The Plant Circadian Clock and Chromatin Modifications

Total Page:16

File Type:pdf, Size:1020Kb

The Plant Circadian Clock and Chromatin Modifications G C A T T A C G G C A T genes Review The Plant Circadian Clock and Chromatin Modifications Ping Yang 1,2, Jianhao Wang 1,2, Fu-Yu Huang 3 , Songguang Yang 1,* and Keqiang Wu 3,* 1 Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; [email protected] (P.Y.); [email protected] (J.W.) 2 University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China 3 Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan; [email protected] * Correspondence: [email protected] (S.Y.); [email protected] (K.W.) Received: 3 October 2018; Accepted: 5 November 2018; Published: 20 November 2018 Abstract: The circadian clock is an endogenous timekeeping network that integrates environmental signals with internal cues to coordinate diverse physiological processes. The circadian function depends on the precise regulation of rhythmic gene expression at the core of the oscillators. In addition to the well-characterized transcriptional feedback regulation of several clock components, additional regulatory mechanisms, such as alternative splicing, regulation of protein stability, and chromatin modifications are beginning to emerge. In this review, we discuss recent findings in the regulation of the circadian clock function in Arabidopsis thaliana. The involvement of chromatin modifications in the regulation of the core circadian clock genes is also discussed. Keywords: circadian clock; oscillators; transcriptional and post-transcriptional regulation; chromatin modifications; Arabidopsis 1. Introduction Plants, like animals, exhibit rhythmic biological activity, with a periodicity of 24 h. The rhythms are known as the circadian clock, which allows plants to coordinate the temporal organization of biological processes to specific times of the day or night [1]. The core components of the circadian system are oscillators, which are responsible for generating circadian rhythms. In addition to the central oscillators, the circadian system involves the input pathways that integrate oscillators’ functions with environmental timing stimuli, such as light and temperature, and the output pathways that provide a link between the oscillators and the diverse biological processes [2]. In the model plant Arabidopsis thaliana, more than 20 clock or clock-associated components are composed of interlocking transcription-translation feedback loops, which appears to be significantly more complicated than that of other model eukaryotes, such as Drosophila [3]. Different components of the circadian system act at distinct times throughout the day and night to reciprocally regulate expression of other clock genes at both the transcriptional and post-transcriptional levels (Figure1): Genes 2018, 9, 561; doi:10.3390/genes9110561 www.mdpi.com/journal/genes Genes 2018, 9, 561 2 of 11 Genes 2018, 9, x FOR PEER REVIEW 2 of 11 Figure 1.FigureMultiple 1. Multiple layers layers of of regulationregulation refine refine circadian circadian clock activity clock activityin Arabidopsis in Arabidopsisthaliana. (a). thaliana.(a). Transcriptional feedback loops at the core of the circadian oscillator in Arabidopsis: At dawn, the expression of the pseudo-responseTranscriptional feedback regulator loops (PRR)-encoding at the core of the genes; circadian GIGANTEA oscillator in (GI); Arabidopsis timing: ofAt CABdawn, expression the 1 expression of the pseudo-response regulator (PRR)-encoding genes; GIGANTEA (GI); timing of CAB (TOC1); and the evening complex EC members LUX ARRHYTHMO (LUX), NOX, and early flowering 4 expression 1 (TOC1); and the evening complex EC members LUX ARRHYTHMO (LUX), NOX, and (ELF4) wereearly repressed flowering by4 (ELF4) circadian were clockrepressed associated by circad 1ian (CCA1) clock associated and late elongated1 (CCA1) and hypocotyl late elongated (LHY). PRR9, PRR7, PRR5,hypocotyl and TOC1(LHY). are PRR9, sequentially PRR7, PRR5, expressed and TOC1 and repressare sequentially the expression expressed of CCA1and repress and LHY,the as well as their ownexpression transcription. of CCA1 and In LHY, the evening,as well as their all of own the transcription. previously In expressed the evening, components all of the previously are repressed by TOC1.expressed Subsequently, components the are EC represse maintainsd by TOC1. the repression Subsequently, of GI,the EC PRR9 maintains and PRR7. the repression (b) Protein–protein of GI, PRR9 and PRR7. (b) Protein–protein interactions among clock components: The homo- or interactions among clock components: The homo- or heterodimerization of CCA1 and LHY represses heterodimerization of CCA1 and LHY represses evening-phased genes by binding to an evening evening-phasedelement in genes their bypromoters. binding To to repress an evening gene target elements, circadian in their clock promoters. associated 1 To (CCA1) repress and gene late targets, circadianelongated clock associated hypocotyl 1(LHY) (CCA1) require and de-etiolated late elongated 1 (DET1), hypocotyl Histone deacetylase (LHY) require 6 (HDA6), de-etiolated and lysine- 1 (DET1), Histone deacetylasespecific demethylase 6 (HDA6), 1-like and 1 and lysine-specific 2 (LDL1/2) as demethylasecorepressors. Sequentially 1-like 1 and, the 2 (LDL1/2)PRRs (PRR9, as PRR7, corepressors. Sequentially,and PRR5) the PRRs bind to (PRR9, the CCA1 PRR7, and LHY and promoter PRR5) binds and torecruit the CCA1TOPOLESS and TPL LHY and promoters HDA6, thereby and recruit inhibiting the transcription of CCA1 and LHY. The interaction between TOC1 and CCA1 hiking TOPOLESS TPL and HDA6, thereby inhibiting the transcription of CCA1 and LHY. The interaction expedition (CHE) helps TOC1 bind to the promoters of CCA1 and LHY. Additionally, night light- between TOC1inducible and and CCA1 clock-regulated hiking expedition gene 1s (CHE)(LNKs) helps interact TOC1 with bind CCA1-like to the promoters5 (RVE8) and of CCA1 act as and LHY. Additionally,coactivators night light-inducibleinducing the expression and clock-regulated of TOC1. (c) Protein gene stability 1s (LNKs) and turnover interact modulate with CCA1-like the activity 5 (RVE8) and act asof coactivatorsoscillators: in the inducing afternoon, the the expression ZEITLUPE of(ZTL)-mediated TOC1. (c) Protein proteasomal stability degradation and turnover of TOC1 is modulate the activityinterrupted of oscillators: by ZTL’s in interaction the afternoon, with PRR3 the (which ZEITLUPE hinders ZTL (ZTL)-mediated access) and PRR5 proteasomal (which promotes degradation of TOC1TOC1 is interrupted translocation by to ZTL’s the nucleus). interaction On the with othe PRR3r hand, (which the phosphorylation hinders ZTL of access) PRR5 andand TOC1 PRR5 (which enhances their binding to ZTL, which promotes their degradation later in the evening. (d) The promotes TOC1 translocation to the nucleus). On the other hand, the phosphorylation of PRR5 and alternative splicing regulates activity of CCA1: under high temperatures, the SNW/ski-interacting TOC1 enhancesprotein (SKIP) their mediates binding CCA1 to ZTL, alternative which splicing, promotes leading their to degradationan aberrant spliced later form, in the CCA1 evening.β, due (d) The alternativeto splicingthe fourth regulates intron retention. activity ofCCA1 CCA1:β encodes under a highshorter temperatures, protein lacking the the SNW/ski-interacting DNA-binding Myb protein (SKIP) mediatesdomain that CCA1 is still alternative able to homo/h splicing,eterodimerize leading with to anthe aberrantfunctional splicedCCA1α and form, LHY. CCA1 However,β, due to the fourth intronCCA1 retention.β/CCA1α and CCA1 CCA1ββencodes/LHY dimers a shorter show reduced protein DNA lacking bindin theg activity DNA-binding to downstream Myb targets. domain that Under cold conditions, the accumulation of the correctly spliced variant CCA1α leads to increased is still able to homo/heterodimerize with the functional CCA1α and LHY. However, CCA1β/CCA1α and CCA1β/LHY dimers show reduced DNA binding activity to downstream targets. Under cold conditions, the accumulation of the correctly spliced variant CCA1α leads to increased CCA1 protein levels. Fully functional CCA1/CCA1 and CCA1/LHY dimers are thus able to bind to the promoters of targets. (e) Regulation of clock central oscillator TOC1 by chromatin modifications: in the morning, accumulated-CCA1/LHY, associated with the histone modification complex containing LDL1/2 and HDA6, attaches to the promoter of TOC1, thereby reducing the H3Ac and H3K4Me levels of TOC1. Consequently, TOC1 expression is low. In the evening, CCA1 and LHY expression are low, while TOC1 is highly expressed because the LDL1/2-HDA6 complex is released from the TOC1 promoter. Genes 2018, 9, 561 3 of 11 The orange star and light arch represent day and night, respectively. Ovals represent functional groups. Black bars indicate repression, and black arrows indicate the activation of transcription. Broken lines indicate relationships not proven to be direct or detected only under specific conditions 2. Transcriptional Regulation of the Circadian Clock Genes In plants, the circadian oscillator comprises the morning and evening loops that have been proposed to form a negative feedback loop to generate circadian rhythms [4]. In the morning loop, two key single-MYB-domain-containing transcription factors, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) [5] and LATE ELONGATED HYPOCOTYL (LHY) [6], together with pseudo-response regulators 5, 7, and 9 (PRR5, PRR7, and
Recommended publications
  • New Insights Into the Mechanisms of Phytochrome–Cryptochrome Coaction
    Review Tansley insight New insights into the mechanisms of phytochrome–cryptochrome coaction Author for correspondence: Qin Wang1,2*, Qing Liu1*, Xu Wang1,2, Zecheng Zuo1, Yoshito Oka1 and Qin Wang 2 Tel: +1 310 825 9298 Chentao Lin Email: [email protected] 1Basic Forestry and Proteomics Research Center, UCLA-FAFU Joint Research Center on Plant Proteomics, Fujian Agriculture and Received: 21 August 2017 Forestry University, Fuzhou 350002, China; 2Department of Molecular, Cell & Developmental Biology, University of California, Los Accepted: 2 October 2017 Angeles, CA 90095, USA Contents Summary 1 IV. Prospect 4 I. Introduction 1 Acknowledgements 4 II. Phytochromes mediate light-induced transcription of BICs to References 4 inactivate cryptochromes 2 III. PPKs phosphorylate light-signaling proteins and histones to affect plant development 2 Summary New Phytologist (2017) Plants perceive and respond to light signals by multiple sensory photoreceptors, including doi: 10.1111/nph.14886 phytochromes and cryptochromes, which absorb different wavelengths of light to regulate genome expression and plant development. Photophysiological analyses have long revealed the Key words: blue light, Blue-light Inhibitors of coordinated actions of different photoreceptors, a phenomenon referred to as the photorecep- Cryptochrome1 (BIC1), cryptochromes, tor coaction. The mechanistic explanations of photoreceptor coactions are not fully understood. Photoregulatory Protein Kinase1 (PPK1), The function of direct protein–protein interaction of phytochromes and cryptochromes and phytochromes. common signaling molecules of these photoreceptors, such as SPA1/COP1 E3 ubiquitin ligase complex and bHLH transcription factors PIFs, would partially explain phytochrome–cryp- tochrome coactions. In addition, newly discovered proteins that block cryptochrome pho- todimerization or catalyze cryptochrome phosphorylation may also participate in the phytochrome and cryptochrome coaction.
    [Show full text]
  • Molecular Elucidation of Potato Tuberisation Pathway
    MOLECULAR ELUCIDATION OF POTATO TUBERISATION PATHWAY Kirika, Margaret Plant Breeding Department Wageningen UR 8/11/2014 Table of Contents 1.0 Introduction ........................................................................................................................................ 3 1.1 CONSTANS/FLOWERING LOCUS T (CO/FT) MODULE ............................................................. 5 1.2 Molecular pathways regulating tuberisation in potato .................................................................... 7 1.3 Potato FT homologs StSP5G and StSP6A involvement in tuberisation ........................................ 8 1.4 Gibberellin role in tuberisation ....................................................................................................... 8 1.5 StPOTH1, StBEL5 and miR172 ..................................................................................................... 9 1.6 Potato StCO1/2 ............................................................................................................................ 11 1.6.1 Daily oscillation of StCO ........................................................................................................... 12 1.7 StCDF1 a central regulator of tuberisation .................................................................................. 12 1.7.1 Localization of CDF1 ................................................................................................................. 13 1.8 Rationale .....................................................................................................................................
    [Show full text]
  • Early Evolution of the Land Plant Circadian Clock
    Research Early evolution of the land plant circadian clock Anna-Malin Linde1,2*, D. Magnus Eklund1,2*, Akane Kubota3*, Eric R. A. Pederson1,2, Karl Holm1,2, Niclas Gyllenstrand1,2, Ryuichi Nishihama3, Nils Cronberg4, Tomoaki Muranaka5, Tokitaka Oyama5, Takayuki Kohchi3 and Ulf Lagercrantz1,2 1Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyv€agen 18D, SE-75236 Uppsala, Sweden; 2The Linnean Centre for Plant Biology in Uppsala, Uppsala, Sweden; 3Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; 4Department of Biology, Lund University, Ecology Building, SE-22362 Lund, Sweden; 5Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan Summary Author for correspondence: While angiosperm clocks can be described as an intricate network of interlocked transcrip- Ulf Lagercrantz tional feedback loops, clocks of green algae have been modelled as a loop of only two genes. Tel: +46(0)18 471 6418 To investigate the transition from a simple clock in algae to a complex one in angiosperms, we Email: [email protected] performed an inventory of circadian clock genes in bryophytes and charophytes. Additionally, Received: 14 December 2016 we performed functional characterization of putative core clock genes in the liverwort Accepted: 18 January 2017 Marchantia polymorpha and the hornwort Anthoceros agrestis. Phylogenetic construction was combined with studies of spatiotemporal expression patterns New Phytologist (2017) 216: 576–590 and analysis of M. polymorpha clock gene mutants. doi: 10.1111/nph.14487 Homologues to core clock genes identified in Arabidopsis were found not only in bryophytes but also in charophytes, albeit in fewer copies. Circadian rhythms were detected Key words: bryophyte, circadian clock, for most identified genes in M.
    [Show full text]
  • Design Principles of Genetic Circuits Justin Bois Caltech Spring, 2018
    BE 150: Design Principles of Genetic Circuits Justin Bois Caltech Spring, 2018 This document was prepared at Caltech with financial support from the Donna and Benjamin M. Rosen Bioengineering Center. © 2018 Justin Bois. All rights reserved except for figures taken from literature sources. 8 The repressilator Today we will talk about an oscillating genetic circuit developed by Elowitz and Leibler and published in 2000, called the repressilator. As we work through this example, we will learn a valuable technique for analyzing dynamical systems, including many of those we encounter in systems biology, linear stability analysis. 8.1 Design of the repressilator The repressilator consists of three repressors on a plasmid, as shown in Fig. 7. They are TetR, λ cI, and LacI. For our analysis here, the names are unimportant, and we will call them repressor 1, 2, and 3. Repressorletters 1 represses to production nature of repressor 2, which in turn represses production of repressor 3. Finally, repressor 3 represses production or repressor 1, completing the loop. a Repressilator Reporter 30 8C. At least 100 individual cell lineages in each of three micro- colonies were tracked manually, and their ¯uorescence intensity was P lac01 L quanti®ed. ampR tetR-lite The timecourse of the ¯uorescence of one such cell is shown in PLtet01 Fig. 2. Temporal oscillations (in this case superimposed on an kanR overall increase in ¯uorescence) occur with a period of around Tet R Tet R pSC101 gfp-aav 150 minutes, roughly threefold longer than the typical cell-division λP origin R time. The amplitude of oscillations is large compared with baseline λ cI LacI GFP levels of GFP ¯uorescence.
    [Show full text]
  • Plant Physiol 140:933-945 [Pdf]
    Forward Genetic Analysis of the Circadian Clock Separates the Multiple Functions of ZEITLUPE1[W] E´ va Kevei, Pe´ter Gyula, Anthony Hall, La´szlo´ Kozma-Bogna´r, Woe-Yeon Kim, Maria E. Eriksson, Re´ka To´th, Shigeru Hanano, Bala´zs Fehe´r, Megan M. Southern, Ruth M. Bastow, Andra´sViczia´n, Victoria Hibberd, Seth J. Davis, David E. Somers, Ferenc Nagy, and Andrew J. Millar* Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H–6726 Szeged, Hungary (E´ .K., P.G., B.F., F.N.); School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom (A.H.); Institute of Molecular Plant Science, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom (L.K.-B., A.J.M.); Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, Ohio 43210 (W.-Y.K., D.E.S.); Umea˚ Plant Science Centre, Department of Plant Physiology, Umea˚ University, SE–901 87 Umea, Sweden (M.E.E.); Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, D–50829 Cologne, Germany (R.T., S.H., S.J.D.); Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.M.S., R.M.B., V.H.); and Biologie II/Institut fu¨ r Botanik, University of Freiburg, D–79104 Freiburg, Germany (A.V.) The circadian system of Arabidopsis (Arabidopsis thaliana) includes feedback loops of gene regulation that generate 24-h oscillations. Components of these loops remain to be identified; none of the known components is completely understood, including ZEITLUPE (ZTL), a gene implicated in regulated protein degradation.
    [Show full text]
  • Molecular Mechanism of Photoperiod Sensing
    This is a repository copy of Molecular mechanism of photoperiod sensing. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/130853/ Version: Accepted Version Article: Anwer, Muhammad Usman, Davis, Seth Jon orcid.org/0000-0001-5928-9046, Quint, Marcel et al. (1 more author) (2018) Molecular mechanism of photoperiod sensing. bioRxiv. pp. 1-31. https://doi.org/10.1101/321794 Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ bioRxiv preprint first posted online May. 14, 2018; doi: http://dx.doi.org/10.1101/321794. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 1 Short title 2 Molecular mechanism of photoperiod sensing 3 Corresponding Author 4 Muhammad Usman Anwer, Institute of Agricultural and Nutritional Sciences, Martin Luther University 5 Halle-Wittenberg, Betty-Heimann-Str. 5, 06120 Halle (Saale), Germany.
    [Show full text]
  • The Plant Circadian Oscillator
    biology Review The Plant Circadian Oscillator C. Robertson McClung Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; [email protected]; Tel.: +1-603-646-3940 Received: 19 December 2018; Accepted: 9 March 2019; Published: 12 March 2019 Abstract: It has been nearly 300 years since the first scientific demonstration of a self-sustaining circadian clock in plants. It has become clear that plants are richly rhythmic, and many aspects of plant biology, including photosynthetic light harvesting and carbon assimilation, resistance to abiotic stresses, pathogens, and pests, photoperiodic flower induction, petal movement, and floral fragrance emission, exhibit circadian rhythmicity in one or more plant species. Much experimental effort, primarily, but not exclusively in Arabidopsis thaliana, has been expended to characterize and understand the plant circadian oscillator, which has been revealed to be a highly complex network of interlocked transcriptional feedback loops. In addition, the plant circadian oscillator has employed a panoply of post-transcriptional regulatory mechanisms, including alternative splicing, adjustable rates of translation, and regulated protein activity and stability. This review focuses on our present understanding of the regulatory network that comprises the plant circadian oscillator. The complexity of this oscillatory network facilitates the maintenance of robust rhythmicity in response to environmental extremes and permits nuanced control of multiple clock outputs. Consistent with this view, the clock is emerging as a target of domestication and presents multiple targets for targeted breeding to improve crop performance. Keywords: circadian rhythms; circadian clock; transcriptional feedback loops; plant circadian clock; posttranscriptional; posttranslational; alternative splicing; protein stability 1. Introduction This special issue celebrates the 2017 Nobel Prize in Physiology awarded to Jeff Hall, Michael Rosbash, and Mike Young.
    [Show full text]
  • How Plants Tell the Time Giovanni Murtas* and Andrew J Millar†
    43 How plants tell the time Giovanni Murtas* and Andrew J Millar† The components of the circadian system that have recently match biological time with solar time. As light is an impor- been discovered in plants share some characteristics with tant environmental cue for the entrainment of the those from cyanobacterial, fungal and animal circadian clocks. circadian clock, a long-standing goal has been the identifi- Light input signals to the clock are contributed by multiple cation of the specific photoreceptors that are responsible photoreceptors: some of these have now been shown to for resetting the oscillator [2,3]. The Kay team [4••] has function specifically in response to light of defined wavelength now reported that the phytochromes A and B (phyA and and fluence rate. New reports of clock-controlled processes phyB), and cryptochrome 1 (cry1) are circadian input pho- and genes are highlighting the importance of time management toreceptors. They tested the circadian regulation of the for plant development. clock-responsive CHLOROPHYLL A/B-BINDING PRO- TEIN 2 (CAB2) promoter in Arabidopsis plants carrying Addresses photoreceptor mutations using the firefly luciferase Department of Biological Sciences, University of Warwick, Gibbet Hill reporter gene (luc). They found that the period of the Road, Coventry CV4 7AL, UK CAB2::luc activity rhythm is shortened under constant *e-mail: [email protected] light — a response that is mediated by the photoreceptor †e-mail: [email protected] classes that are sensitive to red and blue light [3]. Current Opinion in Plant Biology 2000, 3:43–46 Measurements of periodicity under a range of light inten- 1369-5266/00/$ — see front matter © 2000 Elsevier Science Ltd.
    [Show full text]
  • Complex Interactions in the Arabidopsis Circadian Clock
    bioRxiv preprint doi: https://doi.org/10.1101/068460; this version posted August 8, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title: Into the Evening: Complex Interactions in the Arabidopsis 2 circadian clock. 3 He Huang1 and Dmitri A. Nusinow1,* 4 1Donald Danforth Plant Science Center, St. Louis, MO 63132, USA 5 *Correspondence: [email protected] (D.A. Nusinow) 6 7 8 Key words: evening complex, clock, light, temperature, hypocotyl elongation, flowering 9 10 11 1 bioRxiv preprint doi: https://doi.org/10.1101/068460; this version posted August 8, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 12 Abstract 13 In Arabidopsis thaliana, an assembly of proteins named the evening complex (EC) has 14 been established as an essential component of the circadian clock with conserved 15 functions in regulating plant growth and development. Recent studies identifying EC- 16 regulated genes and EC-interacting proteins have expanded our understanding of EC 17 function. In this review, we focus on new progress uncovering how the EC contributes to 18 the circadian network through the integration of environmental inputs and the direct 19 regulation of key clock genes. We also summarize new findings of how the EC directly 20 regulates clock outputs, such as day-length dependent and thermoresponsive growth, 21 and provide new perspectives on future experiments to address unsolved questions 22 related to the EC.
    [Show full text]
  • Evolutionary Relationships Among Barley and Arabidopsis Core Circadian Clock and Clock-Associated Genes
    J Mol Evol DOI 10.1007/s00239-015-9665-0 ORIGINAL ARTICLE Evolutionary Relationships Among Barley and Arabidopsis Core Circadian Clock and Clock-Associated Genes Cristiane P. G. Calixto • Robbie Waugh • John W. S. Brown Received: 22 September 2014 / Accepted: 6 January 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract The circadian clock regulates a multitude of Keywords Arabidopsis thaliana Á Hordeum vulgare plant developmental and metabolic processes. In crop (barley) Á Circadian clock Á Reciprocal BLAST Á species, it contributes significantly to plant performance Homologue and productivity and to the adaptation and geographical range over which crops can be grown. To understand the clock in barley and how it relates to the components in the Introduction Arabidopsis thaliana clock, we have performed a system- atic analysis of core circadian clock and clock-associated Most living organisms optimise their day/night responses genes in barley, Arabidopsis and another eight species by measuring time and using this information to organize including tomato, potato, a range of monocotyledonous their physiology and morphology in anticipation of daily species and the moss, Physcomitrella patens. We have changes (Chen and McKnight 2007; Green et al. 2002; identified orthologues and paralogues of Arabidopsis genes Okamura 2004). As sessile organisms, plants also rely on which are conserved in all species, monocot/dicot differ- the circadian clock to optimise several physiological pro- ences, species-specific differences and variation in gene cesses, such as expression of chlorophyll biosynthetic copy number (e.g. gene duplications among the various genes after dawn, to optimise chlorophyll content and species).
    [Show full text]
  • Diversification of the Core RNA Interference Machinery In
    Copyright Ó 2008 by the Genetics Society of America DOI: 10.1534/genetics.107.086546 Diversification of the Core RNA Interference Machinery in Chlamydomonas reinhardtii and the Role of DCL1 in Transposon Silencing J. Armando Casas-Mollano,1 Jennifer Rohr,1 Eun-Jeong Kim, Eniko Balassa, Karin van Dijk2 and Heriberto Cerutti3 School of Biological Sciences and Plant Science Initiative, University of Nebraska, Lincoln, Nebraska 68588 Manuscript received December 28, 2007 Accepted for publication March 5, 2008 ABSTRACT Small RNA-guided gene silencing is an evolutionarily conserved process that operates by a variety of molecular mechanisms. In multicellular eukaryotes, the core components of RNA-mediated silencing have significantly expanded and diversified, resulting in partly distinct pathways for the epigenetic control of gene expression and genomic parasites. In contrast, many unicellular organisms with small nuclear genomes seem to have lost entirely the RNA-silencing machinery or have retained only a basic set of components. We report here that Chlamydomonas reinhardtii, a unicellular eukaryote with a relatively large nuclear genome, has undergone extensive duplication of Dicer and Argonaute polypeptides after the divergence of the green algae and land plant lineages. Chlamydomonas encodes three Dicers and three Argonautes with DICER- LIKE1 (DCL1) and ARGONAUTE1 being more divergent than the other paralogs. Interestingly, DCL1 is uniquely involved in the post-transcriptional silencing of retrotransposons such as TOC1. Moreover, on the basis of the subcellular distribution of TOC1 small RNAs and target transcripts, this pathway most likely operates in the nucleus. However, Chlamydomonas also relies on a DCL1-independent, transcriptional silencing mechanism(s) for the maintenance of transposon repression.
    [Show full text]
  • Arabidopsis Circadian Clock Protein, TOC1, Is a DNA-Binding Transcription Factor
    Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor Joshua M. Gendron, José L. Pruneda-Paz, Colleen J. Doherty, Andrew M. Gross, S. Earl Kang, and Steve A. Kay1 Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0130 Contributed by Steve A. Kay, January 9, 2012 (sent for review January 5, 2012) The first described feedback loop of the Arabidopsis circadian in the C terminus (12). The PR domain allows homo- and hetero- clock is based on reciprocal regulation between TIMING OF CAB oligomerization between the PRRs and bridges interactions of the EXPRESSION 1 (TOC1) and CIRCADIAN CLOCK-ASSOCIATED 1 PRRs and other proteins (13–15). The CCT domain of CO, a di- (CCA1)/LATE ELONGATED HYPOCOTYL (LHY). CCA1 and LHY are rect transcriptional activator of FLOWERING LOCUS T, was Myb transcription factors that bind directly to the TOC1 promoter recently shown to bind DNA (16). This function has not been to negatively regulate its expression. Conversely, the activity of reported for the TOC1/PRR CCT domains, although TOC1 and TOC1 has remained less well characterized. Genetic data support the PRRs occupy regions of the CCA1/LHY promoter in ChIP that TOC1 is necessary for the reactivation of CCA1/LHY, but there experiments (17–19). It was shown for TOC1 and hypothesized is little description of its biochemical function. Here we show that for the PRRs that this association with chromatin could be TOC1 occupies specific genomic regions in the CCA1 and LHY pro- bridged by other DNA-binding factors, such as CCA1 Hiking moters.
    [Show full text]