Bioenergy in the European Commission's Proposed Post-2020 Eu Renewable Energy Directive

Total Page:16

File Type:pdf, Size:1020Kb

Bioenergy in the European Commission's Proposed Post-2020 Eu Renewable Energy Directive DECEMBER 2016 BIOENERGY IN THE EUROPEAN COMMISSION’S PROPOSED POST-2020 EU RENEWABLE ENERGY DIRECTIVE: AN ANALYSIS OF PROPOSALS AND IMPACTS Summary the expansion of wood-based any credible, independent bioenergy. verification and auditing The European Commission’s system. Furthermore, standards proposals for a new, post-2020 The Commission proposes cannot address indirect impacts Renewable Energy Directive to extend the principle of or make fundamentally (RED) fail to address the serious sustainability and greenhouse unsustainable consumption negative impacts of large- gas standards, which have levels sustainable scale biofuel and wood-based applied to liquid biofuels bioenergy expansion which since 2010, to wood-based Biofuelwatch supports the has been underway since the bioenergy, as well as other solid call, set out in a declaration current RED came into force biomass and biogas (albeit with signed by120 civil society in 2010. Instead of ending different standards in the case organisations in early 2016, to incentives for biofuels, the of wood-based bioenergy). remove bioenergy from the proposed new RED allows for However, no evidence exists to scope of the RED, to ensure that a 40% greater use of food- show that the biofuel standards only genuinely renewable and based biofuels such as palm have been in any way effective. low-carbon forms of energy and soybean oil in 2021, and a Not only are the existing biofuel are support, and to initiate still significant use of them by standards and the proposed meaningful economic and 2030. It seeks to boost the use wood-based bioenergy social changes to reduce the of advanced biofuels for which standards extremely weak and EU’s excessive and wasteful the technologies to produce reliant on flawed methods consumption of energy and them commercially have not for calculating greenhouse other resources. so far been developed. And gas emissions from bioenergy, it threatens to further boost but there is no proposal for Background On 30th November, the in the European Council, the Directive (RED) has first and European Commission European Parliament, and the foremost benefited large- published the long-awaited European Commission itself. For scale bioenergy, which makes draft of the post-2020 EU a new directive to come into up almost two thirds of all Renewable Energy Directive, effect in 2020, the final version energy classed as renewable1. which will replace the current will have to be approved by Bioenergy consists of biofuels directive, in place since 2010. 2019, likely as part of a wider made from vegetable oil, This proposal will be discussed ‘Climate and Energy Package’. ethanol made from sugar and and likely amended between starch, biogas made from the member states represented The existing Renewable Energy anaerobic digestion of crops, grass, manure and food waste, liquid biofuels has been a major with bioenergy in the current and wood, straw and other cause of both in recent years; RED. This briefing summarises solid biomass burned for heat the main new proposals as they and electricity. The bulk of • More landgrabbing, relate to bioenergy. energy generated from biomass displacement and other in the EU – and worldwide – injustices suffered by Biofuels in the new RED comes from burning wood. communities mainly in the global South as a result of the proposal: The inclusion of bioenergy in rising demand for agricultural Current provisions: EU renewable energy policy products and wood for energy is controversial: in February in the EU; The current RED includes 2016, 120 civil society groups a special 10% target for worldwide demanded that • More depletion and pollution renewable energy in transporti, bioenergy must be excluded of freshwater and soils as which is primarily being from the EU’s definition of intensively managed crop and translated into a biofuel target. renewable energy2. After all, it tree monocultures expand In 2015, the EU decided to is difficult to see how burning with the growing demand for cap the maximum contribution biofuels or wood meets the bioenergy; from food/land-based biofuel International Energy agency’s feedstocks, such as virgin plant definition of renewable energy, • Air pollution and public oils, sugar crops and cereals, which is “energy derived from health: Tree plantations, at 7% of all transport fuel by natural processes (e.g. sunlight oil palm, soya and other 2020. It was a disappointing and wind) that are replenished crop plantations that supply compromise which aimed to at a faster rate than they are wood pellets or biofuels are tackle indirect land use changeii, consumed”. The expansion of sprayed with harmful agro- but which allows a major, i.e. bioenergy under the current toxins. And the proliferation a 40% future expansion of RED has had multiple negative of wood boilers and wood- the very feedstocks which it impacts3, which include: burning power plants is seeks to limit. Food- and land- causing significant increases based biofuels accounted • Climate impacts: The in air pollution, especially for just 5% of EU road and emissions of greenhouse gases small particulates linked to rail transport fuel in 20154. tend to be no better and are respiratory and heart problems The existing RED includes often worse for large-scale in many parts of the EU; biofuel greenhouse gas and bioenergy than for the fossil sustainability standards, which fuels they are meant to replace, • Competition with wind and have been heavily criticised as provided all direct and indirect solar power and a distraction weak and insufficient by NGOs. impacts are accounted for; from the urgent need to reduce For example, they include the EU’s wasteful energy no social standards, i.e. no • Impacts on forests and other use: The RED sets an overall provisions to protect human ecosystems: Wood-based renewable energy target of rights, land rights or workers’ bioenergy is often associated 20% by 2020. Within that rights, and greenhouse gas with more clearcutting of target, bioenergy competes ‘savings’ are calculated using a forests and greater use of against wind and solar power, flawed methodology which, for destructive logging practices, not against fossil fuels. The false example, ignores all emissions while tree and crop plantations belief in a future ‘bioeconomy’ from indirect land use change. for energy replace forests, is further delaying urgently biodiverse grasslands and other needed measures to drastically How do the new proposals ecosystems; reduce the EU’s energy and differ from current provisions? resource use. • Greater food price volatility The generic renewable energy and worse food spikes: Sadly, the European Commission for transport target would be Competition for land caused appears to have learned little abolished; by the increasing demand for from the disastrous experience i. Shipping and aviation are ignored when calculating the overall volume of transport fuels, but biofuels used in either sector can count towards meeting the target. ii. Indirect land use change happens when land previously used to grow food or animal feed is instead used to grow biofuel feedstock, causing forests and other natural ecosystems to be converted to agriculture to grow food or feed instead. There will be one new target derived from wood, too. Existing biofuel refineries for “advanced” and residue- across the EU have a large and waste-based biofuels listed What are the problems with overcapacity8, i.e. they in a separate Annex, as well those proposals? can significantly ramp up as for fuels made from landfill production in future, without gas, plus renewable electricity Despite the overwhelming any new plants being built. Yet used in transport. The list of evidence of harm caused by they will be entirely exempt biofuels which count towards food- and other land-based from stricter greenhouse gas this target includes biofuels biofuels, the new proposal still standards. made algae, from waste sees a significant role for them; including Municipal Solid Waste Wood and other solid and used cooking oil, and “Advanced biofuels” made biofuels made from residues from solid biomass (cellulosic biomass in the new RED such as tallow (a slaughterhouse biofuels) or from algae, as proposal residue), agricultural residues, well as fuels made from manure and sewage sludge, solid non-biological waste Current provisions: and “wastes and residues are not commercially viable from forestry and forest-based with existing technologies. Wood-based bioenergy is industries”. It also includes Serious attempts at producing being promoted mainly by cellulosic biofuels made from cellulosic and algal biofuels virtue of counting towards the wood and from grasses such as have been ongoing since the overall 20% renewable energy miscanthus or ryegrass. Those 1910s and 1970s respectively, target by 2020 (and interim particular biofuels will need to without any evidence of a targets for earlier years). There make up 1.5% of transport fuels major breakthrough5. The only are no greenhouse gas and at the start of 2021, rising to at exception are liquid fuels made sustainability standards for solid least 6.8% by 2030. The share from biomethane, which can biomass, only for biofuels and of used cooking oil and animal be used in cars designed to run bioliquids. fats within that target will be (partly or fully) on gas; limited; How do the new proposals Using residues for biofuels can differ from current provisions? Biofuels and bioliquidsiii made displace their existing uses and from virgin plant oils, sugar cause previous users to turn to Biomass sustainability standards crops or starch (e.g. corn or virgin plant oils or fossil fuels will be introduced. For ‘energy wheat) will still count towards instead. For example, tallow crops’, such as miscanthus, the overall renewable energy (animal fat) use for biofuels has poplar or willow short target, which will be gradually been linked to greater palm rotation coppicing, the same increased from 20% in 2020 to oil use for soap and cosmetic standards as for biofuels will 27% in 2030.
Recommended publications
  • Global Forest Coalition + Biofuelwatch
    This is a joint submission by the Global Forest Coalition and Biofuelwatch. We welcome the opportunity to comment on European Commission consultation “Deforestation and forest degradation – stepping up EU action”. The Global Forest Coalition is an international coalition of 99 NGOs and Indigenous Peoples’ Organizations from 64 countries founded in 2000 to defend social justice and the rights of forest peoples in forest policies. It has undertaken extensive research and joint work on issues that are of high relevance to this consultation, including drivers of forest loss and the role of subsidies and other perverse incentives, unsustainable livestock production and bioenergy (see globalforestcoalition.org/). Biofuelwatch (a member group of the Global Forest Coalition) is based in the UK and US and carries out research, campaigning and advocacy related to the impacts of large-scale bioenergy. We hope that our detailed comments will be fully considered, together with our response to the questionnaire. We believe that a coherent EU Action Plan on deforestation and forest degradation is long overdue. Such an Action Plan must include binding legislative measures and ensure that other EU Directives and decisions on trade policy do not undermine the aims of halting deforestation as well as biodiversity loss by 2020, set out in the Sustainable Development Goals, nor the EU’s commitments under the Convention on Biological Diversity (CBD), including its Aichi Targets. Deforestation, forest degradation and perverse subsidies: An EU Action Plan must set out a pathway for rapidly ending all subsidies which incentivise deforestation and forest degradation, in line with CBD Aichi Target 3. Those must include all subsidies which, directly or indirectly, incentivise high and increasing levels of consumption of the four main products responsible for deforestation and forest degradation worldwide: palm oil, wood, beef and soya.
    [Show full text]
  • Biofuel: Chain of Destruction
    Cover photographs from left to right: Trees at Merchant's Pond, Dogwood Alliance; Experimental eucalyptus plantation in Pernambuco, Brazil, Ivonete Gonçalves de Souza; Drax Power Station, Steve Morgan/Greenpeace. Report Authors: Almuth Ernsting, Sophie Bastable & Oliver Munnion Eucalyptus plantations for Energy Authors: Ivonete Gonçalves de Souza & Winfridus Overbeek GE Trees for Biomass Author: Rachel Smolker Contributors: Danna Smith, Alison Davies, Donna Liley, Pete Kilvet & Duncan Law For full references & notes please see http://biofuelwatch.org.uk/2013/report­references/ This publication was made possible thanks to funding from the Network for Social Change. Biomass: The Chain of Destruction Contents Contents 1. Introduction 4 1.1 Overview of Biomass in the UK 7 1.2 Two Different Markets: Biomass burnt in coal power stations versus dedicated biomass plants 9 2. International impacts 10 2.1 Fueling Forest Destruction in the Southern US: An Interview with Danna Smith, Executive Director of the Dogwood Alliance 10 2.2 Canada's Logging "free­for­all" 14 2.3 Portugal's Booming Pellet Industry 18 2.4 Eucalyptus Plantations for Energy: A Case Study of Suzano's plantations for wood pellet exports in the Baixo Parnaíba region, Maranhão, Brazil 20 3. UK Impacts 37 3.1 How does large­scale biomass burning affect public health? 37 3.2 How do community campaigns against polluting and destructive biomass power station applications fare? 38 3.3 Testimony by Alison Davies, Save our Speyside 40 3.4 The trouble with waste wood 42 3.5 How waste wood chipping operations affect local communities 43 3.6 Interview with Donna Liley: One resident’s experience of living close to one of the UK’s largest wood chipping plants 44 3.7 What is the evidence on wood dust and health impacts? 47 3.8 Regulations do not protect residents exposed to wood dust 48 3.9 One community's experience of opposing a waste wood incinerator 48 3.10 Testimony by Pete Kilvert, Chairman of the Breathe Clean Air Group (BCAG) 50 3.11 Biomass power station location and deprivation 55 4.
    [Show full text]
  • The Right to Food and the Impact of Liquid Biofuels (Agrofuels) Photo by © FAO/18079/M
    The Right to Food and the Impact of Liquid Biofuels (Agrofuels) Photo by © FAO/18079/M. Griffin RIGHT TO FOOD STUDIES Photo by © FAO/18079/M. Griffin The Right to Food and the Impact of Liquid Biofuels (Agrofuels) Asbjørn Eide FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2008 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. ISBN 978-92-5-106174-9 All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: Chief Electronic Publishing Policy and Support Branch Communication Division FAO Viale delle Terme di Caracalla, 00153 Rome, Italy or by e-mail to: [email protected] © FAO 2009 The Right to Food and the Impact of Liquid Biofuels (Agrofuels) Photo by © FAO/18079/M.
    [Show full text]
  • Bioenergy Out: Why Bioenergy Should Not Be Included in the Next EU Renewable Energy Directive
    Published 6th September 2015 Bioenergy Out: Why bioenergy should not be included in the next EU Renewable Energy Directive By NOAH (Friends of the Earth Denmark), Biofu- elwatch, Econexus, Global Forest Coalition, World Rainforest Movement, Rettet den Regenwald/ Rainforest Rescue, and Cor- porate Europe Observatory Photos by Dogwood Alliance (Enviva Pellet Plant in North Caolina) Global Forest Coa- lition (Soya Planta- tion in Paraguay) Rettet den Regen- wald e.V. Page 2 Bioenergy Out: Why bioenergy should not be included in the next EU Renewable Energy Directive Renewable energy legislation such as the EU Furthermore, large-scale industrial bioenergy Renewable Energy Directive (RED) aims to cannot meet the EU’s stated aim of reducing significantly scale up forms of energy classed emissions of greenhouse gases (GHG) because as renewable, with the stated aim of reducing it leads to emissions of carbon and other greenhouse gas emissions. There has been a greenhouse gases that are commonly greater lack of critical debate about the definition of than those from the use of fossil fuels. renewable energy to date. According to the Nevertheless, within the EU's overall International Energy Agency, renewable renewable energy target, bioenergy competes energy is "energy derived from natural with more sustainable and climate-friendly processes (e.g. sunlight and wind) that are renewable energy rather than with fossil fuels. replenished at a faster rate than they are consumed" (1) This briefing makes the case for taking bioenergy out the new EU Renewable Energy Large-scale industrial bioenergy does not meet Directive for 2020-230. this definition because it relies on a major expansion of industrial agriculture, 1.
    [Show full text]
  • Biofuels and Food Security. HLPE Report 5
    HLPE REPORT 5 Biofuels and food security A report by The High Level Panel of Experts on Food Security and Nutrition June 2013 HLPE Steering Committee members (June 2013) MS Swaminathan (Chair) Maryam Rahmanian (Vice-Chair) Catherine Bertini Tewolde Berhan Gebre Egziabher Lawrence Haddad Martin S. Kumar Sheryl Lee Hendriks Alain de Janvry Renato Maluf Mona Mehrez Aly Carlos Perez del Castillo Rudy Rabbinge Huajun Tang Igor Tikhonovich Niracha Wongchinda HLPE Project Team members John Wilkinson (Team Leader) Suraya Afiff Miguel Carriquiry Charles Jumbe Timothy Searchinger Coordinator of the HLPE Vincent Gitz This report by the High Level Panel of Experts on Food Security and Nutrition (HLPE) has been approved by the HLPE Steering Committee. The views expressed do not necessarily reflect the official views of the Committee on World Food Security, of its members, participants, or of the Secretariat. This report is made publicly available and its reproduction and dissemination is encouraged. Non- commercial uses will be authorised free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate this report should be addressed by e-mail to [email protected] with copy to [email protected] Referencing this report: HLPE, 2013. Biofuels and food security. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, Rome 2013. 2 Table of Contents FOREWORD .............................................................................................................. 7 SUMMARY AND RECOMMENDATIONS .................................................................11 INTRODUCTION .......................................................................................................21 1 BIOFUEL POLICIES ...........................................................................................27 1.1 The emergence of policy-based biofuel markets – ethanol in Brazil and the US .............
    [Show full text]
  • Public Attitudes to Biomass Cofiring
    Public attitudes to biomass cofiring Rohan Fernando CCC/214 ISBN 978-92-9029-534-1 January 2013 copyright © IEA Clean Coal Centre Abstract There is substantial interest in producing energy from renewable sources given the continuing concerns regarding climate change. One attractive renewable source for power generation is the use of biomass. Cofiring biomass is one of the simplest ways of reducing GHG emissions from coal-fired power plant. When doing so, in addition to addressing technical factors, it is important to consider public attitudes, as these shape government policies. Surveys of public attitudes to energy usually include renewable sources such as wind, solar and hydro. Bioenergy is sometimes included but cofiring seldom so. When assessing public attitudes, it is instructive to consider what information is freely available to the public. Hence information provided by major national or international organisations, either in favour or against cofiring, are described. It is apparent that the public in most countries have little knowledge of bioenergy as a renewable energy source and most opinion polls do not even address the issue of the public’s attitudes towards it. The few polls that have been conducted indicate that solar, wind and hydro are much more popular than bioenergy. Bioenergy is more popular in countries such as in Northern Europe which have extensive experience in using wood products as an energy source. Opposition to cofiring biomass in coal-fired plant is mainly on the grounds of biomass availability and sustainability. The power industry publications concentrate on the technical issues for the plant when cofiring biomass rather than availability and sustainability concerns.
    [Show full text]
  • Giving Biojet Wings: Policy Instruments for a Carbon Neutral Aviation Sector
    COLORADO NATURAL RESOURCES, ENERGY & ENVIRONMENTAL LAW REVIEW Giving BioJet Wings: Policy Instruments for a Carbon Neutral Aviation Sector Harri Kalimo, Ólöf Söebech, Eleanor Reyes Mateo, & Filip Sedefov* Sustainable Aviation Fuels (“SAFs”) entered commercial markets a decade ago to replace fossil fuels. Unlike in road transport, where biofuels have been gradually deployed, the uptake of SAF in aviation has been very slow. The objective of this article is to explore how policymakers around the world have responded to the call to make aviation more sustainable through the use of SAF. The Article pursues this objective through a detailed analysis of five types of policy instruments, which are considered the most innovative worldwide in promoting the production and use of alternative jet fuels. The article assesses the potential of these instruments to advance the SAFs market and identifies bottlenecks that could hinder developments in the sector. It concludes that, as in a variety of other climate policies, developments in the aviation sector take place largely in dynamic, *Harri Kalimo is a Senior Researcher and Research Professor who holds the Jean Monnet Chair at the Institute for European Studies (“IES”) at the Vrije Universiteit Brussel. He is also a professor (part-time) at the University of Eastern Finland. Ólöf Söebech is a Project Researcher at the IES and the Department of Political Science at the Vrije Universiteit Brussel. Eleanor Mateo is a project researcher and PhD candidate at the Institute for European Studies and Faculty of Law and Criminology at the Vrije Universiteit Brussel. Filip Sedefov is an Environment, Health and Safety Consultant at Young and Global Partners and was formerly a project researcher at the IES.
    [Show full text]
  • Advanced Biofuels: What Holds Them Back?
    ADVANCED BIOFUELS What holds them back? November 2019 © IRENA 2019 Unless otherwise stated, this publication and material herein are the property of the International Renewable Energy Agency (IRENA) and are subject to copyright by IRENA. Material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that all such material is clearly attributed to IRENA and bears a notation of copyright (© IRENA) with the year of copyright. Material contained in this publication attributed to third parties may be subject to third-party copyright and separate terms of use and restrictions, including restrictions in relation to any commercial use ISBN 978-92-9260-158-4 Citation: IRENA (2019), Advanced biofuels. What holds them back?, International Renewable Energy Agency, Abu Dhabi. About IRENA The International Renewable Energy Agency (IRENA) is an intergovernmental organisation that serves as the principal platform for co-operation, a centre of excellence, a repository of policy, technology, resource and financial knowledge, and a driver of action on the ground to advance the transformation of the global energy system. IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. www.irena.org Acknowledgements This report was prepared by Sakari Oksanen (consultant to IRENA), Dolf Gielen, Seungwoo Kang, Rodrigo Leme and Toshimasa Masuyama (IRENA). Valuable review and feedback were provided by Paul Komor (IRENA). The editor of this report was Stefanie Durbin. IRENA would like to thank all the respondents of survey.
    [Show full text]
  • Agrofuels Threaten to Accelerate Global Warming
    Agrofuels threaten to accelerate global warming Report by Almuth Ernsting, Deepak Rughani, and Dr Andrew Boswell Biofuelwatch, www.biofuelwatch.org.uk , Updated Dec 2007, UNFCCC, Bali version Background: Contribution of agriculture and land-use change to anthropogenic climate change. Glossary This report looks at the impact which large-scale agrofuel production is Agrofuels: Agrofuels are biofuels from agriculture and forestry. likely to have on the global climate through agriculture and ecosystem Biofuels from true waste products, such as waste vegetable oil, biogas destruction. It discusses the different sources of greenhouse gas from landfill or manure would not be classed as agrofuels. Nor would emissions linked to the cultivation and refining of agrofuel feedstocks biofuels from algeae be classed as agrofuels. as well as the impact on overall fossil fuel consumption. Positive feedbacks: Positive feedbacks occur when a change in one Particular emphasis is put on the direct and secondary impacts of component of a system leads to other changes which eventually ‘feed agrofuel expansion on the world’s terrestrial carbon sinks, particularly back’ on the original change to amplify it. It is widely believed that those in the tropics and subtropics. Crops grown for agrofuels can positive feedback mechanisms exist within the climate system which lead to the destruction of carbon sinks such as rainforests either could amplify the global warming caused by anthropogenic because forests are directly converted to ‘energy crops’, or because greenhouse gas emissions. other types of agricultural activities are displaced and pushed into forests and other important ecosystems. Non-linear systems: Climate or ecosystems are widely believed to be non-linear systems, where a small push away from one state often Global warming is primarily a severe disturbance of the carbon cycle: has a small effect at first but beyond a certain point, they can rapidly On the one hand, humans are putting about 8 billion tones of carbon flip into another state.
    [Show full text]
  • Biofuel, the Environment, and Food Security: a Global Problem Explored Through a Case Study of Indonesia Nicola Colbran
    Sustainable Development Law & Policy Volume 9 Article 5 Issue 1 Fall 2008: Global Food & Agriculture Biofuel, the Environment, and Food Security: A Global Problem Explored Through a Case Study of Indonesia Nicola Colbran Asbjørn Eide Follow this and additional works at: http://digitalcommons.wcl.american.edu/sdlp Part of the Agriculture Law Commons, Environmental Law Commons, and the Food and Drug Law Commons Recommended Citation Colbran, Nicola and Asbjørn Eide. “Biofuel, the Environment, and Food Security: A Global Problem Explored Through a Case Study of Indonesia.” Sustainable Development Law & Policy, Fall 2008, 4-11, 65-67. This Article is brought to you for free and open access by the Washington College of Law Journals & Law Reviews at Digital Commons @ American University Washington College of Law. It has been accepted for inclusion in Sustainable Development Law & Policy by an authorized administrator of Digital Commons @ American University Washington College of Law. For more information, please contact [email protected]. BIO F UEL , THE ENVIRONMENT , AN D FOO D SECURITY : A GLOBAL PROBLEM EXPLORE D THROU G H A CA S E STU D Y O F IN D ONE S IA by Nicola Colbran & Asbjørn Eide* IN T RO D UC ti ON The feedstocks for biodiesel are oil-producing crops, such as his paper examines the environmental and food security rapeseed, palm oil,2 and jatropha.3 controversies over the production and use of biofuel for Brazil pioneered the production of liquid biofuel well before Ttransportation. During the last decade, tremendous inter- World War II, using parts of its vast sugar cane plantations for the est has been paid to biomass refined into biofuel (mainly ethanol production of ethanol.
    [Show full text]
  • Agrofuels in Africa – the Impacts on Land, Food and Forests
    AGROfuels in Africa – The impacts on land, food and forests Case Studies from Benin, Tanzania, Uganda and Zambia by the African Biodiversity Network: Nature-Tropicale, Benin Envirocare, Tanzania Climate and Development Initiatives, Uganda, Matongo Mundia and Clement Chipokolo, Zambia July 2007 AGROFUELS IN AFRICA – The impacts on Land, Food and Forests African Biodiversity Network Contributors: • BENIN - Nature Tropicale Josea Doussou-Bodjrenou • TANZANIA – Envirocare Abdallah Mkindee • UGANDA – Climate & Development Initiative Timothy Byakola, Andrew Yiga • ZAMBIA Clement Chipokolo, Mundia Matongo • SOUTH AFRICA – GRAIN Elfrieda Pschorn-Strauss • UK – The Gaia Foundation Teresa Anderson July 2007 INTRODUCTION fuels and we will follow the example set by social movements in Latin America to call Africa is at a crossroads of trying to this destructive process by its name: reconcile the conservation of its vast Agriculture for Fuels. cultural and natural heritage with the many and increasing needs of a growing Agrofuels – why such an issue? population. Powerful external forces continue to divert the continent from New large-scale agrofuels projects are solutions that come from within, as they mushrooming across Africa. Africa is being push for the privatisation and told that biofuels exports will be good for industrialisation of land, knowledge and development, good for the economy, and biodiversity all in the name of poverty good for the environment. There is a high alleviation. The push for agrofuels is the level of enthusiasm for these new latest of these so-called “solutions” that is developments, as African governments extensively promoted as an opportunity for hope that Agrofuels initiatives will lift their Africa to develop energy security and countries out of poverty by providing the alleviate poverty in rural areas.
    [Show full text]
  • Agrofuels and Biochar
    From Agrofuels to Biochar Why does the agrofuel industry exist? In 2008, Canada, approved C$ 2.5 billion subsidies over seven years for biofuels and a 5% ethanol blending obligation is due to come into force this September, with a further 2% biodiesel obligation also due in 2012. In the US, government subsidies for biofuels amount to US$5.5 – 7.3 billion per year (C$ 5.7-7.66) and the Renewable Fuel Standard mandates the use of 36 billion gallons of biofuels by 2022. Biofuels eat up 80% of all 'renewable energy' subsidies in the US. The European Union, in 2008, approved a 10% “mandatory renewable energy target for road transport” which is also a biofuel blending obligation. In 2006, annual EU biofuel subsidies were an estimated 3.01 billion Euros (C$ 4.06 billion).[1] The answer to the question “Why does the agrofuel industry exist” is very simple: It exists because of massive subsidies, blending obligations and other incentives, primarily in North America and the EU. Without state support, agrofuels are by and large not economically viable. The agrofuel market is thus an entirely artificial market. This leaves the question: Why have governments chosen to pour billions of dollars and major government resources into creating and maintaining an agrofuels market? Strong and successful industry lobbying has played a key role. Corporate Europe Observatory has documented details of how the European Commission set up a series of industry-dominated 'advisory bodies' and invited them to propose policies which have then become Commission and, in many cases, EU policies.
    [Show full text]