Callison, June (2011) the Investigation of a Side Reaction Leading to Colour Formation in a Polyurethane Production Chain

Total Page:16

File Type:pdf, Size:1020Kb

Callison, June (2011) the Investigation of a Side Reaction Leading to Colour Formation in a Polyurethane Production Chain Callison, June (2011) The investigation of a side reaction leading to colour formation in a polyurethane production chain. PhD thesis. http://theses.gla.ac.uk/2498/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] The Investigation of a Side Reaction Leading to Colour Formation in a Polyurethane Production Chain June Callison For the degree of Doctor of Philosophy Department of Chemistry April 2011 ii Declaration The work contained in this thesis, submitted for the degree of Doctor of Philosophy is my own original work, except where due reference is made to other authors and has not been previously submitted for a degree at this or any other university. June Callison June Callison 2011 iii Abstract In the industrial synthesis of 4,4’-methylene diphenyl diisocyanate (MDI), an unwanted side reaction between the product and the starting material, 4,4’-methylene dianiline, can lead to the formation of ureas. It has been postulated these ureas undergo further reaction with phosgene to produce a precursor to chlorine radicals, which could then attack the MDI backbone forming conjugated systems that would promote colour in the final products. To investigate this process model compounds including 4-benzylaniline (4-BA) and 1,3- diphenylurea were used as starting materials. The reactions carried out showed the phosgenation of the urea forms a chloroformamidine-N-carbonyl chloride (CCC) which upon heating > 303 K can break down to form an isocyanide dichloride (ID). Conventional synthesis routes were used to gain high yields of p-tolyl and phenyl isocyanide dichlorides in order to analyse the compounds. It was found that upon heating to 453 K or irradiating the isocyanide dichlorides in the process solvent (chlorobenzene) coloured solutions were formed; with the presence of MDI and oxygen increasing the intensity of the colouration. Electron paramagnetic resonance spectroscopy was used to gain information on the use of isocyanide dichlorides as a source of chlorine radicals. Using N-tert-butyl--phenylnitrone (PBN) as a spin trap, an 8 line spectra relating to the chlorine adduct was measured confirming the production of Cl. Throughout the project side reactions involving the formation of carbodiimide from CCC and a secondary route for the phosgenation of the urea to the isocyanate have been investigated and are presented within a global reaction scheme. It was also found the ureas were only partially soluble in the process solvent leading to research into the structure of three different urea molecules and the proposal of a modified reaction scheme. iv Acknowledgements I would like to thank everyone involved in this project and to those that have helped me throughout my years at university. Special thanks to my supervisor Dr David Lennon for all the support and guidance over the years. Thank you for having faith in me, for all the good advice and for the intriguing conversations in the pub. To Prof John Winfield, thank you for sharing your immense knowledge and all your help throughout this project. It has been a pleasure working with you. Thank you to my industrial sponsors Huntsman Polyurethanes for providing an interesting project to work on. To my supervisor Rob Carr and to Archie Eaglesham thanks for the informative meetings and for being approachable when I needed advice. Thanks to Willem van der Borden, Klaas van der Velde and Kimberly de Cuba for the help in carrying out the experiments at the Huntsman Polyurethanes Process Research and Development Laboratory and for the support and friendship during my short stay in Rozenburg. Also for the wonderful meals, beer and introducing me to Frikandellen. Thanks to Franziska Betzler and Andrew Farrell, who carried out work associated with this project through undergraduate projects. From the University of Manchester thanks to Dr Ruth Edge for help in carrying out the EPR measurements. Prof David Collison and Prof Eric Mcinnes for the advice and expertise and to Dr Joseph McDouall for carrying out the DFT calculations. Thanks to Alex Burns for the advice on the safety aspects of this work, to Dr Louis Farrugia for helping with the crystallographic studies and to Dr David Adam for help with the NMR work. To Emma, Neil, Ian, Liam and Andrew thanks for the great times in the lab and in the pub. Especially to Emma for showing me the ropes and putting up with my questions. Plus a special mention to Franziska and Niko for being great hosts on our trip to Oktoberfest. Also to my friends, you know who you are, thank you for being there. And finally to Mum, Dad and James thank you for all your love, patience, and support throughout the years. v “You are here to learn the subtle science and exact art of potion-making. I don’t expect you will really understand the beauty of the softly simmering cauldron with its shimmering fumes, the delicate power of liquids that creep through human veins, bewitching the mind, ensnaring the senses ... I can teach you how to bottle fame, brew glory, even stopper death.” Professor Severus Snape, Harry Potter and the Philosopher’s Stone vi Contents 1 Introduction......................................................................................................................... 2 1.1 Polyurethanes in Industry ............................................................................................. 2 1.2 Isocyanates .................................................................................................................. 2 1.3 MDI Production............................................................................................................. 3 1.4 Phosgene ..................................................................................................................... 6 1.4.1 Triphosgene ......................................................................................................... 7 1.5 New Methods for MDI Synthesis ................................................................................... 9 1.6 Colouration Problems ................................................................................................. 10 1.7 Postulated Reaction Scheme ...................................................................................... 11 1.8 Urea Compounds ....................................................................................................... 12 1.8.1 Crystal Structure ................................................................................................ 13 1.8.2 Tautomerism ...................................................................................................... 13 1.9 Analytical Techniques ................................................................................................. 14 1.9.1 Electron Paramagnetic Resonance (EPR) Spectroscopy .................................... 14 1.9.2 Infrared Spectroscopy ........................................................................................ 15 1.9.3 Ultraviolet and Visible Absorption Spectroscopy ................................................. 16 2 Experimental ..................................................................................................................... 19 2.1 Chemicals .................................................................................................................. 19 2.2 Apparatus for Synthesis Reactions ............................................................................. 20 2.2.1 Phosgenation ..................................................................................................... 21 2.2.2 Chlorination ........................................................................................................ 26 2.3 Characterisation Techniques ...................................................................................... 27 2.3.1 Fourier Transform Infrared (FTIR) Spectroscopy ................................................ 27 2.3.2 Nuclear Magnetic Resonance (NMR) Spectroscopy ........................................... 27 2.3.3 Elemental Analysis ............................................................................................. 27 2.3.4 Melting Point Determination ............................................................................... 28 2.3.5 Thermal Analysis................................................................................................ 28 2.3.6 Available Chlorine .............................................................................................. 28 2.3.7 Mass Spectrometry (MS) .................................................................................... 31 2.3.8 Gas Chromatography-Mass Spectrometry (GCMS) ............................................ 31 2.3.9 Gel Permeation Chromatography (GPC) ............................................................ 31 2.3.10 Yellow Index ...................................................................................................... 31 2.3.11 UV/Vis Spectroscopy.........................................................................................
Recommended publications
  • Synthesis and Characterization of Toluene Diisocyanate
    SYNTHESIS AND CHARACTERIZATION OF TOLUENE DIISOCYANATE A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY AYŞEGÜL HİSAR TELLİ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CHEMISTRY NOVEMBER 2014 Approval of the thesis: SYNTHESIS AND CHARACTERIZATION OF TOLUENE DIISOCYANATE submitted by AYŞEGÜL HİSAR TELLİ in partial fulfillment of the requirements for the degree of Master of Science in Chemistry Department, Middle East Technical University by, Prof. Dr. Gülbin Dural Ünver _____________________ Dean, Graduate School of Natural and Applied Sciences Prof. Dr. İlker Özkan _____________________ Head of Department, Chemistry Prof. Dr. Özdemir Doğan _____________________ Supervisor, Chemistry Dept., METU Examining Committee Members: Prof. Dr. Cihangir Tanyeli _____________________ Chemistry Dept., METU Prof. Dr. Özdemir Doğan _____________________ Chemistry Dept., METU Prof. Dr. Metin Zora _____________________ Chemistry Dept., METU Prof. Dr. Adnan Bulut _____________________ Chemistry Dept., Kırıkkale University Dr. E. Görkem Günbaş _____________________ Chemistry Dept., METU Date: 28.11.2014 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name: Ayşegül Hisar Telli Signature: iv ABSTRACT SYNTHESIS AND CHARACTERIZATION OF TOLUENE DIISOCYANATE Hisar Telli, Ayşegül M.S., Department of Chemistry Supervisor: Prof. Dr. Özdemir Doğan November 2014, 52 pages Toluene diisocyanate (TDI) is one of the important components of solid rocket propellants. It is used for the construction of polyurethane network by reacting with hydroxy terminated polybutadiene (HTPB) and functions as a curing agent.
    [Show full text]
  • Dye Manufacturing
    Multilateral Investment Guarantee Agency Environmental Guidelines for Dye Manufacturing Industry Description and Practices dyes by use classification comprises the following: This document addresses the synthesis of dyes • Acetate rayon dyes: developed for cellulose acetate and pigments used in textiles and other and some synthetic fibers; industries. Dyes are soluble at some stage of the • Acid dyes: used for coloring animal fibers via application process, whereas pigments in acidified solution (containing sulfuric acid, acetic acid, general retain essentially their particulate or sodium sulfate, and surfactants) in combination with crystalline form during application. A dye is amphoteric protein. used to impart color to materials of which it • Azoic dyes: contain azo group (and formic acid, becomes an integral part. Aromatic ring caustic soda, metallic compounds, and sodium nitrate) structure coupled with a side chain is usually especially for applying on cotton . required for resonance and in turn impart color. • Basic dyes: amino derivatives (and acetic acid and Resonance structures which cause displacement softening agents) used mainly for application on paper. or appearance of absorption bands in the visible • Direct dyes: azo dyes (and sodium salts, fixing spectrum of light are responsible for color. agents, and metallic [chrome and copper] compounds) used Correlation of chemical structure with color has generally on cotton-wool or cotton-silk combinations. been accomplished in the synthesis of dye using • Mordant or chrome dyes: metallic salt or lake formed a chromogen-chromophore with auxochrome. directly on the fiber by the use of aluminum, chromium, or Chromogen is the aromatic structure containing iron salts which cause precipitation in situ.
    [Show full text]
  • UG 4Th Sem Organic SN-UV Vis 2.Pdf
    Introduction The molecular spectroscopy is the study of the interaction of electromagnetic waves and matter. The scattering of sun’s rays by raindrops to produce a rainbow and appearance of a colorful spectrum when a narrow beam of sunlight is passed through a triangular glass prism are the simple examples where white light is separated into the visible spectrum of primary colors. This visible light is merely a part of the whole spectrum of electromagnetic radiation, extending from the radio waves to cosmic rays. All these apparently different forms of electromagnetic radiations travel at the same velocity but characteristically differ from each other in terms of frequencies and wavelength (Table 1). Table 1: The electromagnetic spectrum Radiation type Wave length Frequency Applications λ , (Ǻ) ν = c / λ, (Hz) radio 1014 3 x 104 Nuclear magnetic resonance 1012 3 x 106 Television 1010 3 x 108 Spin orientation Radar 108 3 x 1010 Microwave 107 3 x 1011 Rotational Far infrared 106 3 x 1012 Vibrational Near infrared 104 3 x 1014 Visible 8 x 103 - 4 x 103 3.7 x 1014 - 7.5 x 1014 Ultraviolet 3 x 103 1 x 1015 Electronic X-rays 1 3 x 1018 Gamma rays 10-2 3 x 1020 Nuclear transitions Cosmic rays 10-4 3 x 1022 The propagation of these radiations involves both electric and magnetic forces which give rise to their common class name electromagnetic radiation. In spectroscopy, only the effects associated with electric component of electromagnetic wave are important. Therefore, the light wave traveling through space is represented by a sinusoidal trace (figure 1).
    [Show full text]
  • Influence of Auxochrome Group in Disperse Dyes Bearing Azo Groups
    Ecotoxicology and Environmental Safety 160 (2018) 114–126 Contents lists available at ScienceDirect Ecotoxicology and Environmental Safety journal homepage: www.elsevier.com/locate/ecoenv Influence of auxochrome group in disperse dyes bearing azo groups as T chromophore center in the biotransformation and molecular docking prediction by reductase enzyme: Implications and assessment for environmental toxicity of xenobiotics Jefferson Honorio Francoa, Bianca F. da Silvaa, Elisangela Franciscon G. Diasb, ⁎ Alexandre A. de Castroc, Teodorico C. Ramalhoc, Maria Valnice Boldrin Zanonia, a Institute of Chemistry, State University “Julio de Mesquita Filho”- UNESP, Araraquara, São Paulo, Brazil b School of Technology, University of Campinas - UNICAMP, Limeira, São Paulo, Brazil c Department of Chemistry, Federal University of Lavras - UFLA, Lavras, Minas Gerais, Brazil ARTICLE INFO ABSTRACT Keywords: Synthetic azo dyes have increasingly become a matter of great concern as a result of the genotoxic and muta- Textile dye genic potential of the products derived from azo dye biotransformation. This work evaluates the manner in Biotransformation which reducing enzymes produced by Escherichia coli (E. coli) act on three disperse dyes bearing azo groups, Azoreductase namely Disperse Red 73 (DR 73), Disperse Red 78 (DR 78), and Disperse Red 167 (DR 167). UV–Vis spectro- Mass spectrometry photometry, high-performance liquid chromatography with diode array detector (HPLC-DAD), and liquid Escherichia coli chromatography mass spectrometry (LC-MS/MS) were applied towards the identification of the main products. Seven days of incubation of the azo dyes with the tested enzymes yielded a completely bleached solution. 3–4- Aminophenyl-ethyl-amino-propanitrile was detected following the biotransformation of both DR 73 and DR 78.
    [Show full text]
  • Spectroscopic Studies of Carbocyanine and 2,4,6- Trisubstituted Pyridine Dyes for Bioanalytical and Ph Indicating Applications
    Georgia State University ScholarWorks @ Georgia State University Chemistry Theses Department of Chemistry Fall 11-29-2011 Spectroscopic Studies of Carbocyanine and 2,4,6- Trisubstituted Pyridine Dyes for Bioanalytical and pH Indicating Applications Gala M. Chapman Georgia State University, [email protected] Follow this and additional works at: https://scholarworks.gsu.edu/chemistry_theses Recommended Citation Chapman, Gala M., "Spectroscopic Studies of Carbocyanine and 2,4,6- Trisubstituted Pyridine Dyes for Bioanalytical and pH Indicating Applications." Thesis, Georgia State University, 2011. https://scholarworks.gsu.edu/chemistry_theses/47 This Thesis is brought to you for free and open access by the Department of Chemistry at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Chemistry Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. SPECTROSCOPIC STUDIES OF CARBOCYANINE AND 2,4,6-TRISUBSTITUTED PYRIDINE DYES FOR BIOANALYTICAL AND pH INDICATING APPLICATIONS by GALA CHAPMAN Under the Direction of Dr. Gabor Patonay ABSTRACT In part A, the effect of varying short-chain alkyl substitution on the spectroscopic properties of cyanine dyes was examined. Molar absorptivities and quantum yields were determined for groups of pentamethine and heptamethine dyes for which the substitution of the indole nitrogen was varied. For both sets of dyes, increasing alkyl chain length did not significantly change quantum yield or molar absorptivity. These results may be useful in designing new cyanine dyes. In part B, the effect of structure on the suitability of 2,4,6-trisubstituted pyridines as color pH indicators was studied by determining spectral effects of protonation, molar absorptivities, pKa values, and the structural origin of the spectral behavior.
    [Show full text]
  • B.Sc. Semester 6 (Paper -14, Organic Chemistry) SET-1
    B.Sc. Semester 6 (Paper -14, Organic Chemistry) SET-1 Full marks=60 I. Objective Question: (1x15=15) 1. Wave number is given by the formula (a) λ (b) 1/λ (c) λ 2 (d)1/ λ2 2. Hooke’s law for the vibration of a diatomic molecule may be represented as (a) F= kx (b) F= -kx (c) x= kF (d) ) x= -kF 3. Bathochromic effect is also called (a) Blue Shift (b) Red Shift (c) Green Shift (d) None of these 4. Broad, moderately intense absorbtion in the low frequency region suggests the presence of (a) Carboxylic acid (b) Amides (c) Amines (d)All of these 5. How many NMR signals would be given by (CH3)2CHCH2CH3 (a) 3 (b) 4 (c) 5 (d) 2 6. If a proton is linked to some electronegative atom via hydrogen bond, absorption in NMR will be (a) upfield (b) unchanged (c) downfield (d) None of theses 7. The number of asymmetric carbon atoms in a α–D-glucopyranose is (a) 3 (b) 4 (c) 5 (d) 2 8. The sugar that yields only glucose on hydrolysis (a) Lactose (b) Sucrose (c) Maltose (d) Fructose 9. All of the following monosaccharides give the same osazone except (a) Galactose (b) Glucose (c) Mannose (d) Fructose 10. Monomer of Neoprene is (a) Chloroprene (b) Isoprene (c) Isobutane (d) Isopentene 11. Adipic acid reacts with hexamethylene diamine to form (a) bakelite (b) Nylon-6,6 (c) Polyethylene (d) Teflon 12. Orlon is prepared by polymerization of (a) vinyl cynide (b) allyl alcohol (c) vinyl chloride (d) allyl chlride 13.
    [Show full text]
  • Chapter 1--Title
    Chapter 6 Part III UV-Vis Spectroscopy THE ELECTROMAGNETIC RANGE 10-10–10-8 nm 10 nm – 400 nm 2 Chapter 6 THE NATURE OF ELECTRONIC EXCITATIONS When continuous radiation passes through a transparent material, a portion of the radiation may be absorbed. As a result of energy absorption, atoms or molecules pass from a state of low energy (the initial, or ground state) to a state of higher energy (the excited state). The electromagnetic radiation that is absorbed has energy exactly equal to the energy difference between the excited and ground states. 3 Chapter 6 Types of spectroscopy Electromagnetic Type of Transition Used to range spectroscopy between determine Infrared IR spectroscopy Vibrational Functional (2,5 – 15 μm) energy levels groups (400 - 4000 cm-1) Radio-wave NMR Nuclear spin Carbon– (1 m – 5 m) spectroscopy states hydrogen framework Ultraviolet UV-Vis Electronic Nature and (~ 200 – 400 nm) spectroscopy energy levels extent of – Visible conjugated π (~400-800 nm) electron system Mass spectroscopy - Molecular size and formula Chapter 6 4 The UV-Vis region The ultraviolet (UV) and visible (Vis) regions are the portions of the electro-magnetic spectrum where wavelengths range from 200 nm to 800 nm. 5 Chapter 6 In the case of ultraviolet and visible spectroscopy, the transitions that result in the absorption of electromagnetic radiation in this region of the spectrum are transitions between electronic energy levels. As a molecule absorbs energy, an electron is promoted from an occupied orbital to an unoccupied orbital of greater potential energy. Generally, the most probable transition is from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO).
    [Show full text]
  • Dual Degree B.Sc. (Hons.) Physics-M.Sc. Physics
    SCHEME AND SYLLABI FOR Dual Degree B.Sc. (Hons.) Physics-M.Sc. Physics (3+2 YEARS PROGRAMME) (Under Choice Based Credit System) 1st to 6th semester from academic session 2019-20 & 7th to 10th semester (Revised) from 2016-17 batch onward (70:30) DEPARTMENT OF PHYSICS GURU JAMBHESHWAR UNIVERSITY OF SCIENCE & TECHNOLOGY HISAR-125001, HARYANA Vision and Mission of the Department of Physics Vision: To inspire the young students towards understanding and learning the fundamental concepts of Physics and their applications for the development of new technologies in the national interests. Mission: Physics is regarded as the most significant subject among all scientific and technical disciplines. The mission of Physics department at Guru Jambheshwar University of Science & Technology is to provide both the undergraduate and postgraduate students strong qualitative and quantitative knowledge along with developing a problem solving attitude that may open up a wide range of career choices. In addition, the mission also includes encouraging the research scholars to conduct cutting-edge research resulting in new discoveries and innovations that expands the horizons of science and technology. This mission will be accomplished by providing students with rigorous and comprehensive knowledge as well as bringing exciting research perspectives to the student community of Physics Department at Guru Jambheshwar University of Science & Technology. Dual Degree B.Sc. (Hons.) Physics-M.Sc. Physics (3+2 years) programme: B.Sc. (Hons.)-M.Sc. dual degree programme in Physics has been started in the year 2016 to attract young bright students to inculcate the culture of research and development in the areas of physical sciences.
    [Show full text]
  • Synthesis of Dyes
    Ursinus College Digital Commons @ Ursinus College Chemistry Honors Papers Student Research 9-1944 Synthesis of Dyes Faith B. Cramer Follow this and additional works at: https://digitalcommons.ursinus.edu/chem_hon Part of the Chemistry Commons Click here to let us know how access to this document benefits ou.y Ursinus College Library, URCINUSIAMA COLLECTION Class 0 Boxg/Wr^ Synthesis of Dyes Faith B. Cramer, C6<J.^(i^/^f^5^ Department Honors Ursinus College September, 1944 This paper is submitted in partial fulfillment of Department Honors. Group Adviser Introduotion The dyeing property is dependent wgon structure; The charact• er 'of the lyestuff is derived from some group contained in it, called the chromophore.The most important chromophores are C:C, C:0,C:S,C:N,N:N,N:0,ji:0,..Chromophores vary in their effective• ness to produce color.In general,color deepens as the molecular weight increases,especially as the number of chromophores in• creases . The fundamental substance containing the chromophore is the chrom.ogen. The chromogen is not a dyestuff,but is converted into this by the entrance of some salt-forming group which de• stroys the chemically inert character of the chromogen. The groups conferring salt-forming properties upon the chromogen are auxochromes,which fall into two groups: a)acidic:SO,H, COOH, OH B] b)basic:KH,,, NHR, NRo. Often ajbolorless chromogen becomes colored upon introduction of an auxochrome.Benzophenono,for example,becomes yellow when -NHi group is introduced.Azobenzene,which is red,becomes a dye when -NHj^ is intiDoduced in the para position,Certain auxochromes have a higher effectiveness than others.
    [Show full text]
  • Recent Developments on the Carbamation of Amines
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by IR@NEIST - North East Institute of Science and Technology (CSIR) Current Organic Chemistry, 2011, 15, 1593-1624 1593 Recent Developments on the Carbamation of Amines Devdutt Chaturvedi* Natural Products Chemistry Division, North-East Institute of Science and Technology (CSIR), Jorhat-785006, Assam, India. Abstract: Organic carbamates represent an important class of compounds showing various interesting properties. They find wide utility in various areas as pharmaceuticals, agrochemicals (pesticides, herbicides, insecticides, fungicides etc.), intermediates in organic synthe- sis, protection of amino group in peptide chemistry, and as linker in combinatorial chemistry etc. Classical synthesis of carbamates in- volves use of harmful reagents such as phosgene, its derivatives and carbon monoxide. Recently, various kinds of synthetic methods have been developed for the synthesis of organic carbamates. In the present review, I would like to highlight the recent developments on the synthesis of organic carbamates using variety of reagents. Keywords: Carbamation, amines, carbamates. 1. INTRODUCTION in organic synthesis [7], for the protection of amino groups in pep- tide chemistry [8], as linkers in combinatorial chemistry [9] etc. Organic carbamates are the stable class of compounds derived Functionalization of amines as carbamates offers an attractive from the unstable carbamic acid (H N-COOH) by the substitution 2 method for the generation of derivatives, which may have interest- of amino and acid ends through the various kinds of structurally ing medicinal and biological properties [10]. Organic carbamates diverse alkyl/aryl, aryl-alkyl or substituted alkyl/aryl and aryl-alkyl have been extensively used as useful synthons for the synthesis of groups, and are identified by the presence of the linkage O-CO-NH- structurally diverse synthetic intermediates/molecules of biological [1, 2].
    [Show full text]
  • Haz Waste Procedures (03/98)
    Procedures for Disposal of Hazardous Waste PREPARED BY THE OFFICE OF ENVIRONMENTAL HEALTH & SAFETY HAZARDOUS MATERIALS DIVISION R EVISED 3/98 TABLE OF CONTENTS CHAPTER ONE - THE IDENTIFICATION OF REGULATED W ASTES I. CHEMICAL WASTES A. CHARACTERISTIC CHEMICAL WASTES B. LISTED CHEMICAL WASTES C. CLASS I WASTES II. BIOLOGICAL (OR SPECIAL) WASTES A. MICROBIOLOGICAL WASTE B. ANIMAL WASTE C. HUMAN BLOOD AND BLOOD PRODUCTS D. PATHOLOGICAL WASTE E. SHARPS III. RADIOACTIVE WASTES IV. MULTIHAZARDOUS WASTES CHAPTER TWO - CHEMICAL WASTES I. REQUIREMENTS FOR THE ACCUMULATION AREA A. CONTAINERS B. ACCUMULATION GUIDELINES II. DISPOSAL PROCEDURES FOR REGULATED WASTES A. WASTE TAGS AND REQUEST FOR DISPOSAL FORMS III. DISPOSAL PROCEDURES FOR NON-REGULATED WASTES IV. DISPOSAL PROCEDURES FOR EMPTY CONTAINERS V. WASTE MINIMIZATION A. METHODS FOR TREATING HAZARDOUS WASTES IN THE LABORATORY B. FIVE EXAMPLES OF REAGENT SUBSTITUTIONS THAT RESULT LESS HAZARDOUS AND/OR LESS COSTLY WASTE CHAPTER THREE - BIOLOGICAL W ASTES I. MICROBIOLOGICAL WASTE A. RECORD KEEPING B. PERFORMANCE MONITORING C. TREATMENT METHODS D. DISPOSAL II. ANIMAL WASTE III. HUMAN BLOOD AND BLOOD PRODUCTS WASTE IV. PATHOLOGICAL WASTE CHAPTER FOUR - OTHER LABORATORY WASTES I. MOU GLASSWARE II. BROKEN GLASSWARE III. SHARPS IV. MIXED WASTES APPENDICES I. NONHAZARDOUS CHEMICALS II. WASTE CONTAINER / SOLVENT COMPATIBILITY CHART III. EXAMPLES OF INCOMPATIBLE CHEMICALS IV. THE ENVIRONMENTAL PROTECTION AGENCY'S P LIST (ACUTELY HAZARDOUS CHEMICALS) V. THE ENVIRONMENTAL PROTECTION AGENCY'S U LIST Chapter One - The Identification of Regulated Wastes I. Chemical Wastes A regulated chemical waste is defined as a waste which, due to its quantity, concentration, or physical and chemical characteristics may · cause, or significantly contribute to, an increase in mortality or an increase in serious or incapacitating illness; or · pose a substantial present or potential threat to human health or the environment when improperly treated, stored, transported, disposed of, or otherwise managed.
    [Show full text]
  • • M.Sc. (2Yr & 5Yr) • M.A. • M.B.A. CURRICULA and SYLLABI
    CURRICULA AND SYLLABI • M.Sc. (2yr & 5yr) • M.A. • M.B.A. www.nitrkl.ac.in PREAMBLE The curriculum of an institution of higher learning is a living entity. It evolves with time; it reflects the ever changing needs of the society and keeps pace with the growing talent of the students and the faculty. The curriculum of the MSc, MA and MBA programmes of NIT Rourkela is no exception. Half a century of experience in preparing graduates in engineering and postgraduates in science for a wide variety of industries has led to creation of the new curriculum. I sincerely believe that it will meet the aspirations of all stake holders – students, faculty and the employers of the graduates and postgraduates of NIT Rourkela. In the old college – university system the curricula and syllabi represented the upper limit of the material to be covered, the teacher having no motivation for stepping outside the defined territory. In the autonomous institute system, the curriculum and syllabi only serve as a guideline. The teacher enjoys freedom to expand it in any direction he feels appropriate, incorporates his latest knowledge and stimulates the creative minds of the students. He experiments with new contents and new techniques. A new teaching-learning paradigm is born. This book of curricula is the culmination of the efforts of large number of faculty members and supporting staff. It also reflects the creative contribution of hundreds of teachers – both serving and retired, over the past five decades. In keeping with the demands of the changing times, it contains many innovative features.
    [Show full text]