Pseudospectral Methods for Infinite-Horizon Optimal Control

Total Page:16

File Type:pdf, Size:1020Kb

Pseudospectral Methods for Infinite-Horizon Optimal Control JOURNAL OF GUIDANCE,CONTROL, AND DYNAMICS Vol. 31, No. 4, July–August 2008 Pseudospectral Methods for Infinite-Horizon Optimal Control Problems Fariba Fahroo∗ and I. Michael Ross† Naval Postgraduate School, Monterey, California 93943 DOI: 10.2514/1.33117 A central computational issue in solving infinite-horizon nonlinear optimal control problems is the treatment of the horizon. In this paper, we directly address this issue by a domain transformation technique that maps the infinite horizon to a finite horizon. The transformed finite horizon serves as the computational domain for an application of pseudospectral methods. Although any pseudospectral method may be used, we focus on the Legendre pseudospectral method. It is shown that the proper class of Legendre pseudospectral methods to solve infinite- horizon problems are the Radau-based methods with weighted interpolants. This is in sharp contrast to the unweighted pseudospectral techniques for optimal control. The Legendre–Gauss–Radau pseudospectral method is thus developed to solve nonlinear constrained optimal control problems. An application of the covector mapping principle for the Legendre–Gauss–Radau pseudospectral method generates a covector mapping theorem that provides an efficient approach for the verification and validation of the extremality of the computed solution. Several example problems are solved to illustrate the ideas. I. Introduction infinite horizon. Second, a pseudospectral (PS) method is applied to VER the last few years, it has become possible to routinely discretize the problem. The discretized problem generates a sequence fi of approximate problems parameterized by the size of the grid. In the O solve many practical nite-horizon optimal control problems. fi Practical problems are typically nonlinear and constrained in both the third and nal step, each problem in this sequence is solved by a state and control variables. A recent example of generating routine globally convergent sequential quadratic programming (SQP) solutions to practical problems is the flight implementation of technique [8]. Note that global convergence does not mean global pseudospectral solutions to an optimal “zero-propellant maneuver” optimality [9]. Among many, this is one reason why it is important to of the International Space Station [1,2]. Furthermore, a fairly large select a correct sequence of problems together with the SQP class of finite-horizon problems can also be solved in real time. A subsequence to design a proper algorithm for solving optimal control number of issues related to this advancement are discussed in [3]. problems [10]. Such an algorithm for PS methods is called a spectral Real-time computation of optimal controls implies optimal feedback algorithm [11], which forms the core of PS methods for control. For guidance; hence, a number of control problems that are not readily the purpose of brevity, we do not discuss all aspects of our proposed addressable by traditional methods can now be solved in a unified approaches because many of these concepts have been extensively discussed elsewhere. For example, a complete description of the manner [4]. Despite such advancements, obtaining feedback controls – – for stabilizing a nonlinear system poses significant challenges [5]. Legendre Gauss Lobatto PS method is described in [12,13]; the Among many, one of the reasons for the continuing challenge is the spectral algorithm is described in [11]; and a convergence theorem is treatment of the infinite horizon in a nonlinear optimal control developed in [10]. Consequently, in this paper, we limit the scope of the problem to a complete discussion of only the open-loop issues problem [6]. A well-known strategy to address this issue is the fi receding-horizon technique, which forms the basis of model- pertaining to the treatment of the in nite horizon. Stability of the predictive methods for control. Even though finite-horizon problems closed-loop system is discussed in [14]. An overview of an fi implementation of the closed-loop control is discussed in [15]. In this are solved in real time, in this approach, the nite horizon is receded fi indefinitely as a means to approximate the infinite horizon. As a context, this paper provides the foundations for solving in nite- result of the mismatch between the computational horizon and the horizon optimal control problems. Part of this foundation is the infinite horizon, a large number of new problems emerge. Conse- development of a Radau-based PS method. It turns out that the well- fl known Lobatto family of PS methods is inappropriate for the quently, different avors of model-predictive control techniques fi have been proposed to address these problems. These issues are treatment of the in nite horizon as a result of singularities in the surveyed in [6] and the references contained therein. domain transformation technique. A detailed discussion of these In this paper, we propose an altogether different approach for issues is included in this paper. solving infinite-horizon, nonlinear, constrained optimal control As a matter of context, we note that our proposed approach is not problems. Our approach follows [7], in which we presented some an application of PS discretization applied to receding-horizon techniques. This approach has been discussed elsewhere [16–20] and initial ideas; here, we further the concepts along several different fi directions. First, the infinite horizon is mapped to a finite horizon by a offers well-established bene ts of PS methods; however, as alluded domain transformation technique that preserves the notion of the to earlier, the fundamental problems and issues [6] of receding- horizon techniques arising from the finiteness of solving the finite- horizon optimal control problem do not disappear by choosing Received 28 June 2007; revision received 4 September 2007; accepted for alternative discretizations. Thus, the proposed approach in this paper publication 12 September 2007. This material is declared a work of the U.S. provides a foundation for a new approach to solving infinite-horizon Government and is not subject to copyright protection in the United States. optimal control problems. Copies of this paper may be made for personal or internal use, on condition Two example problems are solved to illustrate various elements of that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, the main points of the proposed ideas: one is a standard linear- Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 0731-5090/ 08 $10.00 in correspondence with the CCC. quadratic regulator (LQR) problem in which the solutions from our ∗Professor, Department of Applied Mathematics, Code MA/Ff; method are compared favorably against the solutions from the [email protected]. Associate Fellow AIAA. Riccati approach. The second example is a nonlinear control problem †Professor, Department of Mechanical and Astronautical Engineering, of stabilizing NPSAT1, an experimental spacecraft designed and Code ME/Ro; [email protected]. Associate Fellow AIAA. built at the Naval Postgraduate School and scheduled to be launched 927 928 FAHROO AND ROSS in fall 2009. Additional example problems have been solved [7,14] 1 t 1 t t : , (3) but are not discussed in this paper for the purpose of brevity. 1 t 1 where 21; 1. Because we assumed that quantities exist in the II. Problem Formulation limit as t !1, it is clear that Eq. (3) maps the infinite domain to a We consider the following infinite-horizon, constrained, nonlinear finite domain. Using optimal control problem: dt 2 8 R : r (4) > 1 1 2 <> Minimize Jx ; u 0 F x t; u tdt d _ f 1 Subject to x t x t; u t B> 0 0 we reformulate problem 1B on the finite interval 1; 1 as :> x x h 0 8 R x t; u t > 1 > Minimize Jx ; u 1 r F x t ; u t d < dx t N N r f x t ; u t where 0; 1 3 t7 !fx 2 R x ; u 2 R u g is the state-control function Subject to d B> 1 0 pair; F: RNx RNu ! R, f: RNx RNu ! RNx , and h: RNx :> x t x 0 h 0 RNu ! RNh are continuously differentiable functions; and x is a x t ; u t given value of the state at the initial time t 0. The symbol N 1 denotes the vector dimension (i.e., number of variables) of the Evaluations at must be performed in the sense of the limit subscripted quantities. Thus, it is clear that we are dealing with a consistent with t !1. In applying the Pontryagin minimum fairly general optimal control problem for which the problem principle for problem B, we generate the following problem: formulation is motivated by stabilizing nonlinear control systems 8 > Find x ; u ; ; that frequently describe high-performance aerospace vehicles. We > dx t 1 > Such that r f x t ; u t assume that a solution exists for problem B in some appropriate > d > x t 1 x0 Sobolev space [21] and that the limits > <> h x t ; u t 0 lim lim @H x tx1 and u tu1 B 0 t!1 t!1 > @u > t T h x t ; u t 0 > exist. Then, under appropriate conditions [22], the Pontryagin > t 0 1 > minimum principle holds for problem B. That is, if fx ; ug is a > _ t r @H 1 :> @x solution to problem B, then there exist multipliers (duals or t 1 0 covectors) that satisfy the adjoint equation, the Hamiltonian minimization condition, and the transversality conditions. This where evaluations at t 1 are also to be understood in the sense of a dualization may be cast in terms of a boundary-value problem, limit. 1 fi denoted as problem B , and is de ned as The equivalence between problems 1B and B require a set of 8 technical assumptions that we implicitly assume.
Recommended publications
  • An Optimal Control Theory for the Traveling Salesman Problem And
    An Optimal Control Theory for the Traveling Salesman Problem and Its Variants I. M. Ross1, R. J. Proulx2, M. Karpenko3 Naval Postgraduate School, Monterey, CA 93943 Abstract We show that the traveling salesman problem (TSP) and its many variants may be modeled as functional optimization problems over a graph. In this formu- lation, all vertices and arcs of the graph are functionals; i.e., a mapping from a space of measurable functions to the field of real numbers. Many variants of the TSP, such as those with neighborhoods, with forbidden neighborhoods, with time-windows and with profits, can all be framed under this construct. In sharp contrast to their discrete-optimization counterparts, the modeling constructs presented in this paper represent a fundamentally new domain of analysis and computation for TSPs and their variants. Beyond its apparent mathematical unification of a class of problems in graph theory, the main advantage of the new approach is that it facilitates the modeling of certain application-specific problems in their home space of measurable functions. Consequently, certain elements of economic system theory such as dynamical models and continuous- time cost/profit functionals can be directly incorporated in the new optimization problem formulation. Furthermore, subtour elimination constraints, prevalent in discrete optimization formulations, are naturally enforced through continu- ity requirements. The price for the new modeling framework is nonsmooth functionals. Although a number of theoretical issues remain open in the pro- posed mathematical framework, we demonstrate the computational viability of the new modeling constructs over a sample set of problems to illustrate the rapid production of end-to-end TSP solutions to extensively-constrained prac- tical problems.
    [Show full text]
  • Real-Time Trajectory Planning to Enable Safe and Performant Automated Vehicles Operating in Unknown Dynamic Environments
    Real-time Trajectory Planning to Enable Safe and Performant Automated Vehicles Operating in Unknown Dynamic Environments by Huckleberry Febbo A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) at The University of Michigan 2019 Doctoral Committee: Associate Research Scientist Tulga Ersal, Co-Chair Professor Jeffrey L. Stein, Co-Chair Professor Brent Gillespie Professor Ilya Kolmanovsky Huckleberry Febbo [email protected] ORCID iD: 0000-0002-0268-3672 c Huckleberry Febbo 2019 All Rights Reserved For my mother and father ii ACKNOWLEDGEMENTS I want to thank my advisors, Prof. Jeffrey L. Stein and Dr. Tulga Ersal for their strong guidance during my graduate studies. Each of you has played pivotal and complementary roles in my life that have greatly enhanced my ability to communicate. I want to thank Prof. Peter Ifju for telling me to go to graduate school. Your confidence in me has pushed me farther than I knew I could go. I want to thank Prof. Elizabeth Hildinger for improving my ability to write well and providing me with the potential to assert myself on paper. I want to thank my friends, family, classmates, and colleges for their continual support. In particular, I would like to thank John Guittar and Srdjan Cvjeticanin for providing me feedback on my articulation of research questions and ideas. I will always look back upon the 2018 Summer that we spent together in the Rackham Reading Room with fondness. Rackham . oh Rackham . I want to thank Virgil Febbo for helping me through my last month in Michigan.
    [Show full text]
  • Connections Between the Covector Mapping Theorem and Convergence of Pseudospectral Methods for Optimal Control
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications Collection 2008 Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control Gong, Qi Springer Science + Business Media, LLC Comput. Optim. Appl., 2008, v. 41, pp. 307-335 http://hdl.handle.net/10945/48182 Comput Optim Appl (2008) 41: 307–335 DOI 10.1007/s10589-007-9102-4 Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control Qi Gong · I. Michael Ross · Wei Kang · Fariba Fahroo Received: 15 June 2006 / Revised: 2 January 2007 / Published online: 31 October 2007 © Springer Science+Business Media, LLC 2007 Abstract In recent years, many practical nonlinear optimal control problems have been solved by pseudospectral (PS) methods. In particular, the Legendre PS method offers a Covector Mapping Theorem that blurs the distinction between traditional di- rect and indirect methods for optimal control. In an effort to better understand the PS approach for solving control problems, we present consistency results for nonlinear optimal control problems with mixed state and control constraints. A set of sufficient conditions is proved under which a solution of the discretized optimal control prob- lem converges to the continuous solution. Convergence of the primal variables does not necessarily imply the convergence of the duals. This leads to a clarification of the Covector Mapping Theorem in its relationship to the convergence properties of PS methods and its connections to constraint qualifications.
    [Show full text]
  • Unscented Optimal Control for Space Flight
    Unscented Optimal Control for Space Flight I. Michael Ross,∗ Ronald J. Proulx,† and Mark Karpenko‡ Unscented optimal control is based on combining the concept of the unscented transform with standard optimal control to produce a new approach to directly manage navigational and other uncertainties in an open-loop framework. The sigma points of the unscented transform are treated as controllable particles that are all driven by the same open-loop controller. A system-of-systems dynamical model is constructed where each system is a copy of the other. Pseudospectral optimal control techniques are applied to this system-of-systems to produce a computationally viable approach for solving the large-scale optimal control problem. The problem of slewing the Hubble Space Telescope (HST) is used as a running theme to illustrate the ideas. This problem is prescient because of the possibility of failure of all of the gyros on board HST. If the gyros fail, the HST mission will be over despite its science instruments functioning flawlessly. The unscented optimal control approach demonstrates that there is a way out to perform a zero-gyro operation. This zero-gyro mode is flight implementable and can be used to perform uninterrupted science should all gyros fail. I. Introduction Atypicalspacemissionconsistsofseveraltrajectorysegments:fromlaunchtoorbit,to orbital transfers and possible reentry. The guidance and control problems for the end-to-end mission can be framed as a hybrid optimal control problem;1 i.e., a graph-theoretic optimal control problem that involves real and categorial (integer) variables. Even when the end- to-end problem is segmented into simpler phases as a means to manage the technical and operational complexity, each phase may still involve a multi-point optimal control problem.1 The sequence of optimal control problems is dictated by mission requirements and many other practical constraints.
    [Show full text]
  • A Pseudospectral Approach to High Index DAE Optimal Control Problems
    A Pseudospectral Approach to High Index DAE Optimal Control Problems December 3, 2018 Harleigh C. Marsh,1 Department of Applied Mathematics & Statistics University of California, Santa Cruz Santa Cruz, CA 95064, USA Mark Karpenko,2 Department of Mechanical and Aerospace Engineering Naval Postgraduate School Monterey, CA 93943, USA and Qi Gong3 Department of Applied Mathematics & Statistics University of California, Santa Cruz Santa Cruz, CA 95064, USA Abstract Historically, solving optimal control problems with high index differential algebraic equations (DAEs) has been considered extremely hard. Computa- tional experience with Runge-Kutta (RK) methods confirms the difficulties. High index DAE problems occur quite naturally in many practical engineering applications. Over the last two decades, a vast number of real-world prob- lems have been solved routinely using pseudospectral (PS) optimal control arXiv:1811.12582v1 [math.OC] 30 Nov 2018 techniques. In view of this, we solve a \provably hard," index-three problem using the PS method implemented in DIDO c , a state-of-the-art MATLABr optimal control toolbox. In contrast to RK-type solution techniques, no la- borious index-reduction process was used to generate the PS solution. The PS solution is independently verified and validated using standard industry practices. It turns out that proper PS methods can indeed be used to \di- rectly" solve high index DAE optimal control problems. In view of this, it is proposed that a new theory of difficulty for DAEs be put forth. 1Ph.D. candidate. 2Research
    [Show full text]
  • Fast Mesh Refinement in Pseudospectral Optimal Control
    Fast Mesh Refinement in Pseudospectral Optimal Control N. Koeppen*, I. M. Ross†, L. C. Wilcox‡, R. J. Proulx§ Naval Postgraduate School, Monterey, CA 93943 Mesh refinement in pseudospectral (PS) optimal control is embarrassingly easy — simply increase the order N of the Lagrange interpolating polynomial and the mathematics of convergence automates the distribution of the grid points. Un- fortunately, as N increases, the condition number of the resulting linear alge- bra increases as N 2; hence, spectral efficiency and accuracy are lost in prac- tice. In this paper, we advance Birkhoff interpolation concepts over an arbi- trary grid to generate well-conditioned PS optimal control discretizations. We show that the condition number increases only as √N in general, but is inde- pendent of N for the special case of one of the boundary points being fixed. Hence, spectral accuracy and efficiency are maintained as N increases. The ef- fectiveness of the resulting fast mesh refinement strategy is demonstrated by using polynomials of over a thousandth order to solve a low-thrust, long-duration orbit transfer problem. I. Introduction In principle, mesh refinement in pseudospectral (PS) optimal control[1] is embarrassingly easy — simply increase the order N of the Lagrange interpolating polynomial. For instance, in a Cheby- shev PS method[2, 3, 4], the Chebyshev-Gauss-Lobatto (CGL) mesh points are given by[2], 1 iπ ti = (tf + t0) (tf t0) cos , i =0, 1,...,N (1) 2 − − N where, [t0, tf ] is the time interval. Grid points generated by (1) for N =5, 10 and 20 over a canon- ical time-interval of [0, 1] are shown in Fig.
    [Show full text]
  • Pseudospectral Collocation Methods for the Direct Transcription of Optimal Control Problems by Jesse A
    RICE UNIVERSITY Pseudospectral Collocation Methods for the Direct Transcription of Optimal Control Problems by Jesse A. Pietz A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Master of Arts Approved, Thesis Committee: Matthias Heinkenschloss, Chairman Associate Professor of Computational and Applied Mathematics William Symes Noah Harding Professor of Computational and Applied Mathematics Yin Zhang Professor of Computational and Applied Mathematics Nazareth Bedrossian Principal Member of Technical Staff, Charles Stark Draper Laboratory, Inc. Houston, Texas April, 2003 The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. ABSTRACT Pseudospectral Collocation Methods for the Direct Transcription of Optimal Control Problems by Jesse A. Pietz This thesis is concerned with the study of pseudospectral discretizations of optimal control problems governed by ordinary differential equations and with their applica- tion to the solution of the International Space Station (ISS) momentum dumping problem. Pseudospectral methods are used to transcribe a given optimal control problem into a nonlinear programming problem. Adjoint estimates are presented and analyzed that provide approximations of the original adjoint variables using Lagrange multi- pliers corresponding to the discretized optimal control problem. These adjoint esti- mations are derived for a broad class of pseudospectral discretizations and generalize the previously known adjoint estimation procedure for the Legendre pseudospectral discretization. The error between the desired solution to the infinite dimensional opti- mal control problem and the solution computed using pseudospectral collocation and nonlinear programming is estimated for linear-quadratic optimal control problems.
    [Show full text]
  • Autonomous Motion Learning for Near Optimal Control
    AUTONOMOUS MOTION LEARNING FOR NEAR OPTIMAL CONTROL Dissertation Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in Electrical Engineering By Alan Lance Jennings Dayton, Ohio August, 2012 AUTONOMOUS MOTION LEARNING FOR NEAR OPTIMAL CONTROL Name: Jennings, Alan Lance APPROVED BY: Raul´ Ordo´nez,˜ Ph.D. Frederick G. Harmon, Ph.D., Lt Col Advisor, Committee Chairman Committee Member Associate Professor, Electrical and Assistant Professor, Dept of Aeronautics and Computer Engineering Astronautics Eric Balster, Ph.D. Andrew Murray, Ph.D. Committee Member Committee Member Assistant Professor, Electrical and Computer Associate Professor, Mechanical and Engineering Aerospace Engineering John G. Weber, Ph.D. Tony E. Saliba, Ph.D. Associate Dean Dean, School of Engineering School of Engineering & Wilke Distinguished Professor ii c Copyright by Alan Lance Jennings All rights reserved 2012 ABSTRACT AUTONOMOUS MOTION LEARNING FOR NEAR OPTIMAL CONTROL Name: Jennings, Alan Lance University of Dayton Advisor: Dr. Raul´ Ordo´nez˜ Human intelligence has appealed to the robotics community for a long time; specifically, a person’s ability to learn new tasks efficiently and eventually master the task. This ability is the result of decades of development as a person matures from an infant to an adult and a similar developmental period seems to be required if robots are to obtain the ability to learn and master new skills. Applying developmental stages to robotics is a field of study that has been growing in acceptance. The paradigm shift is from directly pursuing the desired task to progressively building competencies until the desired task is reached.
    [Show full text]
  • Optimization and Sensitvity Analysis for a Launch Trajectory
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2014-12 Optimization and sensitvity analysis for a launch trajectory Manemeit, Thomas C. Monterey, California: Naval Postgraduate School http://hdl.handle.net/10945/44611 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS OPTIMIZATION AND SENSITVITY ANALYSIS FOR A LAUNCH TRAJECTORY by Thomas C. Manemeit December 2014 Thesis Co-Advisors: Mark Karpenko I. Michael Ross Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED December 2014 Master’s Thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS OPTIMIZATION AND SENSITVITY ANALYSIS FOR A LAUNCH TRAJECTORY 6. AUTHOR(S) Thomas C. Manemeit 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Postgraduate School REPORT NUMBER Monterey, CA 93943-5000 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING N/A AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
    [Show full text]
  • A Pseudospectral Method for the Optimal Control of Constrained Feedback Linearizable Systems
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 2006-06-07 A Pseudospectral Method for the Optimal Control of Constrained Feedback Linearizable Systems Gong, Qi IEEE http://hdl.handle.net/10945/29674 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 7, JULY 2006 1115 A Pseudospectral Method for the Optimal Control of Constrained Feedback Linearizable Systems Qi Gong, Member, IEEE, Wei Kang, Member, IEEE, and I. Michael Ross Abstract—We consider the optimal control of feedback lin- of necessary optimality conditions resulting from Pontryagin’s earizable dynamical systems subject to mixed state and control Maximum Principle [3][35]. These methods are collectively constraints. In general, a linearizing feedback control does not called indirect methods. There are many successful implemen- minimize the cost function. Such problems arise frequently in astronautical applications where stringent performance require- tations of indirect methods including launch vehicle trajectory ments demand optimality over feedback linearizing controls. In design, low-thrust orbit transfer, etc. [3], [6], [9]. Although this paper, we consider a pseudospectral (PS) method to compute indirect methods enjoy some nice properties, they also suffer optimal controls. We prove that a sequence of solutions to the from many drawbacks [2]. For instance, the boundary value PS-discretized constrained problem converges to the optimal solu- problem resulting from the necessary conditions are extremely tion of the continuous-time optimal control problem under mild and numerically verifiable conditions.
    [Show full text]
  • An Optimal Control Approach to Mission Planning Problems: a Proof of Concept
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis and Dissertation Collection 2014-12 An optimal control approach to mission planning problems: a proof of concept Greenslade, Joseph Micheal Monterey, California: Naval Postgraduate School http://hdl.handle.net/10945/49611 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS AN OPTIMAL CONTROL APPROACH TO MISSION PLANNING PROBLEMS: A PROOF OF CONCEPT by Joseph M. Greenslade December 2014 Thesis Co-Advisors: I. M. Ross M. Karpenko Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED December 2014 Master’s Thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS AN OPTIMAL CONTROL APPROACH TO MISSION PLANNING PROBLEMS: A PROOF OF CONCEPT 6. AUTHOR(S) Joseph M. Greenslade 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Postgraduate School REPORT NUMBER Monterey, CA 93943–5000 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.
    [Show full text]
  • Nloptcontrol: a Modeling Language for Solving Optimal Control Problems Huckleberry Febbo, Paramsothy Jayakumar, Jeffrey L
    1 NLOptControl: A modeling language for solving optimal control problems Huckleberry Febbo, Paramsothy Jayakumar, Jeffrey L. Stein, and Tulga Ersal∗ Applications Abstract—Current direct-collocation-based optimal control Off-line On-line Properties software is either easy to use or fast, but not both. This is a major limitation for users that are trying to formulate complex optimal control problems (OCPs) for use in on-line applications. This paper introduces NLOptControl, an open-source mod- Software Chemical Space vehicle Medical Air vehicle Ground vehicle Robot Open-source Easy to use Fast eling language that allows users to both easily formulate and GPOPS-ii [1][1], [2] [17]y 737 PROPT [3][3][3] 737 quickly solve nonlinear OCPs using direct-collocation methods. GPOCS [4] [18]y 337 To achieve these attributes, NLOptControl (1) is written in DIDO [5] [18]y 777 ACADO [8] 373 an efficient, dynamically-typed computing language called Julia, CasADi [6] [7] 373 (2) extends an optimization modeling language called JuMP to Custom [19], [20]y 777 provide a natural algebraic syntax for modeling nonlinear OCPs; NLOptControl [9] 333 and (3) uses reverse automatic differentiation with the acyclic- coloring method to exploit sparsity in the Hessian matrix. This TABLE I: Landscape of direct-collocation-based optimal con- work explores the novel design features of NLOptControl and trol software focusing on their applications and properties. compares its syntax and speed to those of PROPT. The syntax y indicates that the software is too slow for use the on-line comparisons shows that NLOptControl models OCPs more application. concisely than PROPT.
    [Show full text]