Novel Use of Pop-Up Satellite Archival Telemetry in Sawsharks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dispersal, Philopatry, and the Role of Fissionfusion Dynamics In
MARINE MAMMAL SCIENCE, **(*): ***–*** (*** 2012) C 2012 by the Society for Marine Mammalogy DOI: 10.1111/j.1748-7692.2011.00559.x Dispersal, philopatry, and the role of fission-fusion dynamics in bottlenose dolphins YI-JIUN JEAN TSAI and JANET MANN,1 Reiss Science Building, Rm 406, Department of Biology, Georgetown University, Washington, DC 20057, U.S.A. ABSTRACT In this quantitative study of locational and social dispersal at the individual level, we show that bottlenose dolphins (Tursiops sp.) continued to use their na- tal home ranges well into adulthood. Despite substantial home range overlap, mother–offspring associations decreased after weaning, particularly for sons. These data provide strong evidence for bisexual locational philopatry and mother–son avoidance in bottlenose dolphins. While bisexual locational philopatry offers the benefits of familiar social networks and foraging habitats, the costs of philopatry may be mitigated by reduced mother–offspring association, in which the risk of mother–daughter resource competition and mother–son mating is reduced. Our study highlights the advantages of high fission–fusion dynamics and longitudinal studies, and emphasizes the need for clarity when describing dispersal in this and other species. Key words: bottlenose dolphin, Tursiops sp., association, juvenile, philopatry, locational dispersal, mother-offspring, ranging, site fidelity, social dispersal. Dispersal is a key life history process that affects population demography, spatial distribution, and genetic structure, as well as individual -
Sharks for the Aquarium and Considerations for Their Selection1 Alexis L
FA179 Sharks for the Aquarium and Considerations for Their Selection1 Alexis L. Morris, Elisa J. Livengood, and Frank A. Chapman2 Introduction The Lore of the Shark Sharks are magnificent animals and an exciting group Though it has been some 35 years since the shark in Steven of fishes. As a group, sharks, rays, and skates belong to Spielberg’s Jaws bit into its first unsuspecting ocean swim- the biological taxonomic class called Chondrichthyes, or mer and despite the fact that the risk of shark-bite is very cartilaginous fishes (elasmobranchs). The entire supporting small, fear of sharks still makes some people afraid to swim structure of these fish is composed primarily of cartilage in the ocean. (The chance of being struck by lightning is rather than bone. There are some 400 described species of greater than the chance of shark attack.) The most en- sharks, which come in all different sizes from the 40-foot- grained shark image that comes to a person’s mind is a giant long whale shark (Rhincodon typus) to the 2-foot-long conical snout lined with multiple rows of teeth efficient at marble catshark (Atelomycterus macleayi). tearing, chomping, or crushing prey, and those lifeless and staring eyes. The very adaptations that make sharks such Although sharks have been kept in public aquariums successful predators also make some people unnecessarily since the 1860s, advances in marine aquarium systems frightened of them. This is unfortunate, since sharks are technology and increased understanding of shark biology interesting creatures and much more than ill-perceived and husbandry now allow hobbyists to maintain and enjoy mindless eating machines. -
Results of the LTR's 20Th Mulit-Disciplinary Cruise
RESEARCH FOR THE MANAGEMENT OF THE FISHERIES ON LAKE TANGANYIKA GCP/RAF/271/FIN-TD/93 (En) GCP/RAF/271/FIN-TD/93(En) June 1999 RESULTS OF THE LTR'S 20th MULTI-DISCIPLINARY CRUISE by H. Mölsä, K. Salonen and J. Sarvala (eds.) FINNISH INTERNATIONAL DEVELOPMENT AGENCY FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Bujumbura, June 1999 The conclusions and recommendations given in this and other reports in the Research for the Management of the Fisheries on the Lake Tanganyika Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained at subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or FINNIDA concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. PREFACE The Research for the Management of the Fisheries on Lake Tanganyika project (LTR) became fully operational in January 1992. It is executed by the Food and Agriculture Organization of the United Nations (FAO) and funded by the Finnish International Development Agency (FINNIDA) and the Arab Gulf Program for the United Nations Development Organization (AGFUND). LTR's objective is the determination of the biological basis for fish production on Lake Tanganyika, in order to permit the formulation of a coherent lake-wide fisheries management policy for the four riparian States (Burundi, Democratic Republic of Congo, Tanzania, and Zambia). Particular attention is given to the reinforcement of the skills and physical facilities of the fisheries research units in all four beneficiary countries as well as to the build-up of effective coordination mechanisms to ensure full collaboration between the Governments concerned. -
NPOA Sharks Booklet.Indd
National Plan of Action for the Conservation and Management of Sharks (NPOA-Sharks) November 2013 South Africa Department of Agriculture, Forestry and Fisheries Private Bag X2, Rogge Bay, 8012 Tel: 021 402 3911 Fax: +27 21 402 3364 www.daff.gov.za Design and Layout: FNP Communications and Gerald van Tonder Photographs courtesy of: Department of Agriculture, Forestry and Fisheries (DAFF), Craig Smith, Charlene da Silva, Rob Tarr Foreword South Africa’s Exclusive Economic Zone is endowed with a rich variety of marine living South Africa is signatory to the Code of Conduct for Responsible Fisheries – voluntarily agreed to by members of the United Nations Food and Agriculture Organisation (FAO) – and, as such, is committed to the development and implementation of National Plans of Action (NPOAs) as adopted by the twenty-third session of the FAO Committee on Fisheries in February 1999 and endorsed by the FAO Council in June 1999. Seabirds – aimed at reducing incidental catch and promoting the conservation of seabirds Fisheries and now regularly conducts Ecological Risk Assessments for all the commercial practices. Acknowledging the importance of maintaining a healthy marine ecosystem and the possibility of major detrimental effects due to the disappearance of large predators, South from the list of harvestable species. In accordance with international recommendations, South Africa subsequently banned the landing of a number of susceptible shark species, including oceanic whitetip, silky, thresher and hammerhead sharks. improves monitoring efforts for foreign vessels discharging shark products in its ports. To ensure long-term sustainability of valuable, but biologically limited, shark resources The NPOA-Sharks presented here formalises and streamlines ongoing efforts to improve conservation and management of sharks caught in South African waters. -
Florida's Fintastic Sharks and Rays Lesson and Activity Packet
Florida's Fintastic Sharks and Rays An at-home lesson for grades 3-5 Produced by: This educational workbook was produced through the support of the Indian River Lagoon National Estuary Program. 1 What are sharks and rays? Believe it or not, they’re a type of fish! When you think “fish,” you probably picture a trout or tuna, but fishes come in all shapes and sizes. All fishes share the following key characteristics that classify them into this group: Fishes have the simplest of vertebrate hearts with only two chambers- one atrium and one ventricle. The spine in a fish runs down the middle of its back just like ours, making fish vertebrates. All fishes have skeletons, but not all fish skeletons are made out of bones. Some fishes have skeletons made out of cartilage, just like your nose and ears. Fishes are cold-blooded. Cold-blooded animals use their environment to warm up or cool down. Fins help fish swim. Fins come in pairs, like pectoral and pelvic fins or are singular, like caudal or anal fins. Later in this packet, we will look at the different types of fins that fishes have and some of the unique ways they are used. 2 Placoid Ctenoid Ganoid Cycloid Hard protective scales cover the skin of many fish species. Scales can act as “fingerprints” to help identify some fish species. There are several different scale types found in bony fishes, including cycloid (round), ganoid (rectangular or diamond), and ctenoid (scalloped). Cartilaginous fishes have dermal denticles (Placoid) that resemble tiny teeth on their skin. -
Recreational Harvest of Sharks and Rays in Western Australia Is Only a Minor Component of the Total Harvest
Recreational Harvest of Sharks and Rays in Western Australia is only a Minor Component of the Total Harvest Matias Braccini ( [email protected] ) Department of Primary Industries and Regional Development Eva Lai Department of Primary Industries and Regional Development Karina Ryan Department of Primary Industries and Regional Development Stephen Taylor Department of Primary Industries and Regional Development Research Article Keywords: elasmobranch, conservation, management, sheries, catch reconstruction Posted Date: February 23rd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-225321/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/20 Abstract Sharks and rays are of global conservation concern with an increasing number of species at risk of extinction, mostly attributed to overshing by commercial shing. Their recreational harvest is poorly known but it can be of similar magnitude to the commercial harvest in some regions. We quantied the recreational harvest of sharks and rays in Western Australia, a region with a marine coastline of > 20,000 km. We recorded 33 species/taxonomic groups but the harvest was dominated by dusky and bronze whalers, blacktip reef shark, gummy shark, Port Jackson shark, wobbegongs, and rays and skates. Most species caught were released (85% of all individuals), although gummy and whiskery sharks were typically retained. There was a clear latitudinal gradient of species composition with tropical and subtropical species of the genus Carcharhinus dominating in the north and temperate species of the families Triakidae, Carcharhinidae, Heterodontidae and Rajidae dominating in the south. The recreational harvest was negligible compared with commercial landings. -
University of Groningen Sociable Schedules Helm, Barbara
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Groningen University of Groningen Sociable schedules Helm, Barbara; Piersma, Theunis; Van der Jeugd, Henk Published in: Animal Behavior DOI: 10.1016/j.anbehav.2005.12.007 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2006 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Helm, B., Piersma, T., & Van der Jeugd, H. (2006). Sociable schedules: interplay between avian seasonal and social behaviour. Animal Behavior, 72(2), 245-262. https://doi.org/10.1016/j.anbehav.2005.12.007 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 12-11-2019 ANIMAL BEHAVIOUR, 2006, 72, 245e262 doi:10.1016/j.anbehav.2005.12.007 REVIEWS Sociable schedules: interplay between avian seasonal and social behaviour BARBARA HELM*,THEUNISPIERSMA†‡ & HENK VAN DER JEUGD†§ *Max Planck Institute for Ornithology yAnimal Ecology Group, Centre for Ecological and Evolutionary Studies zDepartment of Ecology and Evolution, Royal Netherlands Institute for Sea Research (NIOZ) xSOVON Dutch Centre for Field Ornithology (Received 26 June 2004; initial acceptance 15 September 2004; final acceptance 6 December 2005; published online 21 June 2006; MS. -
Breeding Site Fidelity in Southern Elephant Seals of the Falkland Islands
Filippo Galimberti 1 and Simona Sanvito 1,2 1 Elephant Seal Research Group, Sea Lion Island, Falkland Islands 2 Dept. of Biology, Memorial University of Newfoundland, St. John’s NF A1B 3X9, Canada ESRG technical report no. 3 Breeding site fidelity in southern elephant seals of the Falkland Islands Milano, 25th April 2000 © Elephant Seal Research Group – 2000 No part of this report can be cited without written permission from the authors. Address for correspondence: Dr. Filippo Galimberti – Via Buonarroti 35 – 20145 Milano – Italy Phone +39 02 4980504 – Fax +39 02 48008145 – Email [email protected] ABSTRACT Breeding site fidelity, i.e., the tendency to return to the same breeding site for consecutive breeding attempts, is an important component of mammal life history strategies, and seems almost ubiquitous in Pinnipedia species, at least for land breeding ones. Site fidelity may entail significant somatic benefits and costs, and, if coupled with return for first breeding attempt to birth site, may produce a genetic sub-structuring of populations. We present data on female and male site fidelity, together with preliminary information on female phylopatry, of southern elephant seals (Mirounga leonina) of Sea Lion Island, the main breeding site of the species in the Falkland Islands. We found a high level of site fidelity at small scale (hundred of metres) in both sexes, although higher in females, even when considering up to five consecutive breeding seasons of the same individual. We discuss the behavioural and genetic implications of site fidelity, emphasizing that it may affect mating tactics, breeding success, and genetic sub-structuring of local populations. -
Author's Personal Copy
Author's personal copy Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in Encyclopedia of Animal Behavior, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution's administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: https://www.elsevier.com/about/our-business/policies/copyright/permissions From Shen, S-F., Rubenstein, D.R. (2019). Environmental Uncertainty and Social Behavior. In: Choe, J.C. (Ed.), Encyclopedia of Animal Behavior, (2nd ed.). vol. 4, pp. 807–815. Elsevier, Academic Press. ISBN: 9780128132517 Copyright © 2019 Elsevier Ltd. All rights reserved. Academic Press Author's personal copy Environmental Uncertainty and Social Behavior Sheng-Feng Shen, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Dustin R Rubenstein, Columbia University, New York, NY, United States © 2019 Elsevier Ltd. All rights reserved. Glossary Cooperative breeding A form of social system in which more than two individuals care for your young. In most cooperatively breeding systems, some mature offspring delay dispersal, remain in their natal social groups, and often “help” raise the their parents’ offspring (their siblings) from subsequent breeding attempts. -
Port Jackson Shark, Heterodontus Portusjacksoni
Published Date: 1 March 2019 Port Jackson Shark, Heterodontus portusjacksoni Report Card Sustainable assessment IUCN Red List IUCN Red List Australian Endemic to Australia Global Least Concern Assessment Assessment Assessors Huveneers, C. & Simpfendorfer, C. Abundant species that is taken as bycatch but has high post-release Report Card Remarks survival Summary The Port Jackson Shark is an abundant shark Source: Mark Norman/ Museum Victoria. Licence: CC by Attribution endemic to southern Australian waters. It is a large bycatch of several fisheries across its range, however most individuals are returned to the water alive. Studies have shown that the species is highly resilient to capture stress from gillnet, trawl, and longline gear, suggesting high post-release survival rates. Although there was a localised decline of the population in Bass Straight between 1973 and 2001, this trend has been reversed. In addition, an ecological risk assessment showed that the Port Jackson Shark is at low risk from several fisheries because of its low catch susceptibility. The effects of fisheries on the Port Jackson Shark in other areas are likely negligible. Habitat modification and other environmental factors do not appear to be a threat to the population. Therefore, the Port Jackson Shark is assessed as Least Concern (IUCN) and Sustainable (SAFS). Distribution The Port Jackson Shark is commonly found on the southern Australian continental shelf from Byron Bay (New South Wales) south through Victoria, South Australia, and to Houtman Abrolhos (Western Australia), including Tasmania. Records from York Sound (northern Western Australia) and Moreton Bay (Queensland) are questionable. There is a single record of one individual from New Zealand (Last and Stevens 2009). -
We've Just Discovered Two New Shark Species
19/03/2020 We've just discovered two new shark species Academic rigour, journalistic flair One of the newly discovered sixgilled sawshark species (Pliotrema kajae). Simon Weigmann, Author provided We’ve just discovered two new shark species March 18, 2020 6.05pm GMT Finding a species that’s entirely new to science is always exciting, and so we were Authors delighted to be a part of the discovery of two new sixgill sawsharks (called Pliotrema kajae and Pliotrema annae) off the coast of East Africa. We know very little about sawsharks. Until now, only one sixgill species (Pliotrema Per Berggren warreni) was recognised. But we know sawsharks are carnivores, living on a diet of Marine MEGAfauna Lab, Newcastle fish, crustaceans and squid. They use their serrated snouts to kill their prey and, with University quick side-to-side slashes, break them up into bite-sized chunks. Andrew Temple Postdoctoral Research Associate in Marine Biology, Newcastle University https://theconversation.com/weve-just-discovered-two-new-shark-species-134067 1/7 19/03/2020 We've just discovered two new shark species The serrated snout of a sixgill sawshark (Pliotrema annae). Ellen Barrowclift-Mahon/Marine MEGAfauna Lab/Newcastle University., Author provided Sawsharks look similar to sawfish (which are actually rays), but they are much smaller. Sawsharks grow to around 1.5 metres in length, compared to 7 metres for a sawfish and they also have barbels (fish “whiskers”), which sawfish lack. Sawsharks have gills on the side of their heads, whereas sawfish have them on the underside of their bodies. https://theconversation.com/weve-just-discovered-two-new-shark-species-134067 2/7 19/03/2020 We've just discovered two new shark species A sixgill sawshark (Pliotrema annae) turned on its side, showing gills and barbels. -
Small-Scale Patterns in Distribution and Feeding of Atlantic Mackerel (Scomber Scombrus L.) Larvae in the Celtic Sea with Special Regard to Intra-Cohort Cannibalism
Helgol Mar Res (2001) 55:135–149 DOI 10.1007/s101520000068 ORIGINAL ARTICLE Nicola Hillgruber · Matthias Kloppmann Small-scale patterns in distribution and feeding of Atlantic mackerel (Scomber scombrus L.) larvae in the Celtic Sea with special regard to intra-cohort cannibalism Received: 9 August 2000 / Received in revised form: 31 October 2000 / Accepted: 12 November 2000 / Published online: 10 March 2001 © Springer-Verlag and AWI 2001 Abstract Short-term variability in vertical distribution cannibalism, reaching >50% body dry weight in larva and feeding of Atlantic mackerel (Scomber scombrus L.) ≥8.0 mm SL. larvae was investigated while tracking a larval patch over a 48-h period. The patch was repeatedly sampled Keywords Mackerel larvae · Vertical distribution · Diet · and a total of 12,462 mackerel larvae were caught within Diel patterns · Cannibalism the upper 100 m of the water column. Physical parame- ters were monitored at the same time. Larval length dis- tribution showed a mode in the 3.0 mm standard length Introduction (SL) class (mean abundance of 3.0 mm larvae x¯ =75.34 per 100 m3, s=34.37). Highest densities occurred at In the eastern Atlantic, the highest densities of Atlantic 20–40 m depth. Larvae <5.0 mm SL were highly aggre- mackerel (Scomber scombrus) larvae appear in the Celtic gated above the thermocline, while larvae ≥5.0 mm SL Sea and above the Celtic Shelf in May/June (O’Brien were more dispersed and tended to migrate below the and Fives 1995), where the larvae hatch at the onset of thermocline. Gut contents of 1,177 mackerel larvae the secondary productivity maximum (Colebrook 1986) (2.9–9.7 mm SL) were analyzed.