Small Bass Strait Island Reserves
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
This Keyword List Contains Indian Ocean Place Names of Coral Reefs, Islands, Bays and Other Geographic Features in a Hierarchical Structure
CoRIS Place Keyword Thesaurus by Ocean - 8/9/2016 Indian Ocean This keyword list contains Indian Ocean place names of coral reefs, islands, bays and other geographic features in a hierarchical structure. For example, the first name on the list - Bird Islet - is part of the Addu Atoll, which is in the Indian Ocean. The leading label - OCEAN BASIN - indicates this list is organized according to ocean, sea, and geographic names rather than country place names. The list is sorted alphabetically. The same names are available from “Place Keywords by Country/Territory - Indian Ocean” but sorted by country and territory name. Each place name is followed by a unique identifier enclosed in parentheses. The identifier is made up of the latitude and longitude in whole degrees of the place location, followed by a four digit number. The number is used to uniquely identify multiple places that are located at the same latitude and longitude. For example, the first place name “Bird Islet” has a unique identifier of “00S073E0013”. From that we see that Bird Islet is located at 00 degrees south (S) and 073 degrees east (E). It is place number 0013 at that latitude and longitude. (Note: some long lines wrapped, placing the unique identifier on the following line.) This is a reformatted version of a list that was obtained from ReefBase. OCEAN BASIN > Indian Ocean OCEAN BASIN > Indian Ocean > Addu Atoll > Bird Islet (00S073E0013) OCEAN BASIN > Indian Ocean > Addu Atoll > Bushy Islet (00S073E0014) OCEAN BASIN > Indian Ocean > Addu Atoll > Fedu Island (00S073E0008) -
LOCAL PROVISIONS SCHEDULE SUPPORTING REPORT April 2019
LOCAL PROVISIONS SCHEDULE SUPPORTING REPORT April 2019 Cover photograph: Coastal Vegetation Killiecrankie Bay Flinders Local Provisions Schedule Supporting Report Page 2 of 201 Agenda Attachments-Draft LPS (Tasmanian Planning Scheme) Contents 1.0 Introduction………………………………………………………………………………………6 2.0 LPS Criteria –LUPAA Section 34…………………………………………………………………..8 2.1 State Planning Provisions………………………………………………………………..8 2.2 Contents of LPSs-Section 32 of LUPAA…………………………………………………..9 2.2.1 Municipal Area……………………………………………………………...9 2.2.2 Mandatory requirements…………………………………………………..9 2.2.3 Spatial Application of the State Planning Provisions……………………… 9 2.2.4 Matters a Planning scheme may or may not regulate……………………10 2.2.5 Use of Overlays and Lists………………………………………………… 10 2.2.6 Land Reserved for Public Purposes……………………………………… 10 2.2.7 Application of the Detail of the SPP to a Particular Place……………… 10 2.2.8 Overriding Provisions…………………………………………………… 10 2.2.9 Modification of Application of SPPs……………………………………….11 2.2.10 Limitations of LPS………………………………………………………… 11 2.2.11 LPS may include……………………………………………………………11 2.3 LUPAA Schedule 1 Objectives………………………………………………………… 12 2.4 State Policies…………………………………………………………………………… 19 2.4.1 Tasmanian State Coastal Policy 1996………………………………………19 2.4.2 State Policy on the Protection of Agricultural Land 2009………………….22 2.4.3 State Policy on Water Quality Management 1997……………………… 23 2.4.4 National Environment Protection Measures……………………………….24 2.5 Northern Tasmania Regional Land Use Strategy……………………………………… 24 2.6 Flinders Council -
1 Australian Tidal Currents – Assessment of a Barotropic Model
https://doi.org/10.5194/gmd-2021-51 Preprint. Discussion started: 14 April 2021 c Author(s) 2021. CC BY 4.0 License. Australian tidal currents – assessment of a barotropic model (COMPAS v1.3.0 rev6631) with an unstructured grid. David A. Griffin1, Mike Herzfeld1, Mark Hemer1 and Darren Engwirda2 1Oceans and Atmosphere, CSIRO, Hobart, TAS 7000, Australia 2Center for Climate Systems Research, Columbia University, New York City, NY, USA and NASA Goddard Institute for 5 Space Studies, New York City, NY, USA Correspondence to: David Griffin ([email protected]) Abstract. While the variations of tidal range are large and fairly well known across Australia (less than 1 m near Perth but more than 14 m in King Sound), the properties of the tidal currents are not. We describe a new regional model of Australian 10 tides and assess it against a validation dataset comprising tidal height and velocity constituents at 615 tide gauge sites and 95 current meter sites. The model is a barotropic implementation of COMPAS, an unstructured-grid primitive-equation model that is forced at the open boundaries by TPXO9v1. The Mean Absolute value of the Error (MAE) of the modelled M2 height amplitude is 8.8 cm, or 12 % of the 73 cm mean observed amplitude. The MAE of phase (10°), however, is significant, so the M2 Mean Magnitude of Vector Error (MMVE, 18.2 cm) is significantly greater. The Root Sum Square over the 8 major 15 constituents is 26% of the observed amplitude.. We conclude that while the model has skill at height in all regions, there is definitely room for improvement (especially at some specific locations). -
Rodondo Island
BIODIVERSITY & OIL SPILL RESPONSE SURVEY January 2015 NATURE CONSERVATION REPORT SERIES 15/04 RODONDO ISLAND BASS STRAIT NATURAL AND CULTURAL HERITAGE DIVISION DEPARTMENT OF PRIMARY INDUSTRIES, PARKS, WATER AND ENVIRONMENT RODONDO ISLAND – Oil Spill & Biodiversity Survey, January 2015 RODONDO ISLAND BASS STRAIT Biodiversity & Oil Spill Response Survey, January 2015 NATURE CONSERVATION REPORT SERIES 15/04 Natural and Cultural Heritage Division, DPIPWE, Tasmania. © Department of Primary Industries, Parks, Water and Environment ISBN: 978-1-74380-006-5 (Electronic publication only) ISSN: 1838-7403 Cite as: Carlyon, K., Visoiu, M., Hawkins, C., Richards, K. and Alderman, R. (2015) Rodondo Island, Bass Strait: Biodiversity & Oil Spill Response Survey, January 2015. Natural and Cultural Heritage Division, DPIPWE, Hobart. Nature Conservation Report Series 15/04. Main cover photo: Micah Visoiu Inside cover: Clare Hawkins Unless otherwise credited, the copyright of all images remains with the Department of Primary Industries, Parks, Water and Environment. This work is copyright. It may be reproduced for study, research or training purposes subject to an acknowledgement of the source and no commercial use or sale. Requests and enquiries concerning reproduction and rights should be addressed to the Branch Manager, Wildlife Management Branch, DPIPWE. Page | 2 RODONDO ISLAND – Oil Spill & Biodiversity Survey, January 2015 SUMMARY Rodondo Island was surveyed in January 2015 by staff from the Natural and Cultural Heritage Division of the Department of Primary Industries, Parks, Water and Environment (DPIPWE) to evaluate potential response and mitigation options should an oil spill occur in the region that had the potential to impact on the island’s natural values. Spatial information relevant to species that may be vulnerable in the event of an oil spill in the area has been added to the Australian Maritime Safety Authority’s Oil Spill Response Atlas and all species records added to the DPIPWE Natural Values Atlas. -
Second Reading Speech
DRAFT SECOND READING SPEECH HON WILL HODGMAN MP Constitution Amendment (House of Assembly Electoral Boundaries) Bill 2018 *check Hansard for delivery* I move – That the Constitution Amendment (House of Assembly Electoral Boundaries) Bill 2018 now be read for the second time. The Commonwealth recently reviewed the House of Representatives boundaries in Tasmania. This review was part of an independent redistribution of federal electoral boundaries, required under the Commonwealth Electoral Act 1918. The previous redistribution of the federal electoral boundaries in Tasmania was completed in 2009. The redistribution of electoral boundaries usually reflects population changes to ensure an even and fair allocation of voters among the electorates. Having even electorates is an important element of retaining ‘fairness’ in our voting system and indeed our democracy. On 14 November 2017, the Commonwealth augmented Electoral Commission for Tasmania announced new boundaries for the federal electorates in Tasmania. The augmented Commission consisted of the three members of the Australian Electoral Commission, the Australian Electoral Officer for Tasmania, Mr David Molnar, the Surveyor-General of Tasmania, Mr Michael Giudici, and the Auditor-General of Tasmania, Mr Rod Whitehead. The augmented Commission also announced that the division of ‘Denison’ be renamed to the division of ‘Clark’. This name change recognises the role of Andrew Inglis Clark in the creation of the Australian Federation. The new name and boundary changes will apply from the next federal election. However, these Commonwealth changes do not automatically apply as State electoral boundaries in Tasmania. In the past, the Tasmanian Parliament has chosen to adopt the Commonwealth House of Representatives boundaries for the purposes of House of Assembly divisions by amending the Constitution Act 1934 to ensure they coincide. -
PETROLEUM SYSTEM of the GIPPSLAND BASIN, AUSTRALIA by Michele G
uses science for a changing world PETROLEUM SYSTEM OF THE GIPPSLAND BASIN, AUSTRALIA by Michele G. Bishop1 Open-File Report 99-50-Q 2000 This report is preliminary and has not been reviewed for conformity with the U. S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade names is for descriptive purposes only and does not imply endorsements by the U. S. government. U. S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY Consultant, Wyoming PG-783, contracted to USGS, Denver, Colorado FOREWORD This report was prepared as part of the World Energy Project of the U.S. Geological Survey. In the project, the world was divided into 8 regions and 937 geologic provinces. The provinces have been ranked according to the discovered oil and gas volumes within each (Klett and others, 1997). Then, 76 "priority" provinces (exclusive of the U.S. and chosen for their high ranking) and 26 "boutique" provinces (exclusive of the U.S. and chosen for their anticipated petroleum richness or special regional economic importance) were selected for appraisal of oil and gas resources. The petroleum geology of these priority and boutique provinces is described in this series of reports. The purpose of this effort is to aid in assessing the quantities of oil, gas, and natural gas liquids that have the potential to be added to reserves within the next 30 years. These volumes either reside in undiscovered fields whose sizes exceed the stated minimum- field-size cutoff value for the assessment unit (variable, but must be at least 1 million barrels of oil equivalent) or occur as reserve growth of fields already discovered. -
Tas Talk… the Movie the Cast, Their Stories and the Best Supporting Actress…Tasmania
TAS TALK… THE MOVIE THE CAST, THEIR STORIES AND THE BEST SUPPORTING ACTRESS…TASMANIA Kayaking on the Pieman River © Michael Walters Photography Behind the Scenes, Hobart © HypeTV –––– A journey to Tasmania is a rare chance to disconnect from stress and reconnect with the things that matter. Geographic isolation has contributed to unique biodiversity, and it has also fostered a rare community of creative, down-to-earth, resourceful people with time to make you feel welcome. We are all working in unusual circumstances and although this year we were unable to deliver our much sought after TasTalk trade event in its standard format, we know you need to connect with Tasmanian tourism operators. So, we are bringing the TasTalk trade event experience to you! This is TasTalk...The Movie, an opportunity for you to listen and connect with Tasmanians over a live platform. Featuring the stars of our tourism industry, this is set to be a movie like you have never seen before. One of the joys of travelling in Tasmania is not just the chance to taste produce straight from the farm and ocean, but the ease of meeting the makers at cellar doors, farm gates and local markets. And with four distinct seasons, there’s always something new to see, taste and feel. TasTalk...The Movie will speak to all of this and more. Tasmania is a place for adventure, however, you define it. Whether the view is from the privacy of a hot tub in a forest, or from a kayak for two, or fireside with Tassie whisky and friends, the world looks different from Tasmania. -
Impact of Sea Level Rise on Coastal Natural Values in Tasmania
Impact of sea level rise on coastal natural values in Tasmania JUNE 2016 Department of Primary Industries, Parks, Water and Environment Acknowledgements Thanks to the support we received in particular from Clarissa Murphy who gave six months as a volunteer in the first phase of the sea level rise risk assessment work. We also had considerable technical input from a range of people on various aspects of the work, including Hans and Annie Wapstra, Richard Schahinger, Tim Rudman, John Church, and Anni McCuaig. We acknowledge the hard work over a number of years from the Sea Level Rise Impacts Working Group: Oberon Carter, Louise Gilfedder, Felicity Faulkner, Lynne Sparrow (DPIPWE), Eric Woehler (BirdLife Tasmania) and Chris Sharples (University of Tasmania). This report was compiled by Oberon Carter, Felicity Faulkner, Louise Gilfedder and Peter Voller from the Natural Values Conservation Branch. Citation DPIPWE (2016) Impact of sea level rise on coastal natural values in Tasmania. Natural and Cultural Heritage Division, Department of Primary Industries, Parks, Water and Environment, Hobart. www.dpipwe.tas.gov.au ISBN: 978-1-74380-009-6 Cover View to Mount Cameron West by Oberon Carter. Pied Oystercatcher by Mick Brown. The Pied Oystercatcher is considered to have a very high exposure to sea level rise under both a national assessment and Tasmanian assessment. Its preferred habitat is mudflats, sandbanks and sandy ocean beaches, all vulnerable to inundation and erosion. Round-leaved Pigface (Disphyma australe) in flower in saltmarsh at Lauderdale by Iona Mitchell. Three saltmarsh communities are associated with the coastal zone and are considered at risk from sea level rise. -
From Northern Bass Strait, Southern Australia
31 August 1989 Memoirs of the Museum of Victoria 50(1): 1-242 (1989) ISSN 0814-1827 https://doi.org/10.24199/j.mmv.1989.50.01 DEMOSPONGIAE (PORIFERA) FROM NORTHERN BASS STRAIT, SOUTHERN AUSTRALIA By Felix Wiedenmayer Department of Invertebrate Zoology, Museum of Victoria, Swanston Street, Melbourne, Victoria 3000, Australia Present address: Naturhistorisches Museum Basel, Agustinergasse 2, 4001 Basel, Switzerland Abstract Wiedenmayer, F., 1989. Demospongiae from northern Bass Strait, southern Australia. Memoirs of the Museum of Victoria 50(1): 1-242. Eighty-four species (in 47 genera) in the Museum of Victoria, Melbourne, are described and illustrated. Of these, 21 species are described as new: Ancorina repens, A. suina, Stelletta arenitecta, Rhabdastrella cordata, R. intermedia, Tetilla praecipua, Latrunculia hallmanni, Pseudaxinella decipiens, Reniochalina sectilis, Rhaphoxya felina, Clathria wilsoni, Echinoclathria egena, Psammoclema bitextum, P. fissuratum, P. goniodes, P. radiatum, P. stipitatum, P. van- soesti, Callyspongia persculpta, C. toxifera, and Thorecta glomerosus. Eighteen records are new for the Maugean province, and three (Phorbas tenacior, Darwinella gardineri, and Gel- liodes incrustans) are new for the Australian fauna. The following revisions depart from those adopted in Wiedenmayer et al. (in press). The family Desmacididae is divided into Desmacidi- nae and Stylotellinae, and the genera Stylotella ( = Batzella), Phoriospongia ( = Chondropsis), and Psammoclema ( = Psammopemma, Sarcocornea) are assigned to the latter. Dactylia, Chalinopsilla and Arenosclera are synonymised with Callyspongia. Thorectandra is synonymised with Thorecta. Dendrilla cactos (Selenka) is a senior synonym of D. rosea Lendenfeld. The composition of this collection is even, with respect to the known demosponge fauna of Victoria and Tasmania. Its zoogeographic affinity is essentially Indo-West Pacific and relictic Tethyan, its provincial endemism high, and its overlap with the Antarctic/Subantarctic fauna almost nil. -
The Impact of Sea-Level Rise on Tidal Characteristics Around Australia Alexander Harker1,2, J
The impact of sea-level rise on tidal characteristics around Australia Alexander Harker1,2, J. A. Mattias Green2, Michael Schindelegger1, and Sophie-Berenice Wilmes2 1Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany 2School of Ocean Sciences, Bangor University, Menai Bridge, United Kingdom Correspondence: Alexander Harker ([email protected]) Abstract. An established tidal model, validated for present-day conditions, is used to investigate the effect of large levels of sea-level rise (SLR) on tidal characteristics around Australasia. SLR is implemented through a uniform depth increase across the model domain, with a comparison between the implementation of coastal defences or allowing low-lying land to flood. The complex spatial response of the semi-diurnal M2 constituent does not appear to be linear with the imposed SLR. The most 5 predominant features of this response are the generation of new amphidromic systems within the Gulf of Carpentaria, and large amplitude changes in the Arafura Sea, to the north of Australia, and within embayments along Australia’s north-west coast. Dissipation from M2 notably decreases along north-west Australia, but is enhanced around New Zealand and the island chains to the north. The diurnal constituent, K1, is found to decrease in amplitude in the Gulf of Carpentaria when flooding is allowed. Coastal flooding has a profound impact on the response of tidal amplitudes to SLR by creating local regions of increased tidal 10 dissipation and altering the coastal topography. Our results also highlight the necessity for regional models to use correct open boundary conditions reflecting the global tidal changes in response to SLR. -
Narrative of the Expedition Promoted by the Australasian Ornithologists
Vol. VIII.1 White, Expedition to Islands of Bass Strait. 1909 j *95 Narrative of the Expedition Promoted by the Austral¬ asian Ornithologists* Union to the Islands of Bass Strait. By (Capt.) S. A. White, Adelaide. In connection with the Melbourne session of the A.O.U., the Council resolved to have an expedition to the various islands in Bass Strait, and appointed Mr. A. H. E. Mattingley, C.M.Z.S., sole organizer and leader. On the 24th November last, at midnight, the following ornithologists and friends met on the South Wharf, Melbourne, and boarded the specially chartered s.s. Manawatu, namely :— W. N. Atkins, H. Baker (Consul for U.S. America), J. Barr, C. L. Barrett (The Herald), Captain J. Gilkison, W. Grattan, Z. Gray, G. T. Howard, B.A., B.S., M.D, W. Kendall, M.R.C.V.S., A. H. Kenyon, J. A. Kershaw, F.E.S., A. C. Langmore, J. Leach, M.Sc., C. L. Lempriere, M.B., C.M., Edin., A. ^ H. Mattingley, C.M.Z.S., J. W. Mellor, D. Macdonald (The Argus), E. B. Nicholls, M.A.C.D., H. Huntington Peck, O. G. Perry, G. M. Robertson, Q. W. Rosenhain, A. Scott, A. N. B. Were, Captain S. A. White, and Mrs. S. A. White. Under easy steam we brought up the following afternoon off Seal Rocks, Western Port, and the deep, wailing cry of these strange animals could be heard several miles to leeward. A strong wind was blowing arid a heavy sea was running, but in spite of this Dr. -
Deal Island an Historical Overview
Introduction. In June 1840 the Port Officer of Hobart Captain W. Moriarty wrote to the Governor of Van Diemen’s Land, Sir John Franklin suggesting that lighthouses should be erected in Bass Strait. On February 3rd. 1841 Sir John Franklin wrote to Sir George Gipps, Governor of New South Wales seeking his co-operation. Government House, Van Diemen’s Land. 3rd. February 1841 My Dear Sir George. ………………….This matter has occupied much of my attention since my arrival in the Colony, and recent ocurances in Bass Strait have given increased importance to the subject, within the four years of my residence here, two large barques have been entirely wrecked there, a third stranded a brig lost with all her crew, besides two or three colonial schooners, whose passengers and crew shared the same fate, not to mention the recent loss of the Clonmell steamer, the prevalence of strong winds, the uncertainty of either the set or force of the currents, the number of small rocks, islets and shoals, which though they appear on the chart, have but been imperfectly surveyed, combine to render Bass Strait under any circumstances an anxious passage for seamen to enter. The Legislative Council, Votes and Proceedings between 1841 – 42 had much correspondence on the viability of erecting lighthouses in Bass Strait including Deal Island. In 1846 construction of the lightstation began on Deal Island with the lighthouse completed in February 1848. The first keeper William Baudinet, his wife and seven children arriving on the island in March 1848. From 1816 to 1961 about 18 recorded shipwrecks have occurred in the vicinity of Deal Island, with the Bulli (1877) and the Karitane (1921) the most well known of these shipwrecks.