Benthic Bibliog a to Z

Total Page:16

File Type:pdf, Size:1020Kb

Benthic Bibliog a to Z A Bibliography of Texas Aquatic Invertebrate Ecology and Taxonomy (Steve Ziser; Sept 28, 2008) * = article reviewed and added to Texas aquatic invertebrate distribution maps {} = article reviewed and added to Texas aquatic physico-chemical & biological inventory ? = not sure if it contains specific references to Texas' aquatic critters NTR = No Texas aquatic invert genera or species Records listed c=copied, not recorded yet ><=addl punctuation not available error= incorrect citation, could not be located as written Abbreviations (temporary): ACDT2000 = Robinson 2000 AOBIS2001=Assoc Biodiv Info-SW 2001 BCPLnd = _____nd. Balcones Canyonland Preserve Land Mgt Plan Davis & Buzan 1980=Davis & Buzan 1981 DOT = Mitchell 1997 Lind 1980 = Lind & Bane 1980 [McCafferty 1975] = [McCafferty 1975b] NASL98 = Stark 2001 RET Inc =Ryckman et al 1974 TMCA = Tx Mosq Control Assoc TMOT = _______nd. The Mayflies of Texas TSIOC =Quinn 2007 BFL 1999c = Brackenridge Field Lab 1999c Collections (also added to alphabetical list) Academy of Natural Sciences of Philadelphia c Jersabek, C. D., H. Segers and P. J. Morris. 2003. An illustrated online catalog of the Rotifera in the Academy of Natural Sciences of Philadelphia (Version 1.0: 2003-April-8) URL: http://data.acnatsci.org/biodiversity_databases/rotifer.php (accessed June 6, 2007) Brackenridge Field Lab *Brackenridge Field Lab. 1999c. Aquatic Insects of Texas, Collection and Website: utexas.edu/research/bfl/collections/aq insects. Univ. Texas; Austin, Tx. (accessed 1999) Entomological Museum of Lund University * Danielsson, R. 2007. Coleoptera: Dytiscidae present in the Entomological Museum of Lund University. URL: www.botmus.lu.se/zoomus/ZooDoc/VetSam/ZooEntl/OrdCol/ListCol/014Dytiscidae.html (accessed Feb 28, 2008) Ken Christiansen Collembola Collection * Christiansen, K. 2008. Ken Christiansen Collembola Collection URL: http://web.grinnell.edu/courses/biol/collembola/maintable_menu.asp. (accessed Aug 4, 2008) Illinois Natural History Survey 1 * Favret, C. 2003b. Illinois Natural History Survey Ephemeroptera Collection Database search results(For Texas Ephemeroptera). URL: http://ellipse.inhs.uiuc.edu:591/INHSCollections/FMPro (accessed April 4, 2007) * Favret, C. 2003. Illinois Natural History Survey Plecoptera specimen collection database search results (For Texas Plecoptera). URL: http://ellipse.inhs.uiuc.edu:591/INHSCollections/FMPro (accessed April 4, 2007) * Favret, C. 2003c. Illinois Natural History Survey Trichoptera Collection Database search results (for Texas Trichoptera). URL: http://ellipse.inhs.uiuc.edu:591/INHSCollections/FMPro (accessed April 4, 2007) * Illinois Natural History Survey. 2008. Ephemeroptera, Plecoptera, Trichoptera. URL: http://www.inhs.uiuc.edu/cbd/EPT/index.html (Accessed Aug 12, 2008) Museum Victoria Natural Science Collection * Museum Victoria. nd. Museum Victoria natural science collections online. URL: http://collections.museumvictoria.com.au/ Victoria, Australia (accessed: March 3, 2008) Peabody Museum of Natural History {*} Peabody Museum of Natural History. 2008. URL: http://research.yale.edu/cgibin/cgiwrap/ypm3/Query Yale Univ.; New Haven CT (accessed Mar 20, 2008) ________________. n.d. Balcones Canyonland Preserve Land Management Plan (get full ref) ________________. List of Texas mollusca collected by J. D. Mitchell. Nautilus 8: 84 ________________.Planorbis dilatatus Gould. Nautilus 12: 144 ?_______________. Snails of the Marnock Plantation. Nautilus 47: 79 ________________. URL: http://eny3005.ifas.ufl.edu/lab1/index.htm ________________. URL: http//stephenville.tamu.edu/~fmitchel/dragonfly/records/index.html ________________. aquatic invertebrates of texas. http://www.earthforce.org/section/offices/texas/aqinvert ________________. index to insects represented by specimens in Texas Memorial Museum URL: http:..www.utexas.edu/tmm/tnhc/entomology/insects/bio29.html ________________. plecoptera of north America BYU. URL: http://mlbean.byu.edu/plecoptera/list.asp * _________________. nd. The mayflies of Texas. URL: http://members.aol.com/_ht_a/nick480413/texasmayflies.html (accessed April 5, 2007) ________________. 1974. Utilization of diversity indices in evaluating the effect of a paper mill effluent on bottom fauna. Hydrobiol. 44(14): 463-474 ________________. 1978. Survey of the mollusks and larger crustaceans of the Rio Grande Valley: Alamito Creek, Presidio County, Texas, to Esperanza, Hudspeth County, Texas. ________________. 1980. Production and energy flwo in the benthic community of a Texas pond. 2 Hydrobiol. 74(1): 81-93 ________________. 1982. New records of aquatic Oligochaetes from Texas, with observations on their ecological characteristics. Hydrobiol 96(1): 15-29 ________________. 1984. Unionids of the lower Rio Grande system, United States and Mexico. Ann. Rept. West. Soc. Malacol 16: 16 ________________. 1986. Larval chironomidae(Diptera) of the Big Thicket streams. Hydrobiol 135 (3): 271-285 ________________. 1988. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the lower Rio Grande Valley and Laguna Atascosa National Wildlife Refuge, Texas 1986-87. U.S.G.S. Austin, Tx. ________________. 1997. Revitalization of a north central Texas river, as indicated by benthic macroinvertebrae communities. Hydrobiol 346(1-3): 95-117 c_______________. 2000. Texas Mussel Watch annual report; September, 1999, through August, 2000. Tx. Mussel Watch. 1p. c_______________. 2000. Texas Mussel Watch data base; May-October, 2000. Tx. Mussel Watch. 5p spreadsheet ________________2005. Life on the edge: rotifers from springs and ephemeral waters in the Chihuan Desert, Big Bend National Park (Texas, USA) Developments in Hydrobiology 181: 147-157 onlin# 978- 01-4020 Springer ________________. 2005. Tadpole shrimp structure macroinvertebrate communities in playa lake microcosms. Hydrobiol. 541 (!): 139-148 misc websites: need complete refs: mayflies of US by county: http://www.npwrc.usgs.gov/resource/distr/insects/mfly/usa/125.htm classification and checklist of the freshwater oligochaeta occurringin North America. website see ref set pVII www.capecod.net/~bnikula/photo.htm website on odonate photography (need complete ref) www.dragonflies.org/ catch-scan-release dragonfly site (need complete ref) 3 Abbott, J. C. 1996. New and interesting records from Texas and Oklahoma. Argia 8(4): 14-15 Abbott, J. C. 1999. Biodiversity of dragonflies and damselflies (Odonata) of the south-central nearctic and adjacent neotropical biotic provinces. Ph. D. Dissertation; Univ N Tx.; 911p *Abbott, J. C. 2000. Aquatic Entomology course files. URL: http://web.sbs.utexas.eud/jcabbott/courses/bio321web/labs/ (accessed July 9, 2008) c Abbott, J. C. 2001. Distribution of dragonflies and damselflies (Odonata) in Texas. Trans. Am. Ent. Soc. 127 (2): 189-228 * Abbott, J. C. 2005. Dragonflies and damselflies of Texas and the south-central United States. Princeton Univ. Pr. 344p Abbott, J. C. 2005. New and notable records of Odonata from Texas. Southwest. Ent. 30: 169-174 cAbbott, J. C. 2007. Dragonflies and damselflies of Texas. Odonata Central URL: http://odonatacentral.bfl.utexas.edu/checklists/namerica/State_CheckList.asp?State=Texas (accessed May 7, 2007) Abbott et al 1997. Aquatic insects of the Big Thicket region of east Texas [find on web] Abbott, J. C., R. Beckemeyer, T. W. Donnelly, E. Gonzales and G. Harp. 2002. Odonata collected in Nicaragua. Notulae Odonatologica 5: 125-128 Abbott, J. C., R. A. Behrstock and R. L. Larsen. 2003. Notes on the distribution of Odonata in the Texas panhandle, with a summary of new state and county records. Southwest. Nat. 48(3): 444-448 NTR Abbott, J. C. and K. W. Stewart. 1993. Male search behavior of the stonefly, Pteronarcella badia (Hagen) (Plecop0tera: Pteronarcyidae), in relation to drumming. J. Insect. Behavior 6: 467-481 *Abbott, J. C. and K. W. Stewart. 1997. Current status of the odonata of south central Nearctic and adjacent neotropical biotic provinces. Bull. NABS 17(1): 202 (abstr.) {*} Abbott, J. C and K. W. Stewart. 1998. Odonata of the south central Nearctic region, including northeastern Mexico. Ent. News. 109 (3): 201-212 *Abbot, J. C., K. W. Stewart and S. R. Moulton. 1997. Aquatic insects of the Big Thicket region of east Texas. Tx. J. Sci.49suppl: 35-50 NTR Abbott, J. F. 1912. A new type of Corixidae (Ramphocorixa balanodis, n gen, n sp) with an acccount of its life history. Canad Ent 44: 113-120 NTR Abbott, J. F. 1912b. An unusual symbiotic relation between a water bug and a crayfish. Am. Nat. 46: 553-556 *Abbott, W. and H. D. Hoese.1960. Ecological observations on Minter Spring, Brazos County, Texas. Tx. J. Sci. 12(1-2): 24-35 *Abbott, R. T. 1979. Indexes to the Nautilus: Geographical (Vols, 1-90) and Scientific Names (Vols 61-90). American Malacologists, Inc. Melbourne, Fla. 238p Abbott, R. T. and H. S. Ladd. 1951. A new brackish-water gastropod from Texas. (Amnicolidae: Littoridina). J. Wash. Acad. Sci. 41(10): 335-339 NTR Abbott, W. 1957. Unusual phosphorus source for plankton algae. Ecology 38(1): 152 4 NTR Abebe, E. W. Decraemer and P. DeLay. 2008. Global diversity of nematodes (Nematoda) in freshwater. Hydrobiol 595: 67-78 Abell, R. A., D. M. Olson, E. Dinerstein, P. T. Hurley, et al. 2000. Freshwater ecoregions of North America: A conservation assessment. World Wildllife Fund/Island Press. 319p. Academy of Natural Sciences of Philadelphia. 1949. A biological survey of the Guadalupe River at Victoria and San Antonio Bay, Texas. A report to E. I. duPont
Recommended publications
  • Molecular Cloning and Expression Profiles of Thermosensitive TRP Genes in Agasicles Hygrophila
    insects Article Molecular Cloning and Expression Profiles of Thermosensitive TRP Genes in Agasicles hygrophila Dong Jia 1, Zhouyu Ji 1, Xiaofang Yuan 1, Bin Zhang 2, Yanhong Liu 1 , Jun Hu 1, Yuanxin Wang 1, Xianchun Li 3,* and Ruiyan Ma 1,* 1 College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; [email protected] (D.J.); [email protected] (Z.J.); [email protected] (X.Y.); [email protected] (Y.L.); [email protected] (J.H.); [email protected] (Y.W.) 2 College of Horticulture, Shanxi Agricultural University, Taigu 030801, China; [email protected] 3 Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA * Correspondence: [email protected] (X.L.); [email protected] (R.M.) Received: 29 June 2020; Accepted: 11 August 2020; Published: 13 August 2020 Simple Summary: The increase of hot days with temperatures over 37 ◦C in southern China due to global warming has led to summer collapse of the alligator weed flea beetle, an introduced biological agent for the invasive alligator weed. To promote understanding of the beetle’s adaption/tolerance to hot temperatures, we obtained TRPA1, Painless, and Pyrexia, three thermosensitive transient receptor potential channel genes from the beetle, and analyzed their expression patterns across different developmental stages and hot temperatures. Their constitutive expressions were dramatically different from each other and stage-specific. As temperature increased, their expressions in eggs elevated to their peak levels at 30 or 37.5 ◦C, and then fell back to their preferred temperature levels at temperatures > their peak temperatures. These results imply that (1) they may have different and stage-specific roles in perceiving high temperatures/chemicals and mediating the corresponding responses; and (2) their expressions may be decoupled from their activation.
    [Show full text]
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • “Two-Tailed” Baetidae of Ohio January 2013
    Ohio EPA Larval Key for the “two-tailed” Baetidae of Ohio January 2013 Larval Key for the “two-tailed” Baetidae of Ohio For additional keys and descriptions see: Ide (1937), Provonsha and McCafferty (1982), McCafferty and Waltz (1990), Lugo-Ortiz and McCafferty (1998), McCafferty and Waltz (1998), Wiersema (2000), McCafferty et al. (2005) and McCafferty et al. (2009). 1. Forecoxae with filamentous gill (may be very small), gills usually with dark clouding, cerci without dark band near middle, claws with a smaller second row of teeth. .............................. ............................................................................................................... Heterocloeon (H.) sp. (Two species, H. curiosum (McDunnough) and H. frivolum (McDunnough), are reported from Ohio, however, the larger hind wing pads used by Morihara and McCafferty (1979) to distinguish H. frivolum have not been verified by OEPA.) Figures from Ide, 1937. Figures from Müller-Liebenau, 1974. 1'. Forecoxae without filamentous gill, other characters variable. .............................................. 2 2. Cerci with alternating pale and dark bands down its entire length, body dorsoventrally flattened, gills with a dark clouded area, hind wing pads greatly reduced. ............................... ......................................................................................... Acentrella parvula (McDunnough) Figure from Ide, 1937. Figure from Wiersema, 2000. 2'. Cerci without alternating pale and dark bands, other characters variable. ............................
    [Show full text]
  • Diversity of Water Bugs in Gujranwala District, Punjab, Pakistan
    Journal of Bioresource Management Volume 5 Issue 1 Article 1 Diversity of Water Bugs in Gujranwala District, Punjab, Pakistan Muhammad Shahbaz Chattha Women University Azad Jammu & Kashmir, Bagh (AJK), [email protected] Abu Ul Hassan Faiz Women University of Azad Jammu & Kashmir, Bagh (AJK), [email protected] Arshad Javid University of Veterinary & Animal Sciences, Lahore, [email protected] Irfan Baboo Cholistan University of Veterinary & Animal Sciences, Bahawalpur, [email protected] Inayat Ullah Malik The University of Lakki Marwat, Lakki Marwat, [email protected] Follow this and additional works at: https://corescholar.libraries.wright.edu/jbm Part of the Aquaculture and Fisheries Commons, Biodiversity Commons, Entomology Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Recommended Citation Chattha, M. S., Faiz, A. H., Javid, A., Baboo, I., & Malik, I. U. (2018). Diversity of Water Bugs in Gujranwala District, Punjab, Pakistan, Journal of Bioresource Management, 5 (1). DOI: https://doi.org/10.35691/JBM.8102.0081 ISSN: 2309-3854 online (Received: May 16, 2019; Accepted: Sep 19, 2019; Published: Jan 1, 2018) This Article is brought to you for free and open access by CORE Scholar. It has been accepted for inclusion in Journal of Bioresource Management by an authorized editor of CORE Scholar. For more information, please contact [email protected]. Diversity of Water Bugs in Gujranwala District, Punjab, Pakistan © Copyrights of all the papers published in Journal of Bioresource Management are with its publisher, Center for Bioresource Research (CBR) Islamabad, Pakistan. This permits anyone to copy, redistribute, remix, transmit and adapt the work for non-commercial purposes provided the original work and source is appropriately cited.
    [Show full text]
  • LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS in a MONTANE DESERT STREAM Eric K
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Natural Resources Natural Resources, School of 2016 CAUGHT BETWEEN A ROCK AND A HARD MINERAL ENCRUSTATION: LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS IN A MONTANE DESERT STREAM Eric K. Moody Arizona State University Jessica R. Corman University of Nebraska - Lincoln, [email protected] Michael T. Bogan University of California - Berkeley Follow this and additional works at: http://digitalcommons.unl.edu/natrespapers Part of the Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, and the Other Environmental Sciences Commons Moody, Eric K.; Corman, Jessica R.; and Bogan, Michael T., "CAUGHT BETWEEN A ROCK AND A HARD MINERAL ENCRUSTATION: LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS IN A MONTANE DESERT STREAM" (2016). Papers in Natural Resources. 796. http://digitalcommons.unl.edu/natrespapers/796 This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Western North American Naturalist 76(2), © 2016, pp. 172–179 CAUGHT BETWEEN A ROCK AND A HARD MINERAL ENCRUSTATION: LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS IN A MONTANE DESERT STREAM Eric K. Moody1, Jessica R. Corman1,2, and Michael T. Bogan3 ABSTRACT.—Aquatic ecosystems overlying regions of limestone bedrock can feature active deposition of calcium carbonate in the form of travertine or tufa. Although most travertine deposits form a cement-like layer on stream sub- strates, mineral deposits can also form on benthic invertebrates.
    [Show full text]
  • ANA PAULA MIRANDA MUNDIM POMBO Aedes Aegypti
    ANA PAULA MIRANDA MUNDIM POMBO Aedes aegypti: morfologia, morfometria do ovo, desenvolvimento embrionário e aspectos relacionados à vigilância entomológica no Município de São Paulo São Paulo 2016 ANA PAULA MIRANDA MUNDIM POMBO Aedes aegypti: morfologia, morfometria do ovo, desenvolvimento embrionário e aspectos relacionados à vigilância entomológica no Município de São Paulo Tese apresentada ao Programa de Pós-Graduação em Anatomia dos Animais Domésticos e Silvestres da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Departamento: Cirurgia Área de concentração: Anatomia dos Animais Domésticos e Silvestres Orientador: Profa. Dra. Maria Angélica Miglino De acordo:_____________________ Orientador São Paulo 2016 Autorizo a reprodução parcial ou total desta obra, para fins acadêmicos, desde que citada a fonte. DADOS INTERNACIONAIS DE CATALOGAÇÃO NA PUBLICAÇÃO (Biblioteca Virginie Buff D’Ápice da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo) T.3421 Pombo, Ana Paula Miranda Mundim FMVZ Aedes aegypti : Morfologia, morfometria do ovo, desenvolvimento embrionário e aspectos relacionados à vigilância entomológica no Município de São Paulo / Ana Paula Miranda Mundim Pombo. -- 2016. 133 f. : il. Tese (Doutorado) - Universidade de São Paulo. Faculdade de Medicina Veterinária e Zootecnia. Departamento de Cirurgia, São Paulo, 2016. Programa de Pós-Graduação: Anatomia dos Animais Domésticos e Silvestres. Área de concentração: Anatomia dos Animais Domésticos
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 1 PARIS, 2021-01 General 2021/001 New data on quarantine pests and pests of the EPPO Alert List 2021/002 Update on the situation of quarantine pests in the Russian Federation 2021/003 Update on the situation of quarantine pests in Tajikistan 2021/004 Update on the situation of quarantine pests in Uzbekistan 2021/005 New and revised dynamic EPPO datasheets are available in the EPPO Global Database Pests 2021/006 Anoplophora glabripennis eradicated from Austria 2021/007 Popillia japonica is absent from Germany 2021/008 First report of Scirtothrips aurantii in Spain 2021/009 Agrilus planipennis found in Saint Petersburg, Russia 2021/010 First report of Spodoptera frugiperda in Syria 2021/011 Spodoptera frugiperda found in New South Wales, Australia 2021/012 Spodoptera ornithogalli (Lepidoptera Noctuidae - yellow-striped armyworm): addition to the EPPO Alert List 2021/013 First report of Xylosandrus compactus in mainland Spain 2021/014 First report of Eotetranychus lewisi in mainland Portugal 2021/015 First report of Meloidogyne chitwoodi in Spain 2021/016 Update on the situation of the potato cyst nematodes Globodera rostochiensis and G. pallida in Portugal Diseases 2021/017 First report of tomato brown rugose fruit virus in Belgium 2021/018 Update on the situation of tomato brown rugose fruit virus in Spain 2021/019 Update on the situation of Acidovorax citrulli in Greece with findings
    [Show full text]
  • Check List 4(2): 92–97, 2008
    Check List 4(2): 92–97, 2008. ISSN: 1809-127X NOTES ON GEOGRAPHIC DISTRIBUTION Insecta, Ephemeroptera, Baetidae: Range extensions and new state records from Kansas, U.S.A. W. Patrick McCafferty 1 Luke M. Jacobus 2 1 Department of Entomology, Purdue University. West Lafayette, Indiana 47907 USA. E-mail: [email protected] 2 Department of Biology, Indiana University. Bloomington, Indiana 47405 USA. The mayfly (Ephemeroptera) fauna of the U.S.A. other central lowland prairie states as well state of Kansas is relatively poorly documented (McCafferty et al. 2001; 2003; Guenther and (McCafferty 2001). With respect to small minnow McCafferty 2005). Some additionally common mayflies (family Baetidae), only 16 species have species will be evident from the new data we been documented with published records from present herein. Kansas. Those involve Acentrella turbida (McDunnough, 1924); Acerpenna pygmaea Our examination of additional unidentified (Hagen, 1861); Apobaetis Etowah (Traver, 1935); material of Kansas Baetidae housed in the Snow A. lakota McCafferty, 2000; Baetis flavistriga Museum, University of Kansas, Lawrence, McDunnough, 1921; B. intercalaris McDunnough, Kansas, and collected mainly by the State 1921; Callibaetis fluctuans (Walsh, 1862); C. Biological Survey of Kansas, has led to the pictus Eaton, 1871; Centroptilum album discovery of 19 additional species of Baetidae in McDunnough, 1926; C. bifurcatum McDunnough, Kansas, resulting in a new total of 35 species of 1924; Fallceon quilleri (Dodds, 1923); Baetidae now known from the state. The records Paracloeodes minutus (Daggy, 1945); P. given alphabetically below also represent the first dardanum (McDunnough, 1923); P. ephippiatum Kansas records of the genera Camelobaetidius, (Traver, 1935); P.
    [Show full text]
  • DIPTERA: CULICIDAE) by ULTRA STRUCTURE MICROGRAPHS of EGGS by B
    Journal of the Egyptian Society of Parasitology, Vol.44, No.1, April 2014 J. Egypt. Soc. Parasitol. (JESP), 44(1), 2014: 71 – 77 DISTINGUISHING THE TWO FORMS OF EGYPTIAN AEDES (OCHLEROTATUS) CASPIUS PALIAS SPECIES (DIPTERA: CULICIDAE) BY ULTRA STRUCTURE MICROGRAPHS OF EGGS By B. A. SOLIMAN1, N. M. WASSIM1, AND J. R. LINLEY2 Department of Zoology1, Suez University, Suez, Egypt and Florida Medical Entomology Laboratory2, Institute of Food and Agricultural Sciences, University of Florida, USA. Abstract Ultrastructure of the two forms autogenous and anautogenous eggs of Aedes (Ochlerotatus ) caspius of Egypt are described using Scanning Electron Microscope (SEM). The eggs of the two forms are slightly boat shape with quite difference in width. Chorionic cells of the ventral surface are ultimately different in both forms in shape, width of reticulum , number and size of tubercles. The chorionic cells of the autogenous form's egg are elongate, narrow and almost curved with unusually wide, outer reticulum contain 2 - 13 large tubercles along with a few number in small size. However, the anautogenous form's egg , the chorionic cells of the ventral surface fairly distinct, very regular in outline with thin reticulum and usually hexagonal, each cell contain one or two large tubercles with many small scattered peripheral tubercles. Fine structure micrographic work of eggs of the Egyptian Ae. caspius provides new morphological evidence that both autogenous and unautogenous forms are certainly different and suggests that those forms are two distinct species. Key Words: Mosquitoes, Aedes caspius, Eggs, Scanning Electron Microscope. Introduction a group of two distinct species. They had Aedes caspius Pallas is a widely been identified as an autogenous, distributed in the Palaearctic Region where stenogamous form inhabiting brackish water its larvae were primarily halophytic, with breeding sites in coastal and inland desert occasional occurrence in fresh water areas, while an anautogenous, eurygamous (Horsfall, 1955).
    [Show full text]
  • Lundiana 8-1 2007.P65
    Lundiana 8(1):9-12, 2007 © 2007 Instituto de Ciências Biológicas - UFMG ISSN 1676-6180 Notas sobre Naucoroidea (Hemiptera: Naucoridae). 3ra. Serie. Estudios con microscopio electrónico de barrido: corion de los huevos de Ambrysus (Ambrysus) attenuatus Montandon, Ambrysus (Ambrysus) acutangulus Montandon y Ambrysus (Ambrysus) stali La Rivers Mónica L. López Ruf División Científica de Entomología, Museo de La Plata, Paseo del Bosque, B1900FWA La Plata, Argentina. E-mail: [email protected] Abstract Notes on Naucoroidea (Insecta: Heteroptera). 3rd. Series. Scanning electron microscopy studies: the chorion of the eggs of Ambrysus (A.) attenuatus Montandon, A. (A.) acutangulus Montandon and A. (A.) stali La Rivers. Chorionic sculpturing differs interespecifically in Ambrysus Stål. The eggs of three species were examined with scanning electron microscopy, described and illustrated. Different patterns on the chorion were found in the three species. In A. acutangulus and A. stali, a rounded area with different pattern appears at the anterior pole and the design disappears near the micropyla. In A. attenuatus the pattern is uniform on the surface. Keywords: Heteroptera, Naucoridae, morphology, eggs, chorion. Introducción Material y métodos El corion de los huevos de las Naucoridae no se ha descripto Los huevos fueron obtenidos de los oviductos de hembras tradicionalmente debido, quizás, a que sus tramas superficiales colectadas en una campaña a finales de la primavera, en el se encuentran en el límite de resolución de los microscopios Parque Provincial Salto Encantado del Valle del Cuñá Pirú estereoscópicos y son opacos para los microscopios ópticos. El (Provincia de Misiones). Debido a la época, las hembras de MEB brinda la posibilidad de observarlos con claridad.
    [Show full text]
  • Learning from the Extraordinary: How the Highly Derived Larval Eyes of the Sunburst Diving Beetle Can Give Insights Into Aspects Of
    Learning from the extraordinary: How the highly derived larval eyes of the Sunburst Diving Beetle can give insights into aspects of holometabolous insect visual systems A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati In partial fulfillment of the requirements for the degree of Doctorate of Philosophy (Ph.D.) In the department of Biological Sciences of the College of Arts and Sciences 2011 by Nadine Stecher B.S., University of Rostock, 2001 M.S., University of Rostock, 2005 Committee Chair: Elke K. Buschbeck, Ph.D. Abstract Stemmata, the eyes of holometabolous insect larvae, vary greatly in number, structure and task. The stemmata of the Sunburst Diving Beetle, Thermonectus marmoratus, are among the most sophisticated. The predatory larvae have six eyes and a potentially light-sensitive spot (eye spot) adjacent to the stemmata. The forward-pointing tubular eyes Eye 1 (E1) and Eye 2 (E2) are involved in prey capture, and possess a biconvex lens, a cellular crystalline cone-like structure, and tiered retinal tissue. A distal and a proximal retina can be distinguished, which differ not only in morphology but possibly also in function. E1 has an additional retina which runs medially alongside the crystalline cone-like structure. Using transmission electron microscopic preparations, I described the ultrastructure of the retinas of the principal eyes E1 and E2. The proximal retinas are composed of photoreceptors with predominantly parallel microvilli, and neighboring rhabdomeres are oriented approximately orthogonally to each another. This rhabdomeric arrangement is typical for eyes that are polarization sensitive. A similar organization is observed in a portion of the medial retina of E1, but not in either of the distal retinas.
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]