Theg Eochemicaln
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Late Precambrian Balkan-Carpathian Ophiolite
University of South Florida Masthead Logo Scholar Commons Geology Faculty Publications Geology 10-2001 Late Precambrian Balkan-Carpathian Ophiolite - A Slice of the Pan-African Ocean Crust?: Geochemical and Tectonic Insights from the Tcherni Vrah and Deli Jovan Massifs, Bulgaria and Serbia Ivan P. Savov University of South Florida, [email protected] Jeffrey G. Ryan University of South Florida, [email protected] Ivan Haydoutov Bulgarian Academy of Sciences, Geological Institute Johan Schijf University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/gly_facpub Part of the Geology Commons Scholar Commons Citation Savov, Ivan P.; Ryan, Jeffrey G.; Haydoutov, Ivan; and Schijf, Johan, "Late Precambrian Balkan-Carpathian Ophiolite - A Slice of the Pan-African Ocean Crust?: Geochemical and Tectonic Insights from the Tcherni Vrah and Deli Jovan Massifs, Bulgaria and Serbia" (2001). Geology Faculty Publications. 139. https://scholarcommons.usf.edu/gly_facpub/139 This Article is brought to you for free and open access by the Geology at Scholar Commons. It has been accepted for inclusion in Geology Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Journal of Volcanology and Geothermal Research 110 *2001) 299±318 www.elsevier.com/locate/jvolgeores Late Precambrian Balkan-Carpathian ophiolite Ð a slice of the Pan-African ocean crust?: geochemical and tectonic insights from the Tcherni Vrah and Deli Jovan massifs, Bulgaria and Serbia Ivan Savova,*, Jeff Ryana, Ivan Haydoutovb, Johan Schijfc aDepartment of Geology, University of South Florida, 4202 E. Fowler Ave., SCA 520, Tampa, FL 33620-5201, USA bBulgarian Academy of Sciences, Geological Institute, So®a 1113, Bulgaria cDepartment of Marine Science, University of South Florida, 140 7th Ave S, St. -
Lithospheric Modification During Crustal Extension in the Main Ethiopian Rift
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, B10201, doi:10.1029/2006JB004916, 2007 Click Here for Full Article Lithospheric modification during crustal extension in the Main Ethiopian Rift Tyrone Rooney,1,2 Tanya Furman,1 Ian Bastow,3,4 Dereje Ayalew,5,6 and Gezahegn Yirgu5 Received 22 December 2006; revised 11 May 2007; accepted 27 June 2007; published 5 October 2007. [1] Quaternary lavas erupted in zones of tectonomagmatic extension within the Main Ethiopian Rift (MER) preserve details of lithospheric structure in the East African Rift System. Despite observed source heterogeneity, basalts, trachybasalts, and basaltic trachyandesites erupted in the Wonjii Fault Belt (WFB) and the Silti-Debre Zeyit Fault Zone (SDFZ) form coherent fractionation paths dominated by variable removal of observed phenocryst phases. Crustal assimilation is not widespread, though it is observed at the southern end of the WFB where both fault belts merge; farther north, assimilation of cumulate phases related to fractional crystallization of previous magmas is identified. Shallow fractionation conditions ( 1 kbar) within the WFB do not change from north to south. In contrast, lavas erupted within the contemporaneous SDFZ fractionate at various crustal depths. These results indicate a better developed magmatic system beneath the WFB where magmas rose quickly before undergoing more significant fractionation at near surface levels and a less developed system beneath the SDFZ. The distribution of magmatism and extant geophysical data indicate thinned crust and a single rift-centered zone of magmatic activity northeast of 8°300N, consistent with a transitional lithosphere between continental and oceanic settings. Southwest of 8°300N, thicker crust and rift- marginal axes of extension suggest lithosphere with continental affinities. -
Author's Personal Copy
Author's personal copy Chemical Geology 271 (2010) 70–85 Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo Chemical variations and regional diversity observed in MORB Ricardo Arevalo Jr. ⁎, William F. McDonough Department of Geology, University of Maryland, College Park, MD, 20742, USA article info abstract Article history: An assemblage of MORB analyses (n =792 samples), including a suite of new, high-precision LA-ICP-MS Received 14 April 2009 measurements (n =79), has been critically compiled in order to provide a window into the chemical Received in revised form 4 December 2009 composition of these mantle-derived materials and their respective source region(s), commonly referred to Accepted 17 December 2009 as the depleted MORB mantle (DMM). This comprehensive MORB data set, which includes both “normal- ” fi b “ ” ≥ Editor: D.B. Dingwell type (N-MORB, de ned by (La/Sm)N 1.00) and enriched-type samples (E-MORB, (La/Sm)N 1.00), defines a global MORB composition that is more enriched in incompatible elements than previous models. A Keywords: statistical evaluation of the true constancy of “canonical” trace element ratios using this data set reveals that MORB during MORB genesis Ti/Eu, Y/Ho and Ce/Pb remain constant at the 95% confidence-level; thus, the ratios DMM recorded in MORB (Ti/Eu=7060±1270, 2σ; Y/Ho=28.4±3.6, 2σ; Ce/Pb=22.2±9.7, 2σ)mayreflect the Basalt composition of the DMM, presuming the degree of source heterogeneity, component mixing and conditions Trace element of melting/crystallization of the DMM are adequately recorded by global MORB. -
Mobility Statistics and Automated Hazard Mapping for Debris Flows and Rock Avalanches
Mobility Statistics and Automated Hazard Mapping for Debris Flows and Rock Avalanches Scientific Investigations Report 2007–5276 Version 1.1 U.S. Department of the Interior U.S. Geological Survey Mobility Statistics and Automated Hazard Mapping for Debris Flows and Rock Avalanches By Julia P. Griswold and Richard M. Iverson Scientific Investigations Report 2007–5276 Version 1.1 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 Revised 2014 This report and any updates to it are available at: http://pubs.usgs.gov/sir/2007/5276/ For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Griswold, J.P., and Iverson, R.M., 2008, Mobility statistics and automated hazard mapping for debris flows and rock avalanches (ver. 1.1, April 2014): U.S. Geological Survey Scientific Investigations Report 2007-5276, 59 p. Manuscript approved for publication, December 12, 2007 Text edited by Tracey L. -
Family Group Sheets Surname Index
PASSAIC COUNTY HISTORICAL SOCIETY FAMILY GROUP SHEETS SURNAME INDEX This collection of 660 folders contains over 50,000 family group sheets of families that resided in Passaic and Bergen Counties. These sheets were prepared by volunteers using the Societies various collections of church, ceme tery and bible records as well as city directo ries, county history books, newspaper abstracts and the Mattie Bowman manuscript collection. Example of a typical Family Group Sheet from the collection. PASSAIC COUNTY HISTORICAL SOCIETY FAMILY GROUP SHEETS — SURNAME INDEX A Aldous Anderson Arndt Aartse Aldrich Anderton Arnot Abbott Alenson Andolina Aronsohn Abeel Alesbrook Andreasen Arquhart Abel Alesso Andrews Arrayo Aber Alexander Andriesse (see Anderson) Arrowsmith Abers Alexandra Andruss Arthur Abildgaard Alfano Angell Arthurs Abraham Alje (see Alyea) Anger Aruesman Abrams Aljea (see Alyea) Angland Asbell Abrash Alji (see Alyea) Angle Ash Ack Allabough Anglehart Ashbee Acker Allee Anglin Ashbey Ackerman Allen Angotti Ashe Ackerson Allenan Angus Ashfield Ackert Aller Annan Ashley Acton Allerman Anners Ashman Adair Allibone Anness Ashton Adams Alliegro Annin Ashworth Adamson Allington Anson Asper Adcroft Alliot Anthony Aspinwall Addy Allison Anton Astin Adelman Allman Antoniou Astley Adolf Allmen Apel Astwood Adrian Allyton Appel Atchison Aesben Almgren Apple Ateroft Agar Almond Applebee Atha Ager Alois Applegate Atherly Agnew Alpart Appleton Atherson Ahnert Alper Apsley Atherton Aiken Alsheimer Arbuthnot Atkins Aikman Alterman Archbold Atkinson Aimone -
The Depths of Magma Chambers Under the Galapagos Ridge Presented in Partial Fulfillment of the Requirements for Graduation With
The Depths of Magma Chambers under the Galapagos Ridge Presented in Partial Fulfillment of the Requirements for Graduation with a Bachelor of Science in Geological Sciences in the undergraduate colleges of The Ohio State University by Emily V. England The Ohio State University August 2008 Dr. Michael Barton Advisor Table of Contents Acknowledgements……………………………………………………………………..p.1 Abstract…………………………………………………………………………………p.2 Introduction…………………………………………………………………………….p.4 Background……………………………………………………………………………..p.6 Methods………………………………………………………………………………..p.9 Samples……………………………………………………………………………..…p.11 Results…………………………………………………………………………………p.13 Discussion……………………………………………………………………………..p.15 Conclusions……………………………………………………………………………p. 18 References…………………………………………………………………………….p.19 Appendix (Summary of P and T)……………………………………………………..p. 21 ACKNOWLEDGEMENTS I would like to give thanks to the following people for helping me with my research on the Galapagos ridge while at The Ohio State University: my research advisor Dr. Michael Barton who suggested this project and mentored me along the way, Dr. Wendy Panero for her time and conversation, graduate student Daniel Kelley, and classmate Jameson “Dino” Scott. I would also like to acknowledge the entire Geological Sciences Department at OSU. I have been thoroughly pleased with my education and believe that I have found a field that I will enjoy and pursue for the rest of my life. And of course I thank my parents and family for more than words can say. 1 ABSTRACT The Galapagos Ridge System is one of the -
University of Florida Thesis Or Dissertation
GEOLOGY AND PETROGENESIS OF LAVAS FROM AN OVERLAPPING SPREADING CENTER: 9°N EAST PACIFIC RISE By V. DORSEY WANLESS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2010 1 © 2010 V. Dorsey Wanless 2 To my family and friends 3 ACKNOWLEDGMENTS I would like to thank my advisor (Michael Perfit), collaborators (W. Ian Ridley, Emily Klein, Scott White, Paul Wallace, John Valley, and Craig Grimes) and supervisory committee (Paul Mueller, Ray Russo, George Kamenov, and David Richardson) for their mentoring and encouragement throughout this study. Additionally, I would like to thank the Captain, officers and crew of the R/V Atlantis for all their help during cruise AT15-17, the MEDUSA2007 Science party (including S. White, K. Von Damm, D. Fornari, A. Soule, S. Carmichael, K. Sims, A. Fundis, A. Zaino, J. Mason, J. O’Brien, C. Waters, F. Mansfield, K. Neely, J. Laliberte, E. Goehring, and L. Preston) for their diligence in collecting data and samples for this study. I thank the ROV Jason II shipboard and shore-based operations group for their assistance in collecting these data and HMRG for processing all DSL-120 side scan and bathymetry data collected during this cruise. Discussions with S. White and A. Goss are gratefully acknowledged. Thanks to G. Kamenov and the UF Center for Isotope Geosciences for laboratory assistance and to the Department of Geological Sciences staff for all of their help. Finally, I thank my friends and family for all their support over the years. -
Hearst Corporation Los Angeles Examiner Photographs, Negatives and Clippings--Portrait Files (A-F) 7000.1A
http://oac.cdlib.org/findaid/ark:/13030/c84j0chj No online items Hearst Corporation Los Angeles Examiner photographs, negatives and clippings--portrait files (A-F) 7000.1a Finding aid prepared by Rebecca Hirsch. Data entry done by Nick Hazelton, Rachel Jordan, Siria Meza, Megan Sallabedra, and Vivian Yan The processing of this collection and the creation of this finding aid was funded by the generous support of the Council on Library and Information Resources. USC Libraries Special Collections Doheny Memorial Library 206 3550 Trousdale Parkway Los Angeles, California, 90089-0189 213-740-5900 [email protected] 2012 April 7000.1a 1 Title: Hearst Corporation Los Angeles Examiner photographs, negatives and clippings--portrait files (A-F) Collection number: 7000.1a Contributing Institution: USC Libraries Special Collections Language of Material: English Physical Description: 833.75 linear ft.1997 boxes Date (bulk): Bulk, 1930-1959 Date (inclusive): 1903-1961 Abstract: This finding aid is for letters A-F of portrait files of the Los Angeles Examiner photograph morgue. The finding aid for letters G-M is available at http://www.usc.edu/libraries/finding_aids/records/finding_aid.php?fa=7000.1b . The finding aid for letters N-Z is available at http://www.usc.edu/libraries/finding_aids/records/finding_aid.php?fa=7000.1c . creator: Hearst Corporation. Arrangement The photographic morgue of the Hearst newspaper the Los Angeles Examiner consists of the photographic print and negative files maintained by the newspaper from its inception in 1903 until its closing in 1962. It contains approximately 1.4 million prints and negatives. The collection is divided into multiple parts: 7000.1--Portrait files; 7000.2--Subject files; 7000.3--Oversize prints; 7000.4--Negatives. -
Possible New Fish Species Found in Pacific 17 April 2007
Possible new fish species found in Pacific 17 April 2007 A new undersea mineral chimney emitting hot, iron- darkened water that attracts unusual marine life has been discovered in the Pacific Ocean off Costa Rica. The vent, located about 8,500 feet beneath the surface, was found by a U.S.-led expedition exploring a section of volcanic ridge. Expedition members from Duke University; the Universities of New Hampshire, South Carolina and Florida; and the Woods Hole Oceanographic Institution named their discovery the Medusa hydrothermal vent field. That name was selected because numerous spiky tubeworm casings that festoon the vent chimney bring to mind "the serpent-haired Medusa of Greek myth," said expedition leader Emily Klein, a Duke University geology professor. Bell-shaped pink jellyfish sighted near the vent "are really unusual, and the ones we found may be of a different species because nobody has seen types of this color before," said Karen Von Damm, a University of New Hampshire earth sciences professor. The researchers are working aboard WHOI's research vessel Atlantis, and the expedition is funded by the National Science Foundation. Copyright 2007 by United Press International APA citation: Possible new fish species found in Pacific (2007, April 17) retrieved 28 September 2021 from https://phys.org/news/2007-04-fish-species-pacific.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only. 1 / 1 Powered by TCPDF (www.tcpdf.org). -
Abiotic Hydrogen (H2) Sources and Sinks Near the Mid-Ocean Ridge (MOR) with Implications for the Subseafloor Biosphere
Abiotic hydrogen (H2) sources and sinks near the Mid-Ocean Ridge (MOR) with implications for the subseafloor biosphere Stacey L. Wormana,1, Lincoln F. Pratsona, Jeffrey A. Karsonb, and William H. Schlesingera,c,1 aDivision of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC 27708; bDepartment of Earth Sciences, Syracuse University, Syracuse, NY 13244; and cCary Institute of Ecosystem Studies, Millbrook, NY 12545 Contributed by William H. Schlesinger, April 1, 2020 (sent for review February 18, 2020; reviewed by Marvin Lilley and Kenneth H. Nealson) Free hydrogen (H2) is a basal energy source underlying chemosyn- Juan de Fuca Ridge (JdFR), where subsurface microbes con- thetic activity within igneous ocean crust. In an attempt to system- sume ∼50 to 80% of H2 production (25), and on the Mid- atically account for all H2 within young oceanic lithosphere (<10 Atlantic Ridge (MAR), where consumption is ∼90% (26). Ma) near the Mid-Ocean Ridge (MOR), we construct a box model Our MOR-scale estimate is the result of a bottom-up analysis of this environment. Within this control volume, we assess abiotic that includes 19 different processes, more than half of which we 12 12 H2 sources (∼6 × 10 mol H2/y) and sinks (∼4 × 10 mol H2/y) and could not locate previous estimates for (Fig. 2). The type, ∼ × 12 then attribute the net difference ( 2 10 mol H2/y) to microbial quantity, and quality of published information available for these consumption in order to balance the H2 budget. Despite poorly processes vary dramatically; so, each estimate in our model is constrained details and large uncertainties, our analytical frame- surrounded by its own and often considerable uncertainties. -
Index S-T 7/13/2009
Index S-T 7/13/2009 Primary Spouse Vol Page Saam, Albert A. Yutzey, Minnie 15 411 Saam, Alma Edna Hoopingarner, Lewis 15 593 Saam, Britto Mildred Haggart, Raymond Stuart 17 80 Saam, Edward J. Kneip, Pauline 15 316 Saam, Gertrude Pauline Davidson, Carl George 26 541 Saam, Ilda E. Birch, Morris C. 21 42 Saam, John Reese, Ella B. 9 463 Saam, Lillian Amalia Dresher, Otto H. 14 48 Saam, Margaret A. Graham, Alex 23 262 Saam, Mary C. Schott, Charles 9 60 Saam, Peter Hite, Philipena 10 381 Saam, Verna McEwen, James D. 18 448 Saam, W. H. Kramer, Lillie 10 343 Saam, William F. Haas, Matilda 8 605 Saba, Rose M. Vaughn, Daniel P. 26 245 Sabatini, Anna DiDonato, Pietro 20 424 Sabbinth, Edith Petrell, John 19 310 Sabbinthi, Marie E. Attanaro, Joseph O. 20 282 Sabfalino, Raffael D. Zuchegno, Maria 12 39 Sable, Lucile Mayme Swinderman, Rey Louis 23 554 Sabo, John Kobol, Mary 21 219 Sabo, John Kabol, Mary 21 601 Sabol, Andrew Vash, Mary 25 59 Sabrage, Robert J. Waltz, Gladys M. 14 334 Sacco, Anthony Cotton, Betty Jane 27 496 Sachina, Giuespina Ricci, Francisco 18 123 Sackwitz, Frederick Bright, Matilda 11 517 Sada, Jacob Schlegel, Emma 15 173 Saeman, Frieda M. Speer, Wlliam M. 21 316 Saffell, Charels W. Miller, Helen M. 21 432 Sage, Lewis F. Baougher, Alta C. 13 51 Sage, Quincy R. Knauss, Ida M. 10 44 Saggio, Chris Fantini, Victoria 23 145 Sagle, Rachel Elizabeth Wilson, Henry S. 21 357 Page 1 Index S-T 7/13/2009 Primary Spouse Vol Page Saine, Maggie Delong, Fremont 8 70 Saiville, Ellen Segesmann, Christian 8 442 Saker, Virginia P. -
Petrology and Geochemistry of the GalÁ
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 98, NO. Bll, PAGES 19,533-19,563, NOVEMBER 10, 1993 Petrologyand Geochemistryof the GaMpagosIslands' Portrait of a PathologicalMantle Plume WILLIAM M. WmT• Departmentof GeologicalSciences, Cornell University, Ithaca, New York ALEXANDER R. McBIRNEY Centerfor Volcanology,University of Oregon,Eugene ROBERT A. DUNCAN Collegeof Oceanography,Oregon State University,Corvallis We reportnew major element,trace element,isotope ratio, and geochronologicaldata on the Galfipagos Archipelago.Magmas erupted from the largewestern volcanos are generallymoderately fractionated tholeiites of uniformcomposition; those erupted on otherislands are compositionallydiverse, ranging from tholeiites to picritic basanitoids.While thesevolcanos do notform a strictlylinear age progressive chain, the agesof the oldestdated flows on anygiven volcano do form a reasonableprogression from youngest in thewest to oldestin theeast, consistent with motionof theNazca plate with respect to thefixed hotspot reference frame. lsotoperatios in theGalfipagos display a considerablerange, from values typical of mid-oceanridge basalt on Genovesa(87Sr/86Sr: 0.70259, end: +9.4, 206pb/204pb:! 8.44), to typical oceanic island values on Floreana (87Sr/86Sr: 0.70366, œNd: +5.2, 206pb/204pb: 20.0). La/SmN rangesfrom 0.45 to 6.7; otherincompatible element abundances and ratios show comparable ranges. Isotope andincompatible element ratios define a horseshoepattern with the mostdepleted signatures in the centerof the GalfipagosArchipelago and the moreenriched