(Mbi) Using a Dedicated Gamma Camera
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Imaging – Introduction
MOLECULAR IMAGING – INTRODUCTION Author: Markus Rudin Affiliation: Institute for Biomedical Engineering, University and ETH Zurich, Institute for Pharmacology and Toxicology, University of Zurich, HCI-E488.2, ETH Zurich, CH-8093 Zurich, Switzerland, [email protected] Introduction The primary role of biomedical imaging is in diagnostics, i.e. the characterization of a disease phenotype based on morphological or physiological readouts. Image quality is rated based on two criteria: spatial resolution and contrast-to-noise ratio. Image contrast and thereby information can be enhanced by administration of labels that either enhance the contrast in the image or generate a signal that otherwise would not be detectable. When combining a signal generating moiety (a reporter group) with a target-specific carrier (receptor ligand, enzyme substrate, antibody, oligonucleotide, cell) highly specific information on targeted molecular interactions can be obtained. Such target-specific or molecular imaging approaches raised considerable interest both from a diagnostic and therapeutic point-of-view 1-3, and will become important tools for biomedical researchers. They provide temporo-spatial information on molecular processes in the intact organism, i.e. in the full biological context with all regulatory interactions in place. Molecular imaging techniques will therefore play a role for the validation for systems biological approaches. As for structural and functional imaging a primary application area of molecular imaging will be in diagnostics. Tissue/organ structure and function can be considered a phenotype of a molecular program. Being able to visualize and quantify these molecular processes will therefore provide early information on pathologies, eventually in a pre-morbid state. Molecular information will certainly enhance the accuracy of diagnosis allowing for better therapy planning for the individual patient (personalized medicine). -
Breast MRI: New and Abbreviated Protocols
Breast MRI: New and Abbreviated Protocols Christopher Comstock M.D. Department of Radiology Memorial Sloan-Kettering Cancer Center Topics • What is our goal? • Current status of screening • How do we change screening • Abbreviated Breast MRI (AB-MR) • EA1141 AB-MR Trial • Multiparametric Breast MRI Beyond the scope of this talk! • The debate over screening the benefit of mammography, particularly for women in their forties. What is Our Goal? • Decrease breast cancer mortality • Reduction in the morbidities associated with surgery and chemotherapy • Finding breast cancers at a smaller size and earlier stage leads to a reduction in mortality and the use of less aggressive therapies Reservoir of Breast Cancer Present in 1000 Women Being Screened • Is it 30, 40, 50, 60 or more breast cancers per 1000 women? • Depends on risk of population • Detection level (size and stage) depends on modality and frequency of screening Reservoir of Breast Cancer Present in 1000 Women Being Screened Tomo plus WBUS The Dissemination of Medical Technologies into Clinical Practice • Innovations medical in technology and quality of information are the sole driving force in the acceptance and adoption of new technologies • The dissemination of medical technologies depends on the social, political and ideological context into which they are introduced Much Can Be Learned From the History of Mammography • Despite improvements in technology, mammography languished from 1930s to 1970 – 1930-1950 Stafford L. Warren, Jacob Gershon-Cohen and Raul Leborgne – 1950s Improved techniques, Robert Egan • The production of better data alone did not eliminate the role that economics, authority and ideology played “TO SEE TODAY WITH THE EYES OF TOMORROW” A HISTORY OF SCREENING MAMMOGRAPHY. -
Breast Elastography – Ultrasound Or Magnetic Resonance
Medical Policy Joint Medical Policies are a source for BCBSM and BCN medical policy information only. These documents are not to be used to determine benefits or reimbursement. Please reference the appropriate certificate or contract for benefit information. This policy may be updated and is therefore subject to change. *Current Policy Effective Date: 7/1/21 (See policy history boxes for previous effective dates) Title: Breast Elastography – Ultrasound or Magnetic Resonance Description/Background In the United States, about 1 in 8 women will develop invasive breast cancer over the course of her lifetime. In 2020, is it estimated that there will be over 280,000 new cases of invasive breast cancer diagnosed in women and over 2,600 new cases of invasive breast cancer in men.1 Breast cancer is the most common cancer in women worldwide.2 Mammography remains the generally accepted standard diagnostic test for breast cancer screening and diagnosis. The incidence of breast cancer has led to research on new diagnostic imaging techniques for early diagnosis. Elasticity is the property of a substance to be deformed in response to an external force and to resume its original size and shape when the force is removed. In evaluation of superficial tissue such as skin, breast or prostate, manual palpation can distinguish normal tissue from stiffer tissue. Elastography is a noninvasive technique that evaluates the elastic properties, or stiffness of tissues, and its application for diagnosing breast cancer is based on the principle that malignant tissue is less elastic than normal, healthy breast tissue. Elastography has been investigated as an additive technique to increase the specificity of ultrasound and magnetic resonance imaging. -
Evaluation of Nipple Discharge
New 2016 American College of Radiology ACR Appropriateness Criteria® Evaluation of Nipple Discharge Variant 1: Physiologic nipple discharge. Female of any age. Initial imaging examination. Radiologic Procedure Rating Comments RRL* Mammography diagnostic 1 See references [2,4-7]. ☢☢ Digital breast tomosynthesis diagnostic 1 See references [2,4-7]. ☢☢ US breast 1 See references [2,4-7]. O MRI breast without and with IV contrast 1 See references [2,4-7]. O MRI breast without IV contrast 1 See references [2,4-7]. O FDG-PEM 1 See references [2,4-7]. ☢☢☢☢ Sestamibi MBI 1 See references [2,4-7]. ☢☢☢ Ductography 1 See references [2,4-7]. ☢☢ Image-guided core biopsy breast 1 See references [2,4-7]. Varies Image-guided fine needle aspiration breast 1 Varies *Relative Rating Scale: 1,2,3 Usually not appropriate; 4,5,6 May be appropriate; 7,8,9 Usually appropriate Radiation Level Variant 2: Pathologic nipple discharge. Male or female 40 years of age or older. Initial imaging examination. Radiologic Procedure Rating Comments RRL* See references [3,6,8,10,13,14,16,25- Mammography diagnostic 9 29,32,34,42-44,71-73]. ☢☢ See references [3,6,8,10,13,14,16,25- Digital breast tomosynthesis diagnostic 9 29,32,34,42-44,71-73]. ☢☢ US is usually complementary to mammography. It can be an alternative to mammography if the patient had a recent US breast 9 mammogram or is pregnant. See O references [3,5,10,12,13,16,25,30,31,45- 49]. MRI breast without and with IV contrast 1 See references [3,8,23,24,35,46,51-55]. -
Screening Automated Whole Breast Ultrasound
Screening Automated Whole Breast Ultrasound Screening Automated Whole Breast Ultrasound Stanford now offers screening automated whole breast ultrasound (SAWBU) at our Stanford Medicine Cancer Center Palo Alto location. This is an optional test that can be used as a supplement to screening mammography in women with mammographically dense breasts. It can find cancers that cannot be seen on mammograms due to overlap with dense breast tissue. Stanford uses automated whole breast technique, a new method developed for accuracy and efficiency. Who is a candidate for SAWBU What will happen during the How is SAWBU exam is examination? SAWBU examination? different? This is an optional test to supplement You will lie on your back, and gel will Screening automated screening mammography in women be applied to your breast. whole breast ultrasound who: uses sound waves (no radi- A large ultrasound handpiece will be • Undergo routine screening with ation) to create 3D pictures placed on the breast, and the system mammography. of the breast tissue, using will automatically take a “sweep” • Have no current signs or a new automated method that obtains ultrasound images of symptoms of breast cancer. developed for accuracy and the tissue from top to bottom. The • Have mammographically dense efficiency. handpiece will be repositioned to take (heterogeneously or extremely other “sweeps” to include all of the It can find cancers that dense) breasts. breast tissue. cannot be seen on mam- • Are not at “high risk" undergoing mograms alone due to supplemental screening with An exam of both breasts takes less overlap with dense breast breast MRI. Screening ultra- than 20 minutes to obtain. -
Advanced Ultrasound Technologies for Diagnosis and Therapy
Journal of Nuclear Medicine, published on March 1, 2018 as doi:10.2967/jnumed.117.200030 1 Advanced Ultrasound Technologies for Diagnosis and Therapy Anne Rix1, Wiltrud Lederle1, Benjamin Theek1, Twan Lammers1,2, Chrit Moonen3, Georg Schmitz4, Fabian Kiessling1* 1Institute for Experimental Molecular Imaging, RWTH-Aachen University, Aachen, Germany 2Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands 3Imaging Division, University Medical Center Utrecht, Utrecht, The Netherland 4Department of Medical Engineering, Ruhr-University Bochum, Bochum, Germany * Corresponding author: Fabian Kiessling MD, Institute for Experimental Molecular Imaging, University Aachen (RWTH), Forckenbeckstrasse 55, 52074 Aachen, Germany. Phone:+49-241- 8080116; fax:+49-241-8082442; e-mail: [email protected] First author: Anne Rix B.Sc., Institute for Experimental Molecular Imaging, University Aachen (RWTH), Forckenbeckstrasse 55, 52074 Aachen, Germany. Phone:+49-241-8080839; fax:+49- 241-8082442; e-mail: [email protected] Running title Advanced Ultrasound Imaging and Therapy 1 2 ABSTRACT Ultrasound is among the most rapidly advancing imaging techniques. Functional methods such as elastography have been clinically introduced, and tissue characterization is improved by contrast- enhanced scans. Here, novel super-resolution techniques provide unique morphological and functional insights into tissue vascularisation. Functional analyses are complemented with molecular ultrasound imaging, to visualize markers of inflammation and angiogenesis. The full potential of diagnostic ultrasound may become apparent by integrating these multiple imaging features in radiomics approaches. Emerging interest in ultrasound also results from its therapeutic potential. Various applications on tumor ablation with high intensity focused ultrasound (HIFU) are clinically evaluated and its performance strongly benefits from the integration into Magnetic Resonance Imaging (MRI). -
Molecular Imaging Tutorial
This tutorial will define what is currently considered molecular imaging. It will provide history and an overview, discuss the goals and the advantages of molecular imaging. It will clarify what is and is not molecular imaging, and give examples of different imaging case studies. It will also discuss MRI, Optical Imaging, SPECT and PET imaging, and how they relate to molecular imaging. Molecular Imaging: Definition, Overview and Goals • Definition as published in Eur J Nucl Med: Molecular imaging has its roots in nuclear medicine and in many ways is a direct extension of this discipline. Nuclear Medicine has always focused on patient management through the use of injected radiolabeled tracers in conjunction with imaging technology. • Definition as published in Genes & Dev: Molecular imaging is the visual representation, characterization, and quantification of biological processes at the cellular and subcellular levels within intact living organisms. The images obtained reflect cellular and molecular pathways and in vivo mechanisms of disease present within the natural physiological environment. • Definition according to the American College of Radiology: Molecular imaging is the spatially localized and/or temporally resolved sensing of molecular and cellular processes in vivo. Overview of Molecular Imaging • Development of the first microscope in the late sixteenth century led to a keen interest in observations of structure of tissues and organs. This interest in organ structure and function has driven advances in biology ever since. • Molecular imaging originated from the field of radiopharmacology due to the need to better understand the fundamental molecular pathways inside organisms in a noninvasive manner. Molecular imaging unites molecular biology and in vivo imaging and enables the visualization of cellular function and the follow-up of the molecular process in living organisms without perturbing them. -
Quo Vadis Molecular Imaging?
Journal of Nuclear Medicine, published on August 28, 2020 as doi:10.2967/jnumed.120.241984 Quo Vadis Molecular Imaging? Jan Grimm1,2*, Fabian Kiessling3,4*, Bernd J. Pichler5,6* (*authors contributed equally and are listed in alphabetical order) 1Molecular Pharmacology Program & Department of Radiology Memorial Sloan-Kettering Cancer Center, New York, NY, USA 2Pharmacology Program & Department of Radiology, Weil Cornell Medical College, New York, NY, USA 3Institute for Experimental Molecular Imaging, University Hospital Aachen, RWTH Aachen University, Center for Biohybrid Medical Systems (CBMS), Forckenbeckstr. 55, 52074 Aachen, Germany 4Fraunhofer Institute for Digital Medicine, MEVIS, Am Fallturm 1, 28359 Bremen, Germany 5Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tuebingen, Germany 6Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Germany Corresponding authors: Jan Grimm: Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; phone: +1-646-888-3191; [email protected] Fabian Kiessling: Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstrasse 55, D-52074 Aachen; phone: +49-241-8080116; fax: +49-241-803380116; [email protected] Bernd Pichler: Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Röntgenweg 13, 72076 Tübingen, Germany, phone: +49-7071-29- 83427; [email protected] 1 Abstract Molecular Imaging (MI) yields important insights into relevant biological signatures at an organ-specific and systemic level, which is not achievable with conventional imaging methods and thus provides an essential link between preclinical and clinical research. In this context, new diagnostic probes and imaging methods, revealing comprehensive functional and molecular information, are being provided by MI research, several of which have found their way into clinical application. -
Shear Wave Elastography As an Early Indicator of Breast Cancer in A
ISSN: 2378-3656 Altunkeser and Arslan. Clin Med Rev Case Rep 2019, 6:259 DOI: 10.23937/2378-3656/1410259 Volume 6 | Issue 3 Clinical Medical Reviews Open Access and Case Reports CAse RepoRt Shear Wave Elastography as an Early Indicator of Breast Cancer in a Breastfeeding Patient: A Case Report and Literature Review Ayşegül Altunkeser and Fatma Zeynep Arslan* Check for Department of Radiology, Konya Training and Research Hospital, University of Health Science, Turkey updates *Corresponding author: Fatma Zeynep Arslan, MD, Konya Training and Research Hospital, University of Health Science, Hacı Şaban Mah, Meram Yeni Yol Caddesi, No: 97, PC: 42090, Meram, Konya, Turkey, Tel: 0506-438-24-30, Fax: 0-332- 323-67-23 our hospital complaining from pain in the right breast. Abstract In the young patient with no history of cancer in the Shear wave elastography (SWE) is a relatively new and family; The patient was breasfeeding and labaratuary highly effective method to reveal mechanical features of tissue by demonstrating quantitative elasticity value. The findings were normal. On physical examination, a hard morphological features including margin of the lesion, ori- mass was palpated in her right breast. A hypoechoic entation, shape and border are considered in differentiation mass lesions was sonographically detected on the right of breast lesions on USG. It is a known fact that malignant breast in a diameter with 31 × 24 mm (Figure 1). SWE lesions are usually palpated as a hard mass in the physi- cal examination. A qualitative broad information can obtain was performed to obtain additional information about about the tissue elasticity by integrating SWE examination mass lesion. -
Breast Imaging Faqs
Breast Imaging Frequently Asked Questions Update 2021 The following Q&As address Medicare guidelines on the reporting of breast imaging procedures. Private payer guidelines may vary from Medicare guidelines and from payer to payer; therefore, please be sure to check with your private payers on their specific breast imaging guidelines. Q: What differentiates a diagnostic from a screening mammography procedure? Medicare’s definitions of screening and diagnostic mammography, as noted in the Centers for Medicare and Medicaid’s (CMS’) National Coverage Determination database, and the American College of Radiology’s (ACR’s) definitions, as stated in the ACR Practice Parameter of Screening and Diagnostic Mammography, are provided as a means of differentiating diagnostic from screening mammography procedures. Although Medicare’s definitions are consistent with those from the ACR, the ACR's definitions of screening and diagnostic mammography offer additional insight into what may be included in these procedures. Please go to the CMS and ACR Web site links noted below for more in- depth information about these studies. Medicare Definitions (per the CMS National Coverage Determination for Mammograms 220.4) “A diagnostic mammogram is a radiologic procedure furnished to a man or woman with signs and symptoms of breast disease, or a personal history of breast cancer, or a personal history of biopsy - proven benign breast disease, and includes a physician's interpretation of the results of the procedure.” “A screening mammogram is a radiologic procedure furnished to a woman without signs or symptoms of breast disease, for the purpose of early detection of breast cancer, and includes a physician’s interpretation of the results of the procedure. -
The Future Trends in Molecular Imaging
The Future Trends in Molecular Imaggging Dr. Juri Gelovani, MD , PhD . Professor of Radiology and Neurology Chairman, Dept. Experimental Diagnostic Imaging Director, Center for Advanced Biomedical Imaging Research (CABIR) Molecular And Genetic Imaging of Cancer El&AEarly & Accura tDite Diagnos is • To follow Biomarker Screening (blood genomics and proteomics) • Develop Imaging of Biomarkers (tumor localization, sensitivity) Tumor Phenotyping • Tumor Profiling (receptors & signal transduction, invasiveness, metabolism, proliferation, apoptosis, etc.) • Stroma Profiling (angiogenesis, tissue re-re-organization,organization, etc.) Imaging for Selection & Monitoring of Therapy • Drug Target Expression & Activity • Dose Optimization • Early Response Evaluation (Rx adjustment) • Shor t-t<Pterm & Long Term Prognos is • Monitoring Contained/Chronic Disease status • Early Detection of Relapse Image-Guided Biopsy, Surgery and Radiotherapy Image-Guided Biopsy Image-Guided Radiotherapy Sentinel lymph node mapping in breast carcinoma patients Sentinel lymph node mapping in breast carcinoma patients Imaging of angiogenesis in breast tumor SPECT imaging after injection of 99mTc-RGD peptide Potential for earlier assessment of response to chemotherapy • Avoid unnecessary cost and toxicity • Switch to alternative treatment sooner Approaches to Optical Imaging of Integrins in Neo-Angiogenesis SO 3H C(Gf)Cyclo(RGDfK)-CCy5.5 SO 3H Our pipeline: •MMP9 HO3S SO 3H •EGFR N N •PDGFR Gly • IL11Rα Arg Asp Lys phe O RGD + RGD-Cy5.5 Cy5. 5 RGD-C55Cy5.5 1 hr interval 6l/6 nmol/mouse 600 nmo l + 6 nmol 30 nmo l Structure of 111In-DTPA-K(IRDye800)-c(KRGDf). Gly Arg Asp O IRdye800 NH NH HN N H O O HN O H N O HOOC COOH NNN HOOC COOH COOH Gamma and near-infrared imaging of 111In-DTPA-K(IRDye800)-c(KRGDf) in nude mice bearing s.c. -
What Is Nuclear Medicine and Molecular Imaging?
What is Nuclear Medicine and Molecular Imaging? What is Nuclear Medicine and Molecular Imaging? The discovery of x-rays more than a century ago profoundly changed the practice of medicine by enabling physicians and scientists to see inside the living body. Today, modern medicine is undergoing another major transformation—and nuclear medicine and molecular imaging are on its leading edge, probing deep inside the body to reveal its inner workings. Unlike conventional imaging studies that produce primarily structural pictures, nuclear medicine and molecular imaging visualize how the body is functioning and what’s happening at the cellular and molecular level. The evolution in diagnostic imaging—from producing anatomical pictures to imaging and measuring the body’s physiological processes—is critically important to all facets of medicine today, from diagnosing disease at its earliest stage and developing more effective therapies to personalizing medical treatment. With the help of nuclear medicine and molecular imaging, scientists and healthcare providers are: Gaining a better understanding of the pathways of disease Quickly assessing new drugs Improving the selection of therapy Monitoring patient response to treatment Finding new ways to identify individuals at risk for disease. Why are Nuclear Medicine and Molecular Imaging unique? In conventional diagnostic imaging, an external source of energy such as x-rays, magnetic fields, or ultrasound waves is used to produce pictures of bone and soft tissue. In nuclear medicine and molecular imaging procedures, the energy source is introduced into the body, where it gets incorporated in a specific tissue, organ, or process and is then detected by an external device (gamma camera, SPECT or PET scanners) to provide information on organ function and cellular activity.