In~~Corporated

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Proc. Nat. Acad. Sci. USA Vol. 70, No. 5, pp. 1313-1315, May 1973 Acetylation of Sickle Cell Hemoglobin by Aspirin (acetylsalicylic acid/oxygenation/anemia/urea/ethanol) IRVING M. KLOTZ AND JOSEPH W. 0. TAM Biochemistry Division, Department of Chemistry, Northwestern University, Evanston, Illinois 60201 Contributed by Irving M. Klotz February 26, 1973 ABSTRACT Incubation of HbS (or HbA) with aspirin hemoglobin was precipitated by addition of cold 5% tri- leads to incorporation of acetyl groups into the protein. chloroacetic acid. Samples of 0.5-0.8 mg were collected on Incorporation was followed by the use of aspirin labeled with 14C in the acetyl group. The acetylated hemoglobins 0.45 ,gm Millipore filters and washed with cold trichloroacetic show an increase in oxygen affinity compared to the parent acid to remove any noncovalently bound acetate. Some proteins. If acetylation also occurs in vivo, administration hemolysate mixtures were also dialyzed against bis-tris- of aspirin might ameliorate the severity of sickle cell buffered saline, pH 7.6, at 40 for 24 hr before being precipi- disease. tated for radioactive assay. The hemoglobin precipitate was Recent studies (1, 2) have shown that carbamylation of the mixed with 0.2 ml of water and 10 ml of scintillation fluid N-terminus of the jB-chain (as well as of the a-chain) of HbS consisting of 6 g of 2,5-diphenyloxazole and 75 mg of 1,4- is obtained on exposure of sickle-cell hemoglobin to cyanate. bis-2-(5-phenyloxazolyl)-benzene dissolved in 1 liter of a Oxygenation curves and other properties of carbamylated 2:1 mixture of toluene and Triton X-100. To correct for HbS are modified in a direction that should decrease the quenching, internal standards were used. A duplicate count acuteness of clinical manifestations of the presence of this was taken 24 hr after the first determination. protein. The concentration of hemoglobin in solution was deter- Chemical blocking of the amino-terminal valine chains thus mined from the absorbance at 540 nm of the cyanomethemo- appears to be a promising procedure for ameliorating the globin derivative. severity of sickle cell anemia. We have been interested in Extents of incorporation of [14C]acetyl groups are listed in achieving the same goal by a blocking procedure using a sub- Table 1. stance pharmacologically more acceptable than cyanate. Oxygen dissociation curves of hemoglobin, in erythrocytes Recalling that aspirin, acetylsalicylic acid, is able to acetylate or in solution, were determined by standard (4, 5) procedures. serum albumin (3), we have performed experiments to see Pressures of oxygen, P50, at which half-saturation of hemo- whether this drug also acetylates hemoglobin. Our results globin is achieved, are summarized in Table 2. show that such acetylation does indeed occur. Furthermore, RESULTS the modified hemoglobin shows an increased oxygen affinity. Aspirin thus should be an attractive candidate as a substance As the data in Table 1 illustrate, acetylation of hemoglobin S that can prevent or inhibit the onset of erythrocyte sickling. by aspirin at 25° is very slow. No significant uptake was ob- served in a 90-min period, either at pH 6 or 7. In 24 hr at 250, MATERIALS AND METHODS 0.15 mol of [14C]acetate was incorporated per mol of Hb. Incorporation experiments were done with whole blood, with Much increased acetylation was achieved at 370, however. erythrocytes, and with hemolysates. Fresh, heparinized, whole blood was oxygenated and then centrifuged to remove plasma. The erythrocytes were washed several times with TABLE 1. Incorporation into hemoglobin of [14C]acetate phosphate-buffered saline, pH 7.3. Hemolysates were obtained from aspirin by the freeze-thaw procedure, followed by removal of Mol of [14C]acetate erythrocyte ghosts by centrifugation at 50,000 X g for 1 hr. Tem-Tem- .0 Radioactively-labeled aspirin (14C in the carboxyl group of pera- Hours of in~~corporated acetyl), 6.60 Ci/mol and warranted isotope purity of 98% Hemoglobin ture, incuba- Mol of Hb Tetramer (from Mallinckrodt Chemical Works), was diluted with nine sample 0C. tion at pH 6.0 at pH 7.0 parts by weight of unlabeled aspirin (Baker Chemical Co.). The diluted aspirin and hemoglobin were mixed to give con- HbS in erythrocytes 25 1.5 '0;.01 '0.01 and mM (of HbS in whole blood 25 1.5 -00.01 -0.01 centrations of 5-20 mM of the aspirin 0.5-1.0 HbS in hemolysate 25 1.5 -.O01 0.1 tetramer) of the hemoglobin. The pH was adjusted to physio- HbS in whole blood 25 24 0.15 0.15 logical. The mixtures were incubated at a constant tempera- HbS in erythrocytes 37 1.0 0.35 ture with slow stirring. HbS in hemolysate 37 1.0 0.40 The extent of incorporation of [14C]acetyl groups was HbA in erythrocytes 37 1.0 - 0.38 measured by liquid scintillation counting. Erythrocytes were HbA in hemolysate 37 1.0 - 0.42 firstwashed several times with 0.9-1.2% NaCl, then hemolyzed. The ghosts were removed by centrifugation. In all solutions Aspirin concentration was 20 mM. 1313 Downloaded by guest on October 1, 2021 1314 Biochemistry: Klotz and Tam Proc. Nat. Acad. Sci. USA 70 (1973) TABLE 2. Effect of acetylation of sickle cell hemoglobin Carbamylation of hemoglobins by cyanate has been found, on its oxygen affinity by others (5, 15), to increase oxygen affinity and, as Table 2 illustrates, acetylation by aspirin has a similar effect. Thus, P50, oxygen these modifications lead to increased concentrations of pressure oxyhemoglobin under hypoxic conditions and should, (mm of Hg) there- Hemoglobin Aspirin Hours of at half- fore, defer the onset of sickling. Since the pharmacology of sample (mM) incubation pH saturation aspirin has been exhaustively studied for almost a century (16), it has advantages over a new drug with similar potential. In erythrocytes 0 1-2 7.30 31 Even its inhibiting effect on the formation of prostaglandin 12 2.0 7.30 26 (17) may be advantageous, for prostaglandin has been re- 22 1.0 7.30 21 ported to induce sickling (Johnson, M., Rabinowitz, I., In hemolysate 0 1.0 7.30 12 A. 0 * 7.22 11 Willis, L., and Wolf, P. L., personal communication). 8 1.0 7.22 6.7 Furthermore, since acetylated hemoglobin is found in signifi- 8 1.5 7.22 5.3 cant amounts even in normal blood (18-20), there seems to be little likelihood of any auto-immune response to the acetylated * This sample was dialyzed overnight at 4° against saline with Hb generated by aspirin. [bis - (2 - hydroxyethyl)imino] - tris - [ (hydroxymethyl)methanel Noncovalent modifications of HbS aimed at perturbing its (Bis-Tris) buffer, pH 7.6. behavior, particularly its solubility, are exemplified by the use of urea (21-23). The rationale given for its application is that urea breaks hydrophobic bonds. Experience with simple proteins, however, indicates that urea does not affect intra- or inter-molecular protein interactions until its concentration Furthermore, the extent of incorporation was essentially the is well above 1 M, whereas it is said to be clinically effective same for Hb within erythrocytes as for Hb in hemolysates. at 50 mM concentrations (22, 23). In any event, the concept Table 2 demonstrates the effect of acetylation on P50. of intruding in intermacromolecular interactions to increase Whether within erythrocytes or in a hemolysate, HbS macromolecule solubility is sound. Again we ask, therefore, develops an increased oxygen affinity when acetylated by this time in regard to noncovalent modifications, whether aspirin. there are pharmacologically more acceptable procedures than the use of high concentrations of urea. There are indeed other DISCUSSION solutes, ethanol among them, that are effective in intervening Chemical approaches toward modifying the behavior of HbS in intermolecular bonding. Aqueous solutions containing can be based on covalent or noncovalent modifications. Among 0.1 M ethanol markedly weaken the binding of uncharged covalent modifications, blocking of the N-terminal amino small molecules by serum albumin (Klotz, I. M. and Ayers, J., groups seems particularly attractive, since the Val-1 residues unpublished results). Somewhat lesser, but definite com- of the (3-chains are at the portal of the tetramer into which petitive effects, should be present at lower alcohol concen- 2,3-diphosphoglycerate fits and modulates the deoxy-oxy trations. Blood concentrations of 50 mM, corresponding to equilibrium (6, 7). Partial blocking of this portal and reduc- 200 mg of ethanol per 100 ml of blood, are only mildly in- tion of its positive charge should shift the hemoglobin con- toxicating (24). It would be worthwhile, therefore, to examine formational equilibrium toward the oxygenated state. One the solubility of deoxygenated HbS in aqueous ethanol of general procedure for attaching substituents at this position 50-100 mM concentration. Similarly, the effect of low con- would be to take advantage of Schiff base formation between centrations of ethanol on the aggregation of HbS molecules an aldehyde and the terminal a-NH2 group. In vitro, pyridoxal below saturation could be studied, by hydrodynamic or by phosphate forms such a linkage with hemoglobin (8). It seems thermodynamic techniques. These experiments would provide very likely that glucose (or other reducing sugars) will do so in vitro background for appropriate clinical trials. also. A Val-His peptide definitely couples with glucose (9). We thank Dr. M. Vye and Mrs. K. Y. Tam of Evanston In vivo, the appearance of HbAj0, a glucose adduct of Hb Hospital for supplying us with samples of blood. We are also (10, 11), in normal bloods points strongly to a reaction of indebted to Drs. L. Lorand, G. Means, and D.
Recommended publications
  • Second Tranche HTS Subheading Product Description 2710.19.30

    Second Tranche HTS Subheading Product Description 2710.19.30

    Second Tranche HTS Subheading Product Description 2710.19.30 Lubricating oils, w/or w/o additives, fr. petro oils and bitumin minerals (o/than crude) or preps. 70%+ by wt. fr. petro oils 2710.19.35 Lubricating greases from petro oil/bitum min/70%+ by wt. fr. petro. oils but n/o 10% by wt. of fatty acid salts animal/vegetable origin 2710.19.40 Lubricating greases from petro oil/bitum min/70%+ by wt. fr. petro. oils > 10% by wt. of fatty acid salts animal/vegetable origin 3403.19.10 Lubricating preparations containing 50% but less than 70% by weight of petroleum oils or of oils obtained from bituminous minerals 3403.19.50 Lubricating preparations containing less than 50% by weight of petroleum oils or of oils from bituminous minerals 3403.99.00 Lubricating preparations (incl. lubricant-based preparations), nesoi 3811.21.00 Additives for lubricating oils containing petroleum oils or oils obtained from bituminous minerals 3811.29.00 Additives for lubricating oils, nesoi 3901.10.10 Polyethylene having a specific gravity of less than 0.94 and having a relative viscosity of 1.44 or more, in primary forms 3901.10.50 Polyethylene having a specific gravity of less than 0.94, in primary forms, nesoi 3901.20.10 Polyethylene having a specific gravity of 0.94 or more and having a relative viscosity of 1.44 or more, in primary forms 3901.20.50 Polyethylene having a specific gravity of 0.94 or more, in primary forms, nesoi 3901.30.20 Ethylene copolymer: Vinyl acetate-vinyl chloride-ethylene terpoly w/ < 50% deriv of vinyl acetate, exc polymer aromatic/mod
  • TR-470: Pyridine (CASRN 110-86-1) in F344/N Rats, Wistar Rats, And

    TR-470: Pyridine (CASRN 110-86-1) in F344/N Rats, Wistar Rats, And

    NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF PYRIDINE (CAS NO. 110-86-1) IN F344/N RATS, WISTAR RATS, AND B6C3F1 MICE (DRINKING WATER STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 March 2000 NTP TR 470 NIH Publication No. 00-3960 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals.
  • Heats of Formation of Certain Nickel-Pyridine Complex Salts

    Heats of Formation of Certain Nickel-Pyridine Complex Salts

    HEATS OF FORFATION OF CERTAIN NICKEL-PYRIDINE COLPLEX SALTS DAVID CLAIR BUSH A THESIS submitted to OREGON STATE COLLEGE in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE June l9O [4CKNOWLEDGMENT The writer wishes to acknowledge his indebtedness and gratitude to Dr. [4. V. Logan for his help and encour- agement during this investigation. The writer also wishes to express his appreciation to Dr. E. C. Gilbert for helpful suggestions on the con- struction of the calortheter, and to Lee F. Tiller for his excellent drafting and photostating of the figures and graphs. APPROVED: In Charge of ?ajor Head of Department of Chemistry Chairrian of School Graduate Comrittee Dean of Graduate School Date thesis is presented /11 ' Typed by Norma Bush TABLE OF CONTENTS HISTORICAL BACKGROUND i INTRODUCTION 2 EXPERIMENTAL 5 Preparation of the Compounds 5 Analyses of the Compounds 7 The Calorimeter Determination of the Heat Capacity 19 Determination of the Heat of Formation 22 DISCUSSION 39 41 LITERATURE CITED 42 TABLES I Analyses of the Compounds 8 II Heat Capacity of the Calorimeter 23 III Heat of Reaction of Pyridine 26 IV Sample Run and Calculation 27 V Heat of Reaction of Nickel Cyanate 30 VI Heat of Reaction of Nickel Thiocyanate 31 VII Heat of Reaction of Hexapyridinated Nickel Cyanate 32 VIII Heat of Reaction of Tetrapyridinated Nickel Thiocyanate 33 IX Heat of Formation of the Pyridine Complexes 34 FI GURES i The Calorimeter 10 2 Sample Ijector (solids) 14 2A Sample Ejector (liquids) 15 3 Heater Circuit Wiring Diagram 17 4 heat Capacity of the Calorimeter 24 5 Heat of Reaction of Pyridine 28 6 Heat of Reaction of Hexapyridinated Nickel Cyanate 35 7 Heat of Reaction of Tetrapyridinated Nickel Thiocyanate 36 8 Heat of Reaction of Nickel Cyanate 37 9 Heat of Reaction of Nickel Thiocyanate 38 HEATS OF FOW ATION OF CERTAIN NICKEL-PYRIDINE COMPLEX SALTS HISTORICAL BACKGROUND Compounds of pyridine with inorganic salts have been prepared since 1970.
  • Intramolecular Alkoxycyanation and Alkoxyacylation Reactions: New Types of Alkene Difunctionalizations for the Construction of Oxygen Heterocycles John P

    Intramolecular Alkoxycyanation and Alkoxyacylation Reactions: New Types of Alkene Difunctionalizations for the Construction of Oxygen Heterocycles John P

    Angewandte. Highlights DOI: 10.1002/anie.201204470 Alkene Difunctionalization Intramolecular Alkoxycyanation and Alkoxyacylation Reactions: New Types of Alkene Difunctionalizations for the Construction of Oxygen Heterocycles John P. Wolfe* alkenes · catalysis · heterocycles · ketones · nitriles Saturated oxygen heterocycles, such as tetrahydrofurans and not require an exogenous carbon electrophile.[6,7] Instead, the dihydrobenzofurans, are important motifs in a myriad of carbon electrophile is covalently attached to the cyclizing biologically active compounds, including natural products and oxygen atom in the substrate, and the carboalkoxylations are pharmaceutical targets. Therefore, there has been consider- accomplished through activation of this CÀO bond by the able interest in the development of new synthetic methods for catalyst. Importantly, these two approaches lead to the the construction of these important structures.[1] Many tradi- formation of dihydrobenzofuran derivatives that bear func- tional approaches to the generation of these compounds tional groups (ketones or nitriles), which are convenient involve ring formation through intramolecular SN2 reactions handles for further elaboration of the molecule, and cannot be and related strategies. However, these approaches typically directly installed by using previously developed alkene lead to the formation of only one bond during ring closure and carboalkoxylation methods. often require somewhat complicated substrates.[1] The method of the Douglas group involves the use of Late transition metal catalyzed alkene carboalkoxylations a cationic RhI complex to catalyze the intramolecular are a subclass of alkene difunctionalization reactions[2] that alkoxyacylation of acylated 2-allylphenol derivatives have considerable utility for the construction of tetrahydro- (Scheme 2).[6] These reactions afford 2-acylmethyl dihydro- furans, dihydrobenzofurans, and related oxygen heterocycles.
  • United States Patent Office Patented Dec

    United States Patent Office Patented Dec

    3,631,000 United States Patent Office Patented Dec. 28, 1971 2 SUMMARY OF THE INVENTION 3,631,000 SOCYANURATE-CONTAINING POLYSOCYA We have found that superior isocyanurate-containing NATES AND METHOD OF PREPARATION polyisocyanates are inexpensively prepared by the two Perry A. Argabright and Brian L. Philips, Littleton, Colo., step process of: (1) chloroalkylating a mono-substituted and Vernon J. Sinkey, South St. Paul, Minn., assignors benzene compound, and (2) reacting the polychloro to Marathon Oil Company, Findlay, Ohio alkylated benzene-substituted compounds with a metal No Drawing. Filed June 4, 1969, Ser. No. 830,541 cyanate in the conjoint presence of a bromide or iodide Int. C. C08g 22/18, 22/44 of an alkali metal or an alkaline earth metal, and in the U.S. C. 260-77.5 NC 1. Claims presence of an aprotic solvent, herein defined. The mole IO ratio of metal cyanate to the chloride in the polychloro alkylated benzene-substituted compound is from about ABSTRACT OF THE DESCLOSURE 0.8 to about 1.5 to produce the polyisocyanates. These Improved organic polyisocyanates are prepared by re polyisocyanate compositions are starting materials for acting chlorinated benzene-substituted compounds, espe Various polymeric systems, e.g. a rigid polyurethane foam cially chloromethylated aromatics, with metal cyanates in 5 produced by conventional polymerization or copolymeri the presence of a metal iodide or bromide and in the zation with an appropriate monomer (e.g. a polyester or presence of a dipolar aprotic solvent where the mole ratio polyether based polyol). Particularly preferred products of cyanate in the metal cyanate to chlorine in the chlo are polyurethane and polyurea foams, coatings, elasto rine-containing benzene-substituted compound is from mers and adhesives.
  • United States Patent (19) 11 Patent Number: 4,697,009 Deschler Et Al

    United States Patent (19) 11 Patent Number: 4,697,009 Deschler Et Al

    United States Patent (19) 11 Patent Number: 4,697,009 Deschler et al. (45) Date of Patent: Sep. 29, 1987 54 N-SILYLPROPYL-N'-ACYL-UREAS AND 58 Field of Search ........................ 556/421; 544/229; PROCESS FOR THER PRODUCTION 546/14: 548/110; 260/239 BC; 556/414; 540/487 75) Inventors: Ulrich Deschler; Peter Kleinschmit, 56) References Cited both of Hanau; Rudolf Michel, Freigericht, all of Fed. Rep. of U.S. PATENT DOCUMENTS Germany 2,857,430 10/1958 Applegath et al. ............. 556/421 X 2,907,782 10/1959 Pike ..................................... 556/421 73 Assignee: Degussa Aktiengesellschaft, 3,793,253 2/1974 Quiring et al. ... ... 556/421 X Frankfurt am Main, Fed. Rep. of 3,803,194 4/1974 Golitz et al. .................... 556/42 X Germany 3,856,756 12/1974 Wagner et al. ................. 556/421 X Primary Examiner-Paul F. Shaver 21 Appl. No.: 875,867 Attorney, Agent, or Firm-Cushman, Darby & Cushman 22 Filed: Jun. 18, 1986 57 ABSTRACT The invention is directed to N-silylpropyl-N'-acyl ureas 30 Foreign Application Priority Data and their production from an alkali cyanate, a 3-halo propylsilane and in a given case, a cyclic acidamide. By Jul. 6, 1985 IDE Fed. Rep. of Germany ....... 352.425 heating the compounds of the invention the blocked 5) Int. Cl. ................................................ C07F 7/10 isocyanate function can be set free. 52 U.S. Cl. .................................... 540/487; 556/414; 556/421; 544/229; 546/14: 548/110 16 Claims, 3 Drawing Figures U.S. Patent Sep. 29, 1987 Sheet 1 of 3 4,697,009 (z+w)/92° oQtz,oºgOOººO972OO2 4,697,009 1.
  • Synthesis and Characterization of Cyanate Ester and Its Blends With

    Synthesis and Characterization of Cyanate Ester and Its Blends With

    CHEMISTRY & CHEMICAL TECHNOLOGY Vol. 2, No. 4, 2008 Chemistry Samikannu Rakesh and Muthusamy Sarojadevi SYNTHESIS AND CHARACTERIZATION OF CYANATE ESTER AND ITS BLENDS WITH BISPHENOL DICYANATE ESTER Department of Chemistry, Anna University, Chennai-600 025, India [email protected] Received: May 05, 2008 Ó Rakesh S., Sarojadevi M. 2008 Abstract. A new keto-ene functionalized 1, 5-bis because of their superior mechanical properties which are (4-hydroxyphenyl)penta-1,4-dien-3-one (HPDO) was used in the electronic devices, high-temperature adhesive prepared from p-hydroxy benzaldehyde and acetone using and aerospace industries [1-5]. They have the boric acid as a catalyst. The prepared bisphenol was processability similar to that of epoxy resins and the converted into 1,5-bis (4-cyanatophenyl) penta-1,4-diene- thermal properties similar to those of phenolic resins. CE 3-one (CPDO) by reacting with cyanogen bromide (CNBr) resins have their own unique properties such as a good in the presence of triethylamine. The synthesized bisphenol strength, low dielectric constant, radar transparency, low and the dicyanate ester were characterized by Fourier water absorption, and superior metal adhesion [6, 7]. Curing of cyanate esters is catalyzed by heat or a transform infrared spectroscopy (FT-IR), nuclear magnetic combination of heat and catalyst [8]. The great difference resonance spectroscopy (1H-NMR and 13 in processing between epoxies and cyanate esters is that C-NMR) and elemental analysis (EA) techniques. CPDO the latter ones need relatively high curing temperature. was then blended with a commercial bisphenol-A dicyanate The high curing temperature causes high energy- ester (BADCy) at different ratios (100:0, 75:25, 50:50.
  • Irradiated Benzene Ice Provides Clues to Meteoritic Organic Chemistry ⇑ Michael P

    Irradiated Benzene Ice Provides Clues to Meteoritic Organic Chemistry ⇑ Michael P

    Icarus 226 (2013) 1201–1209 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Irradiated benzene ice provides clues to meteoritic organic chemistry ⇑ Michael P. Callahan a,b, , Perry A. Gerakines a,b, Mildred G. Martin a,b,c, Zan Peeters d, Reggie L. Hudson a,b a Solar System Exploration Division, National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD 20771, USA b Goddard Center for Astrobiology, National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD 20771, USA c Catholic University of America, Washington, DC 20064, USA d Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA article info abstract Article history: Aromatic hydrocarbons account for a significant portion of the organic matter in carbonaceous chondrite Received 21 December 2012 meteorites, as a component of both the low molecular weight, solvent-extractable compounds and the Revised 24 July 2013 insoluble organic macromolecular material. Previous work has suggested that the aromatic compounds Accepted 27 July 2013 in carbonaceous chondrites may have originated in the radiation-processed icy mantles of interstellar Available online 13 August 2013 dust grains. Here we report new studies of the organic residue made from benzene irradiated at 19 K by 0.8 MeV protons. Polyphenyls with up to four rings were unambiguously identified in the residue Keywords: by gas chromatography–mass spectrometry. Atmospheric pressure photoionization Fourier transform Astrobiology mass spectrometry was used to determine molecular composition, and accurate mass measurements Cosmic rays Cosmochemistry suggested the presence of polyphenyls, partially hydrogenated polyphenyls, and other complex aromatic Experimental techniques compounds.
  • The Millimeter Wave Spectrum of Methyl Cyanate: a Laboratory Study and Astronomical Search in Space?,?? L

    The Millimeter Wave Spectrum of Methyl Cyanate: a Laboratory Study and Astronomical Search in Space?,?? L

    A&A 591, A75 (2016) Astronomy DOI: 10.1051/0004-6361/201628140 & c ESO 2016 Astrophysics The millimeter wave spectrum of methyl cyanate: a laboratory study and astronomical search in space?,?? L. Kolesniková1, J. L. Alonso1, C. Bermúdez1, E. R. Alonso1, B. Tercero2, J. Cernicharo2, and J.-C. Guillemin3 1 Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011 Valladolid, Spain e-mail: [email protected] 2 Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, 28049 Cantoblanco, Spain 3 Institut des Sciences Chimiques de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France Received 15 January 2016 / Accepted 15 March 2016 ABSTRACT Aims. The recent discovery of methyl isocyanate (CH3NCO) in Sgr B2(N) and Orion KL makes methyl cyanate (CH3OCN) a potential molecule in the interstellar medium. The aim of this work is to fulfill the first requirement for its unequivocal identification in space, i.e. the availability of transition frequencies with high accuracy. Methods. The room-temperature rotational spectrum of methyl cyanate was recorded in the millimeter wave domain from 130 to 350 GHz. All rotational transitions revealed A-E splitting owing to methyl internal rotation and were globally analyzed using the ERHAM program. 00 00 Results. The data set for the ground torsional state of methyl cyanate exceeds 700 transitions within J = 10−35 and Ka = 0−13 and newly derived spectroscopic constants reproduce the spectrum close to the experimental uncertainty.
  • Chapter 1 Organic Compounds: Alkanes

    Chapter 1 Organic Compounds: Alkanes

    Chapter 1 Alkanes Chapter 1 Organic Compounds: Alkanes Chapter Objectives: • Learn the differences between organic and inorganic compounds. • Learn how to identify isomers of organic compounds. • Learn how to write condensed, expanded, and line structures for organic compounds. • Learn how to recognize the alkane functional group in organic compounds. • Learn the IUPAC system for naming alkanes and cycloalkanes. • Learn the important physical and chemical properties of the alkanes. Mr. Kevin A. Boudreaux Angelo State University CHEM 2353 Fundamentals of Organic Chemistry Organic and Biochemistry for Today (Seager & Slabaugh) www.angelo.edu/faculty/kboudrea Organic chemistry nowadays almost drives me mad. To me it appears like a primeval tropical forest full of the most remarkable things, a dreadful endless jungle into which one does not dare enter, for there seems to be no way out. Friedrich Wöhler 2 1 Chapter 1 Alkanes 3 What Do We Mean By “Organic”? • In everyday usage, the word organic can be found in several different contexts: – chemicals extracted from plants and animals were originally called “organic” because they came from living organisms. – organic fertilizers are obtained from living organisms. – organic foods are foods grown without the use of pesticides or synthetic fertilizers. • In chemistry, the words “organic” and “organic chemistry” are defined a little more precisely: 4 2 Chapter 1 Alkanes What is Organic Chemistry? • Organic chemistry is concerned with the study of the structure and properties of compounds containing carbon. – All organic compounds contain carbon atoms. – Inorganic compounds contain no carbons. Most inorganic compounds are ionic compounds. • Some carbon compounds are not considered to be organic (mostly for historical reasons), such as CO, CO2, diamond, graphite, and salts of carbon- 2- - containing polyatomic ions (e.g., CO3 , CN ).
  • 1 a Brief Introduction to Traditional Bioconjugate Chemistry

    1 a Brief Introduction to Traditional Bioconjugate Chemistry

    3 1 A Brief Introduction to Traditional Bioconjugate Chemistry W. Russ Algar 1.1 Introduction Bioconjugation is the process of linking or connecting a biological molecule with another moiety. These moieties may include other biomolecules (e.g., peptides), synthetic polymers (e.g., polyethylene glycol), and small molecules such as ligands (e.g., biotin), drugs, or fluorescent dyes, among a multitude of other possibilities [1]. While an extensive range of chemical reactions can be utilized for bioconjugation, the goal of this chapter is to briefly summarize some of the most stalwart and traditional reactions, highlighting important concepts and the strengths and weaknesses of each chemistry. Although there is no formal defini- tion of “traditional” bioconjugate chemistry, a majority of these chemistries will satisfy two criteria: (i) reaction with a native functional group in a biomolecule under mild aqueous conditions; and (ii) use by many researchers over many years with continued application today. In this context, the following sections of this chapter discuss the most commonly targeted functional groups in biomolecules, the most popular chemical reactions for conjugation at those functional groups, and the cross-linking strategies most frequently used with those reactions. Extensive information on traditional bioconjugate chemistries can be found in a number of valuable resources, including Hermanson’s classic tome, Bioconjugate Techniques [2], as well as similar volumes by other authors [3–5]. Importantly, this introductory chapter serves as a short primer for subsequent chapters that discuss more modern bioconjugation methods that have better chemoselec- tivity than the traditional methods discussed here. The development of such “nontraditional” chemistries has been motivated by the limitations of tradi- tional chemistries.
  • Cyanate Ester/Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites: Synthesis and Characterization†

    Cyanate Ester/Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites: Synthesis and Characterization†

    Chem. Mater. 2006, 18, 301-312 301 Cyanate Ester/Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites: Synthesis and Characterization† Kaiwen Liang,‡ Guizhi Li,§ Hossein Toghiani,‡ Joseph H. Koo,| and Charles U. Pittman, Jr.*,§ DaVe C. Swalm School of Chemical Engineering, Mississippi State UniVersity, Mississippi State, Mississippi 39762, Department of Chemistry, Mississippi State UniVersity, Mississippi State, Mississippi 39762, and Department of Mechanical Engineering, Texas A&M UniVersity, College Station, Texas 78712 ReceiVed July 19, 2005 Cyanate ester (PT-15, Lonza Corp.) composites containing the blended polyhedral oligomeric silsesquioxane (POSS), TriSilanolPhenyl-POSS (C42H38O12Si7), were prepared containing PT-15/POSS 99/1, 97/3, 95/5, 90/10, and 85/15 w/w ratios. The composites were characterized by FT-TR, X-ray diffraction (XRD), small-angle neutron scattering (SANS), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (X-EDS), transmission electron microscopy (TEM), dynamic mechanical thermal analysis (DMTA), and three-point bending flexural tests. TriSilanolPhenyl-POSS was throughly dispersed into uncured liquid PT-15 resin. After curing, XRD, SANS, and X-EDS measurements were consistent with partial molecular dispersion of a portion of the POSS units in the continuous matrix phase while the remainder forms POSS aggregates. Larger aggregates are formed at higher loadings. SANS, SEM, and TEM show that POSS-enriched nanoparticles are present in the PT-15/POSS composites. The storage bending moduli, E′, and the glass transition temperatures, Tg, of PT-15/POSS 99/1, 97/3, and 95/5 composites are higher than those of the pure PT-15 over the temperature range from 35 to 350 °C. The E′ values for all these composites (except for the 15 wt % POSS sample) are significantly greater than that of the pure resin at T > Tg.