band of Fig. 1 shows the top and side view of the SLA designed IEEE 802.11 ac. The antenna under electronic switching for 5 GHz WiFi band. The Antenna structure is inspired generates four tilted beams in the four space quadrants. These four beams are moved intelligently and automatically in space from [4]. The SLA has four conducting arms, each of length using a C# program for achieving and sustaining maximum 32 mm and a track width of 1.5 mm. The square loop is possible throughput. This auto beam steering is advantageous etched on top of a Rogers 4350B (ɛr=3.66, tanδ=0.009) for scenarios where a mobile user suffers from multipath substrate having a thickness of 9.6 mm and an area of 60 fading in a complex electromagnetic environment. mm × 60 mm. The entire structure is backed by a metal ground plane. The SLA is excited at the center point of each I. INTRODUCTION arm (A, B, C and D) by four vertical probes of diameter 1.3 Indoor wireless communication in 5 the GHz WiFi band of mm which are connected to the four SMA ports (A0, B0, C0 IEEE 802.11 ac is becoming popular today due to the and D0) at the bottom of the antenna. -
Error Analysis of Programmable Metasurfaces for Beam Steering Hamidreza Taghvaee, Albert Cabellos-Aparicio, Julius Georgiou, and Sergi Abadal
1 Error Analysis of Programmable Metasurfaces for Beam Steering Hamidreza Taghvaee, Albert Cabellos-Aparicio, Julius Georgiou, and Sergi Abadal Abstract—Recent years have seen the emergence of pro- global or local reconfigurability [16]. Further, recent years grammable metasurfaces, where the user can modify the EM re- have seen the emergence of programmable metasurfaces, this sponse of the device via software. Adding reconfigurability to the is, metasurfaces that incorporate local tunability and digital already powerful EM capabilities of metasurfaces opens the door to novel cyber-physical systems with exciting applications in do- logic to easily reconfigure the EM behavior from the outside. mains such as holography, cloaking, or wireless communications. Two main approaches have been proposed for the im- This paradigm shift, however, comes with a non-trivial increase of plementation of programmable metasurfaces, namely, (i) by the complexity of the metasurfaces that will pose new reliability interfacing the tunable elements through an external Field- challenges stemming from the need to integrate tuning, control, Programmable Gate Array (FPGA) [17], [18], or (ii) by and communication resources to implement the programmability. While metasurfaces will become prone to failures, little is known integrating sensors, control units, and actuators within the about their tolerance to errors. To bridge this gap, this paper metasurface structure [19]–[22]. examines the reliability problem in programmable metamaterials Programmable metasurfaces have opened the door to dis- by proposing an error model and a general methodology for error ruptive paradigms such as Software-Defined Metamaterials analysis. To derive the error model, the causes and potential (SDMs) and Reconfigurable Intelligent Surfaces (RISs), lead- impact of faults are identified and discussed qualitatively. -
A Design Approach of Optical Phased Array with Low Side Lobe Level and Wide Angle Steering Range
hv photonics Article A Design Approach of Optical Phased Array with Low Side Lobe Level and Wide Angle Steering Range Xinyu He, Tao Dong *, Jingwen He and Yue Xu State Key Laboratory of Space-Ground Integrated Information Technology, Beijing Institute of Satellite Information Engineering, Beijing 100095, China; [email protected] (X.H.); [email protected] (J.H.); [email protected] (Y.X.) * Correspondence: [email protected] Abstract: In this paper, a new design approach of optical phased array (OPA) with low side lobe level (SLL) and wide angle steering range is proposed. This approach consists of two steps. Firstly, a nonuniform antenna array is designed by optimizing the antenna spacing distribution with particle swarm optimization (PSO). Secondly, on the basis of the optimized antenna spacing distribution, PSO is further used to optimize the phase distribution of the optical antennas when the beam steers for realizing lower SLL. Based on the approach we mentioned, we design a nonuniform OPA which has 1024 optical antennas to achieve the steering range of ±60◦. When the beam steering angle is 0◦, 20◦, 30◦, 45◦ and 60◦, the SLL obtained by optimizing phase distribution is −21.35, −18.79, −17.91, −18.46 and −18.51 dB, respectively. This kind of OPA with low SLL and wide angle steering range has broad application prospects in laser communication and lidar system. Keywords: optical phased array; antenna array; low side lobe; wide angle steering range 1. Introduction Citation: He, X.; Dong, T.; He, J.; Xu, Optical phased array (OPA) is an array operating at optical frequency that achieves Y. -
Mm-Wave Beam Steering Without In-Band Measurement
Steering with Eyes Closed: mm-Wave Beam Steering without In-Band Measurement Thomas Nitscheyz, Adriana B. Flores∗, Edward W. Knightly∗, and Joerg Widmery yIMDEA Networks Institute, Madrid, Spain ∗ECE Department, Rice University, Houston, USA zUniv. Carlos III, Madrid, Spain Abstract—Millimeter-wave communication achieves multi- found that a mere misalignment of 18 degree reduces the link Gbps data rates via highly directional beamforming to overcome budget by around 17 dB. According to IEEE 802.11ad coding pathloss and provide the desired SNR. Unfortunately, establishing sensitivities [3], this drop can reduce the maximum throughput communication with sufficiently narrow beamwidth to obtain the necessary link budget is a high overhead procedure in which by up to 6 Gbps or break the link entirely. This misalignment is the search space scales with device mobility and the product of easily reached multiple times per second by a user holding the the sender-receiver beam resolution. In this paper, we design, device, causing substantial beam training overhead to enable implement, and experimentally evaluate Blind Beam Steering multi-Gbps throughput for mm-Wave WiFi. (BBS) a novel architecture and algorithm that removes in-band In this paper, we design, implement, and experimentally overhead for directional mm-Wave link establishment. Our sys- tem architecture couples mm-Wave and legacy 2.4/5 GHz bands evaluate Blind Beam Steering (BBS), a system to steer mm- using out-of-band direction inference to establish (overhead-free) Wave beams by replacing in-band trial-and-error testing of multi-Gbps mm-Wave communication. Further, BBS evaluates virtual sector pairs with “blind” out-of-band direction acqui- direction estimates retrieved from passively overheard 2.4/5 GHz sition. -
High Planar Arrays and Array Feeds for Satellite Communications
High Efficiency Planar Arrays and Array Feeds for Satellite Communications Zhenchao Yang, Kyle Browning, and Karl Warnick Department of Electrical and Computer Engineering Brigham Young University, Provo, Utah, USA [email protected], [email protected] Abstract—Limited scan range beamsteering can serve as a mechanical steered dishes. From a technical point of view, cost-effective solution for three application scenarios in satellite precisely beam steering in limited scan range plus coarse communications. Two feasible technical paths to realize the mechanical steering opens the third option for full beam steer- function are discussed in this paper. The first one is to utilize a electronically steered array feed with a conventional parabolic ing with potential lower cost and higher tracking speed and reflector. By feeding the reflector with different weights across accuracy than current barely mechanical steering, particularly the array feed, the phase distribution on the dish aperture is for multi-feed systems. There are also three common scenarios continuously shifted leading to a steered beam. Acquisition and that conventional fixed-mount dishes can not serve well. First, tracking functions can be realized economically by integrating a current dish installation demands accurate pointing. Lowering power detector based feedback system. A necessary calibration process is provided to ensure a correct indicator of signal- the accuracy requirement would increase the productivity of to-noise ratio. One dimensional bemsteering was demonstrated dish installation. Second, mount degradations caused by sag- experimentally and an improved two dimensional system is shown ging roof and weather disasters require dish re-pointing, which as well. The second path is to use a tile array with each tile costs millions of dollars in the Satcom industry. -
To Support Production of Linearized Block Up-Converters (L-Bucs) Katalin Frolio, Student Member, IEEE and Allen Katz, Fellow, IEEE
1 MTT-S Undergraduate/Pre-Graduate Scholarship Project Report Design and Verification of Specialized Test Equipment (STE) to support production of Linearized Block Up-Converters (L-BUCs) Katalin Frolio, Student Member, IEEE and Allen Katz, Fellow, IEEE Abstract—This research project report includes the design, This signal can be used directly with a sub-harmonically analysis and experimental verification of Specialized Test pumped mixer, which internally doubles this frequency to the Equipment developed to support the production of Linearized desired 29 GHz LO frequency. 10 dB of attenuation at the Block Up-Converters (L-BUCs). L-BUCs are devices used to mixer’s input was used to minimize the effects of mismatch take base-band signals (typically in the 1 to 2 GHz range) and on the mixer’s performance. A block diagram of the mixer is up-convert them to microwave and millimeter-wave frequencies shown in Figure 1. (30 to 31 GHz in this application), and also linearize the converted signals to compensate for distortion introduced by post L-BUC power amplification. In order to test an L-BUC with a network analyzer where the port 1 and 2 frequencies are RF 30 - 31 GHz 10 dB Attenuators IF 1 -2 GHz at the same, a down converter is necessary. The goal of this work was to optimize an initial down converter design and to develop test equipment to support L-BUC production. 29 GHz X2 X2 Index Terms—block up converter, heterodyne principle, linearizer, monolithic microwave integrated circuit (MMIC), LO 7.25 GHz 14.5 GHz sub-harmonic mixer.